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Abstract 
 
 
Computational methods constitute an integral part of modern drug development. 
Applications of modeling cover the entire spectrum of drug development process from 
hit discovery to lead optimization and beyond. A collection of computational methods 
that are used in order to identify potential hits for a specific target from large compound 
libraries is termed virtual screening (VS). VS is generally classified into receptor-based 
and ligand-based VS depending on whether protein structure or ligand structure, 
respectively, is applied in the computational compound identification. In the present 
thesis, both types of VS techniques were utilized and combined in the search for new 
androgen receptor (AR) ligands that could offer new platforms for drug development. 

AR belongs to the steroid receptor (SR) family, which is a member of the large 
nuclear receptor superfamily of ligand-inducible transcription factors. The transcriptional 
activation of AR target genes is triggered by binding of an androgenic hormone, 
testosterone or 5α-dihydrotestosterone, to the AR. Androgenic hormones are essential 
for the development and maintenance of the male sexual phenotype. Disruptions in the 
gene regulatory function of AR caused, for instance, by receptor mutations and/or 
altered androgenic hormone concentrations are linked to several disorders, such as 
prostate cancer (CaP). CaP is the most common cancer in men in Western countries, 
which is why AR is a major target for drug discovery and attracts the attention of 
pharmaceutical industry. Design of AR-selective drugs is challenging because the ligand-
binding sites of the closely related SRs are very similar and share common ligand-binding 
features. Progesterone receptor (PR) displays the most similar binding site structure to 
AR, differing only by six residues. Design of AR-targeted drugs for CaP treatment is 
additionally complicated by binding site mutations that are frequently found in CaP 
patients. 

A panel of known AR ligands published in the literature was used in this thesis to 
develop a three-dimensional quantitative structure-activity relationship (3D QSAR) 
model. Constructed within the AR binding site, the model identified and quantified 
structural features in ligands that are important for AR binding of the studied 
compounds. 3D QSAR models are typically used to predict biological activities of com-
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pounds structurally related to ones used in model development process. In this thesis 
however, the 3D QSAR model of AR ligands was integrated as part of our receptor-
based VS workflow with the aim to computationally identify new non-steroidal AR hit 
compounds with structural scaffolds distinct from ones used to derive the model. 

Experimental affinity determination confirmed that with our computational 
approach we indeed found novel AR ligands, yet rather weakly binding. A subset of the 
new AR ligands was further tested in vitro for functional activity in wild-type and T877A 
mutant AR often associated with CaP. The ligands showed inhibition of AR activity in 
both AR structures tested. A possible structural mechanism for the inhibitory function 
was suggested based on computational modeling. Taken together, these AR ligands 
could serve as potential starting points for development of non-steroidal AR antagonists, 
for example for CaP treatment. 
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1  Introduction 
 
Steroid hormones are small cholesterol derived lipophilic compounds that through cel-
lular signaling pathways regulate a range of physiological functions. The effects of the 
hormones are mediated by their respective intracellular steroid receptors (SRs) – andro-
gen (AR), estrogen (ER), progesterone (PR), glucocorticoid (GR), and mineralocorticoid 
(MR) receptors – which are ligand-dependent transcription factors that in response to 
hormone binding regulate gene expression in target tissues [1, 2]. SR function is of great 
interest to the pharmaceutical industry because dysfunction in hormone signaling leads 
to disorders like cancer, infertility, and inflammatory diseases. 

The endogenous androgens, testosterone (T) and its metabolite 5α-dihydrotestos-
terone (DHT), are essential hormones for male sexual differentiation and maintenance of 
male characteristics in reproductive and non-reproductive tissues (reviewed in [3]). The 
androgen-induced effects on the reproductive tissues like prostate are known as andro-
genic, while the effects on the non-reproductive tissues like muscle and bone are referred 
to as anabolic. DHT is the primary androgen in the prostate and accounts for the andro-
genic effect while T is the main androgen in muscle and responsible for the anabolic 
effects (reviewed in [4]). 

The importance of functional AR-mediated signaling in maintaining the male physi-
ology is demonstrated by disorders caused by changes in the endogenous androgen pro-
duction or receptor activity [3, 4]. Low T levels in hypogonadal men have been associ-
ated with e.g. loss of musculoskeletal strength but also with more severe effects such as 
incomplete sexual differentiation depending on the stage of life at which the T decline 
occurs. Numerous AR mutations that are characterized as gain-of-function mutations, 
which confer increased AR activity, have been linked to pathologies like prostate cancer 
(CaP) [3, 5]. 

Many disorders related to AR function can be treated with small synthetic com-
pounds (ligands) that either activate or inactivate the AR-mediated signaling pathways. 
Conditions associated with androgen deficiency (e.g. hypogonadism, muscle wasting, 
osteoporosis) can be treated with agents that mimic the effects of natural androgens 
(agonist/androgen), whereas agents able to oppose the effects of natural androgens 
(antagonist/antiandrogen) are used to treat conditions associated with androgen excess 
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(e.g. hirsutism, acne) and androgen dependent CaP. Currently all the AR agonist and a 
few AR antagonist drugs on the market are steroidal compounds. Their chronic medical 
use is however limited due to poor oral bioavailability and side effects such as liver 
toxicity and other adverse effects caused by cross-reactivity with related SRs (reviewed in 
[6, 7]). It is well-known that reduced cross-reactivity is easiest achieved with non-
steroidal compounds. At present, there are three non-steroidal antiandrogens available 
clinically but despite improved AR-selectivity, they are not free of side effects. Effort has 
thus been placed on identification of new non-steroidal AR ligands – several non-
steroidal androgens and antiandrogens are in the drug development pipeline [6-10]. 

The focus of this literature review is on AR function and AR ligands because the 
main goal of the present thesis was to discover novel AR ligands that could offer new 
platforms for drug development. AR continues to be a challenging target for drug 
discovery even if there is a wealth of experimental data available on AR and its ligands. 
First, only the active structure of AR is currently known, which hampers the design of 
AR antagonists. Second, the ligand-binding sites of closely related SRs are very similar 
and share common binding features, which complicate development of drugs with 
receptor-selective function. Because detection of receptor-selective ligands is of major 
concern within the SR-field, the most closely related SR to AR, i.e. PR, and its ligands 
were also studied in this thesis. Judging from literature, a very small chemical change in 
the structure of a non-steroidal AR ligand can cause a complete change in its activity. 
One source of this effect arises from binding to similar binding sites in related SRs and 
other proteins in the signaling pathway. 

The goal in the early stage of drug discovery is to identify novel hit compounds for a 
target protein from large chemical libraries. A hit is defined as a compound that shows 
activity against a biological target in the primary in vitro screening test. Screening hits may 
be developed into lead compounds if the affinity, selectivity and pharmacokinetic prop-
erties of the hits can be improved by manipulating their chemical structure. The hit-to-
lead process necessitates synthesis of numerous structural analogues to be tested in both 
in vitro assays and in vivo animal models. Further optimization of leads may produce drug 
candidates that are safe to enter the first clinical trials on human subjects. 

Computational methods have been successfully integrated into the drug develop-
ment process during the last decade. Experimental high-throughput screening (HTS) 
approaches are now commonly complemented with computer-assisted virtual screening 
(VS) approaches for hit identification. VS uses various computational methods to ex-
plore large chemical libraries to identify new chemical classes of active compounds for a 
target protein (reviewed in [11-18]). While an entire library is commonly tested for activ-
ity in HTS, the objective in VS is to single out only the most potential library compounds 
for biological testing. The selection of compounds is based on various knowledge-based 
criteria, which are computationally applied in order to filter out library compounds that 



 3 

are unlikely to interact with the target. Computational methods thus rationally augment 
plain HTS, which is random in nature. 

The computational VS methods are categorized into receptor-based and ligand-
based methods. Receptor-based methods are applicable when the three-dimensional 
(3D) structure of the target protein and its ligand-binding site are known. The most 
commonly used receptor-based method is molecular docking, which attempts to predict 
ligand interaction with the target protein and to estimate the strength of the interaction. 
Ligand-based methods only require that structures of active ligands are known. Informa-
tion of a few active ligands is usually utilized in similarity searches to identify chemically 
related ligands. Larger series of ligands displaying differential biological activity can be 
used to perform quantitative structure-activity relationship (QSAR) analyses. Such analy-
ses attempt to quantify changes in biological activities of ligands to changes in their 
chemical structures. Both the receptor-based and ligand-based methods are suitable for 
hit identification as well as lead generation and optimization. In terms of ability to detect 
structurally novel ligands, the receptor-based methods are more valuable than ligand-
based methods because they are not biased by the properties of known ligands [19]. 

In this thesis, the aim was to uncover new non-steroidal AR ligands with previously 
unknown molecular scaffolds and with binding selectivity over PR. The binding proper-
ties of AR and PR ligands derived from the literature were therefore investigated by 
means of receptor-based and ligand-based computational drug discovery methods. Even 
though the emphasis of the thesis was on computational methods, there was a tight col-
laboration with experimentalists throughout the project for evaluation of computational 
predictions and generation of additional experimental data for subsequent modeling. In 
the end, successful drug discovery relies on a concerted effort of a multi-disciplinary 
team. 
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2  Review of  the Literature 

2.1  Ligand-induced modulation of steroid receptor function 

Ligand binding modulates SR-mediated gene transcription. The ligand may be either the 
endogenous steroid hormone or a pharmacological substance (agonist, antagonist, or 
partial agonist/antagonist). Substances having a similar activating effect on target gene 
expression as the natural hormone(s) are termed agonists. If the synthetic agonist is 
unable to induce the maximal activation achieved by the endogenous steroid(s), it has a 
partial agonist activity. Substances that are able to inhibit the effect of natural steroid(s) 
through competitive binding to the receptor are antagonists. The antagonistic effect may 
also be partial. Yet another class of substances is the selective receptor modulators 
(SRMs), which are neither pure agonists nor antagonists but display a mixed agonist/ 
antagonist activity in a tissue-specific manner. 

Upon binding of a ligand, SR undergoes a conformational change that induces its 
release from a cytoplasmic heat shock protein complex. Receptor-ligand complex 
translocates into the nucleus and binds as dimers to specific regulatory sequences known 
as hormone response elements (HREs) located in the promoter regions of its target 
genes. At the HREs, the liganded SRs recruit a large number of co-regulatory proteins in 
order to facilitate communication with the basal transcription machinery (for reviews of 
co-regulators see [20-22]). Co-regulators are structurally and functionally diverse proteins 
that interact with the SRs either directly or indirectly to activate (co-activators, CoA) or 
to reduce (co-repressors, CoR) transcriptional activity. During the past ten years it has 
become evident that the transcriptional regulation of SRs is a highly intricate process: 
169 proteins have been classified as potential AR co-regulators that modulate AR activity 
[22]. Such regulatory complexity, indicated already by the pure number of co-regulators, 
was unforeseeable when the first CoA (SRC-1: steroid receptor co-activator-1) [23] and 
CoRs (NCoR: nuclear receptor co-repressor and SMRT: silencing mediator of retinoid 
and thyroid hormone receptor) [24, 25] were identified over a decade ago. The subject is 
only briefly covered here to illustrate the modulatory power of ligands on SR interactions 
with co-regulator complexes. 
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Agonist binding changes the SR conformation in a way to allow interaction with 
CoAs, the best-characterized group being the p160 family proteins (referred to as SRC-1, 
2, and 3). These CoAs contribute to an increased transcriptional activity by their intrinsic 
histone acetylase (HAT) activity and by attracting additional CoAs with various histone 
modifying enzymatic activities. Together the modifications lead to relaxation of chroma-
tin, which enables increased access to the DNA by the basal transcription machinery and 
hence transcriptional activation. Antagonist binding, on the other hand, induces such 
conformational changes to the SR structure that facilitate CoR interactions with the re-
ceptor. The well-known CoRs, NCoR and SMRT, often form the basal platform for the 
CoR complexes and serve to recruit other proteins that contain histone deacetylase 
(HDAC) activity with the consequence of a more condensed chromatin structure and 
transcriptional repression. 

It is obvious that ligands play a crucial role in determining the co-regulator interac-
tions and the transcriptional activity of the SRs. Interestingly, even agonist and partial 
agonist -bound SRs are able to recruit the CoRs NCoR and SMRT, as shown e.g. for AR 
[26-29]. The transcriptional effect in response to ligand binding is in fact assumed to be a 
dynamic balance between the ligand-induced changes on the SR structure and the ex-
pression levels of co-regulatory proteins in a given cell type. This assumption underlies 
the tissue-selective activity of the SRMs (reviewed in [30]). When bound to a SRM the re-
ceptor may adopt a conformation that is intermediate or fluctuates between the agonist 
and antagonist conformations allowing interaction with both CoAs and CoRs, depending 
on their relative expression [30]. 
 

2.2  Non-steroidal modulators of AR and PR activity 

Even though steroids are the natural ligands for SRs (Figure 1), the trend within the SR 
field is to develop drugs with non-steroidal structures. It is thought that non-steroidal 
ligands enable improved receptor specificity and reduced side effect profiles, in addition 
to being easier to modify compared to steroids. At present, only three non-steroidal AR-
targeted modulators, the antiandrogens flutamide, nilutamide, and bicalutamide, are 
available for clinical use, whereas no PR-targeted non-steroidal modulators have yet 
reached the market. Efforts to identify non-steroidal AR and PR modulators in order to 
overcome problems related to steroidal compounds have resulted in the discovery of 
many potential chemotypes as modulators of AR and PR activity. The structure-activity 
relationships (SARs) for the non-steroidal chemotypes of AR and PR modulators have 
been thoroughly reviewed recently [31-33]. 
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Figure 1. Chemical structures of the endogenous AR and PR ligands. 

 
The following sections concentrate on non-steroidal AR and PR modulators, exam-

ples of which are depicted in Figures 2 and 3, respectively. Discussion is based on struc-
tural scaffolds rather than functional activities of the chemotypes. It becomes clear from 
the literature that functional activities may fluctuate from agonism to partial agonism and 
even to antagonism as a consequence of merely small structural changes in the ligand 
scaffold. Receptor binding affinity of a ligand is generally affected by the minor changes 
made to the ligand structure too. Overall, the biologically measured outcome of a chemi-
cal modification is many times ambiguous and hard to understand only by visual com-
parison of ligand structures. In this work, advanced computational methods have there-
fore been applied to study the features of non-steroidal AR and PR modulators to be 
able to identify and quantify the features that are important for high-affinity binding to 
their respective receptors (Paper I and II). 
 

2.2.1  AR modulators 

Flutamide was the first non-steroidal antiandrogen that was approved in the 1980’s for 
treatment of CaP [34]. Its primary active metabolite, hydroxyflutamide (HF) (1 in Figure 
2), served as a lead compound in the search for sex organ -selective antiandrogens. This 
resulted in the discovery of bicalutamide (2) [35], which is currently the preferred anti-
androgen for CaP treatment. 

SAR research around the aryl propionamide chemotype (bicalutamide derivatives) 
has been very active within the past decade and resulted in a number of analogues with 
various functional activities [36-40]. Aryl propionamide derivatives also constituted a 
major group of compounds for our 3D QSAR analysis (Paper I). It is well-known that 
good binding affinity and functional activity require electron attracting substituents on 
the anilide ring (A-ring) and a tertiary carbinol separated by an amide linkage from the A-
ring [35-41]. Optimal activity is generally achieved by either nitro or cyano substitution in 
the para position together with a chloro or trifluoromethyl group in the meta position of 
the A-ring. High affinity and activity is also dependent on the correct stereochemistry. 
Analogues from the bicalutamide series with a sulfonyl (-SO2-) linkage usually demon-
strate antagonist activity, while replacing the sulfonyl with a thio (-S-) linkage generally 
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introduces agonist activity [40]. Changing the thio linkage in the agonist derivatives into 
metabolically more stable ether (-O-) linkage, like in S-1 (4) and S-4 (5), preserves the 
binding affinity and produces higher agonist activity [39]. B-ring substitutions, with a 
preference for para and/or meta substitutions, are also important for the functional 
activity. 
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Figure 2. Chemical structures of clinical antiandrogens (1-3) and investigational AR modulators 
(4-14). The in vitro function of the ligands is given. 

 
The third clinically available antiandrogen, nilutamide (3), is a hydantoin derivative of 

flutamide. The SAR of nilutamide template has been studied [42, 43] and many deriva-
tives resembling the agonist DTIB (6) are included in our 3D QSAR analysis (Paper I). 
Related succinimide (7) and hydantoin (8) derivatives of nilutamide incorporating a 
bridged bicycle have recently been identified as AR antagonists [44-46]. Reduction of the 
bulky bicyclic system of the hydantoin analogues and incorporation of a hydroxyl group 
to appropriate position reverses the functional activity from antagonism to agonism [47]. 
A highly potent agonist BMS-564929 (9) resulted from optimization of the anilide ring 
[48]. 
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Linear tricyclic quinolinone derivatives have been identified as AR modulators [49] 
and many SAR studies have been performed around the quinolinone template (10-13) 
[50-56]. Compound LG120907 (10) is a potent antagonist with in vivo efficacy superior to 
flutamide [49]. Bisalkylation of the carbon C8 adjacent to the piperidine nitrogen was 
shown to be responsible for the antagonist activity [51, 53]. Agonist activity was ob-
served for quinolinone derivatives with small alkyl substitutions on C6 or C7, or combi-
nations on C6/C7 or C7/C8. An ethyl group on C6 gives a full agonist LG121071 (11), 
which was the first reported orally active non-steroidal AR agonist [51]. It has become 
clear that the substitution pattern including the size and positioning of the substituents 
on the C-ring plays an important role in determining the functional activity of the 
quinolinone derivatives [52, 56]. C-ring substitutions converting the piperidine to other 
heterocycles like pyrrolidine and oxazino (12) rings have been explored and provide 
additional SAR data for different quinolinone derivatives [31, 57]. Various A-ring 
substitutions have also been studied [32, 50, 53]. Replacement of the A-ring lactam 
(LG120907) with e.g. a lactone (13) switches the activity profile from antagonism to 
agonism. SAR studies of bicyclic quinolinones, obtained by breaking of the C-ring, 
indicated that monoalkylation of the amino group gives good antagonists whereas 
bisalkylation generates highly potent agonists like LGD2226 (14) [54, 55]. 
 

2.2.2  PR modulators 

There are several applications for PR modulators in female health care due to the central 
role of progesterone (P) and PR in the regulation of female reproductive function. PR 
agonists are used for e.g. contraception and hormone-replacement therapy. The use of 
PR antagonists is currently more limited and primarily focus on medical termination of 
pregnancy although new clinical applications are emerging (reviewed in [58]). All clini-
cally used PR modulators have a steroidal structure.  

During the past decade quite a few non-steroidal chemotypes have been discovered 
as PR modulators [31, 33], some of them similar to the AR chemotypes. The resem-
blance between the AR and PR modulators is not surprising because of the structural 
similarity of the ligand-binding sites of active AR and PR structures (see next chapter, 
Figure 7, and Table 1). Tetrahydropyridazine-based chemotype, exemplified by agonist 
RWJ 60130 (1 in Figure 3), was among the early non-steroidal chemotypes for PR 
modulators [59-61]. Different substitution patterns on the aromatic moieties (2) affect 
both binding affinity and functional activity [31]. Compounds of a related pyrazoline-
based chemotype (3) function as antagonists [62]. 

One of the most actively studied chemotypes has been the quinoline family of com-
pounds [63-73], a series of which was studied in this work with 3D QSAR analysis 
(Paper IV). The 6-aryl-dihydroquinoline LG001447 (4) was demonstrated to possess 
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antagonist activity, which was increased by electron-withdrawing substituents at the meta 
positions of the 6-aryl moiety [65]. Conformationally constrained analogs, like the 
dihydrochromenoquinolines (5), show antagonist activity as well [71]. Nevertheless, lipo-
philic substituents on the 5-position generate potent agonists (6) (e.g. [63, 73]). 

 

N
N

S

I

Cl

F3C

O O
N

N
S

Cl

Cl

O O Cl

Cl

S

Cl

O
ON

N

Cl

Cl

N

N N

O
F

NC

N

O

F

S

N

NC

S

N

O

NC

N

O

S

Cl

N

O

O

Cl N

N

O

O

NC
N

N

O

S

NC

(1) RWJ 60130
      agonist

      (2)
antagonist

     (3)
antagonist

(4) LG001447
   antagonist

      (5)
antagonist

5

      (6) 
   agonist

      (7)
antagonist

     (8)
  agonist

     (9)
  agonist

     (10)
antagonist

     (11)
   agonist

(12) Tanaproget
        agonist

2

 

Figure 3. Chemical structures of investigational PR modulators. The in vitro function of the 
ligands is given. 
 

Modifications to the structural elements at either end of the dihydroquinoline 
template influence the functional activity of the compounds. Bioisostere replacement of 
the 6-phenyl for a 6-thienyl group results in antagonistic analogues (7) [70]. Replacing the 
quinoline template itself with a benzoxazine template (8) generally produces potent 
agonists when the substituents at the 2-position are smaller alkyl moieties [74]. Larger 2-
substituents switch the activity to antagonism. 2-Thiocarbonyl derivatives (9) of the       
6-aryl benzoxazine class of compounds exhibit agonist activity [75] whereas 2-carbonyl 
analogues (10) are potent antagonists [76]. The antagonist activity of the 2-carbonyl 
derivatives may however be converted into potent agonist function by introducing a      



 10 

5-cyano-2-pyrrole group to replace the 6-aryl group (11) [77]. An even more potent 
agonist, Tanaproget (12), is obtained by combining the 5-cyano-2-pyrrole with the 2-
thiocarbonyl substituent on the benzoxazine template [78]. Together the above-
described examples clearly show that subtle structural modifications to a specific 
chemotype of PR modulators may cause a complete reversal of functional activity. 

Tanaproget is the only non-steroidal PR modulator that has reached clinical trials for 
contraception and hormone-replacement therapy so far, but was pulled from all the trials 
in 2006 due to its side effect profile [33]. 
 

2.2.3  Selective receptor modulators 

With SRMs it is possible to achieve tissue-selective activity profiles and such modulators 
are the ultimate goal in the development of SR ligands (potential therapeutic applications 
of selective AR modulators (SARMs) are reviewed in [9, 79]). A few SARMs with non-
steroidal structures have recently been discovered [48, 54, 80, 81]. The above introduced 
compounds S-4 (5), BMS-564929 (9), and LGD2226 (14) are orally available SARMs that 
have similar in vivo pharmacological profiles. They exhibit full agonist activity in the 
skeletal muscle and bone but only partial agonist activity in the prostate in rodent models 
[48, 80, 82]. In the prostate they basically function as competitive antagonists in the 
presence of full agonists like the endogenous DHT [83]. These SARMs thus behave as 
strong anabolic agents with weak androgenic activity. SARMs with such a profile could 
be suitable for treatment or prevention of age- and disease-related muscle wasting and 
osteoporosis. Additional applications that could benefit from the low androgen activity 
on prostate include hormone-replacement therapy in aging males, but maybe even CaP 
[7, 32]. S-4, BMS-564929, and LGD2226 have advanced into clinical trials but thus far 
none of them or other clinical SARM candidates have entered the market [7, 9, 10]. 

Selective PR modulators (SPRMs) have also been identified [33, 58]. All the currently 
reported potential SPRMs are steroidal compounds however and there are no non-
steroidal SPRMs in clinical trials. 
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2.3  Structural and functional organization of steroid receptors 

The SRs share a conserved modular domain organization comprising of an N-terminal 
domain (NTD), a DNA-binding domain (DBD), a hinge domain, and a C-terminal 
ligand-binding domain (LBD). Despite variability in sequence conservation of the do-
mains among the SR family members, their functional activities are preserved (Figure 4). 
In the following sections, the domain structures and their functions are introduced in 
more detail. The focus is on the LBD that via ligand binding regulates the SR activity. 
 

 

 

Figure 4. Structural and functional organization of the SRs. Sequence identities (adapted from 
[84]) between the human SRs are shown in relation to AR (percentage values) and the length of 
each sequence is indicated. The general transactivation functions 1 and 2 (AF1 and AF2), includ-
ing the helices (H) forming the AF2, are indicated within their respective structural domains. The 
Figure was adapted with permission from [6]. Copyright 2005 American Chemical Society. 
 

2.3.1  N-terminal domain 

For the least conserved NTD there is no high-resolution structure available for any 
member of the SR family. Neither is the function of this highly divergent domain fully 
understood. Nevertheless, the NTD is known to be important for transcriptional activa-
tion and it harbors a ligand-independent transactivation function termed activation func-
tion 1 (AF1). A large number of co-regulatory proteins, both CoAs and CoRs, interact 
with the NTD via AF1 sequences (reviewed in [22, 85]). Distinguished from other SRs, 
AR exhibits strong AF1 activity as revealed by the weak transcriptional activity of an 
NTD-deletion mutant of the receptor [86, 87]. This is explained by the weak recruitment 
of CoAs by the ligand-dependent activation function 2 (AF2) on the AR LBD compared 
to other SRs (see sections 2.3.3 and 2.4.1) [88]. 
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Structural characterization of AF1 polypeptides by means of biochemical, biophysi-
cal and bioinformatics methods has revealed that the region is flexible and mostly 
unstructured in aqueous solution, e.g. in AR only 16% of AF1 is α-helical and 24% β-
structure [89, 90]. The AF1 has been shown to adopt a more folded structure upon bind-
ing to target proteins as is shown for AR AF1 when interacting with the transcription 
factor IIF (TFIIF) from the basal transcription machinery [89, 90]. Based on the 
observations, an induced folding model for transforming the unstructured NTD into 
more folded conformation upon interaction with different factors has been proposed 
[85, 90]. The model suggests that additional binding surfaces on NTD are introduced for 
further protein-protein interactions upon induced NTD folding. Creation of new binding 
surfaces following TFIIF-induced folding of AR AF1 has been supported by enhanced 
binding of a CoA protein from the p160 family to AR AF1 [89]. 
 

2.3.2  DNA-binding and hinge domains 

The transcriptional regulation of the SRs is dependent on their interaction with the 
regulatory DNA sequences of their target genes. The DBD located at the center of the 
protein sequence is responsible for the recognition and binding to the appropriate 
HREs. Reflecting the common need for SRs to interact with the DNA, the sequence and 
structure of the DBD is well conserved (Figure 4).  

Currently, the crystal structure of DBD as a dimer in complex with DNA (Figure 5) 
has been solved for all SRs except for MR [91-94]. The core of the DBD consists of two 
zinc-finger motifs, where each of the zinc atoms is tetrahedrally coordinated by four 
highly conserved cysteine residues [95]. The zinc-fingers fold into a globular domain 
comprising two α-helices. The first α-helix, which contributes to the N-terminal zinc-
finger, regulates the recognition of specific HREs via amino acids within a region termed 
P-box [91]. The P-box residues make nucleotide-specific contacts when the first helix, 
also known as the recognition helix, is positioned within the major groove of DNA. The 
second α-helix that contributes to the C-terminal zinc-finger packs against the recogni-
tion helix in a perpendicular fashion and forms hydrophobic interactions to stabilize the 
complex. DNA-binding induces receptor dimerization, which in the DBD is mediated by 
residues within the C-terminal zinc-finger [91, 96].  

Following the highly conserved core of the DBD there is a variable C-terminal ex-
tension, which is suggested to contribute to DNA-binding affinity and specificity of SRs 
through interactions with DNA regions outside the HREs [92]. The C-terminal exten-
sion is part of the flexible hinge domain, which serves as a linker region between DBD 
and LBD. The hinge domain houses a nuclear localization signal making it important for 
nuclear targeting of SRs [87, 97, 98]. 
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Figure 5. Crystal structure of AR DBD dimer co-crystallized with a stretch of DNA (PDB 1R4I) 
[94]. (A) Side view. (B) Top view. The highly conserved DBD consists of two zinc-finger motifs, 
which fold together to form a globular structure comprising two perpendicularly oriented α-
helices. Zinc (Zn) atoms are shown as red spheres.  
 
 

2.3.3  C-terminal ligand-binding domain 

The LBD is a multifunctional domain, which is responsible for ligand recognition but 
contributes also to dimerization and co-regulator interactions. Despite the relatively low 
sequence conservation among the LBDs of different SRs (Figure 4), numerous 3D 
structures of SR LBDs show that they adopt a similar α-helical sandwich structure that 
generally consists of 12 α-helices (H) and 1-2 small anti-parallel β-sheets arranged into 
three layers (Figure 6) [99, 100]. Conventionally the helices are numbered from H1-H12, 
even if some helices are unidentifiable in some SRs, such as H2 in AR and PR LBD 
structures [101, 102]. The central layer, formed by helices H4, H5, H8, and H9 and the 
first β-sheet, is flanked from one side by helices H1-H3, and from the other side by 
helices H6, H7, H10, and H11 and the second β-sheet. The central layer is missing from 
the lower part of the domain structure, generating a cavity that serves as the LBP (Figure 
7). The bottom half of the domain has shown to be intrinsically flexible to support 
binding of ligands with different sizes. Dynamic behavior is observed especially for H12, 
which is able to adopt various positions depending on the bound ligand. The mobility of 
H12 has been connected to the activity of the SRs and will be discussed in more detail in 
sections 2.4.1 and 2.4.2. In the active, agonist-bound LBD conformation, as shown for 
AR in Figure 6, H12 is placed over the LBP like a lid and it spans all three helical layers 
and stabilizes the active conformation. Additional stabilization is provided in AR and PR 
LBDs by a second β-sheet formed by the most C-terminal region following H12. 
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Figure 6. Crystal structure of the agonist-bound AR LBD representing the conserved three-
layered α-helical sandwich structure of SRs (PDB 1I37) [103]. A) Front view. B) Side view. The 
layers are shown with different colors (blue, green, and yellow). LBP resides within the lower half 
of the central layer and is enclosed by the helix H12 (red). DHT agonist is shown in stick repre-
sentation. Helices H1-H12 are marked; H2 is missing from the AR LBD.  
 
 

Activation function 2 

On the surface of the active SR LBD structure there is a hydrophobic cleft formed by 
residues from helices H3, H4, and H12 (Figure 6 and 8A) that mediates interactions to 
CoAs containing a common LXXLL motif called NR box [104], where X represents any 
amino acid. This surface cleft is known as the ligand-dependent AF2 because the activity 
of AF2 is regulated by the binding ligand. The AF2 surface forms a complementary 
binding interface for the LXXLL motif, which adopts an amphipathic α-helical structure 
with the leucines interacting with the hydrophobic floor of the AF2 cleft [105]. The 
hydrophobic center of the AF2 surface is flanked by patches of opposite charge at the 
ends of the cleft [106]. Among these charged residues there is a particularly important 
charge clamp of conserved lysine and glutamate residues [100] from helices H3 and H12, 
respectively, that stabilize CoA binding by hydrogen bonding to the NR box residues 
[105]. 
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Ligand-binding pocket 

The LBP resides in the interior of the LBD just underneath the central helical layer. 
Structurally the LBPs of different SRs are closely related owing to the similar chemistries 
of the natural steroidal ligands. This buried cavity is lined by residues protruding from six 
α-helices (H3, H4, H5, H8, H11 and H12) and the β-strand located between H5 and H6. 
Most of the LBP residues that envelop the hormone are hydrophobic in character and 
interact with the steroid body through van der Waals interactions. Hydrophobic 
interactions have consequently an essential role in ligand binding. Only a few polar 
residues are presented to the binding site surface at opposite ends of the LBP. In AR, the 
two polar patches are formed by residues Q711 and R752 at one end and by residues 
N705 and T877 at the other end of the cavity, while the corresponding residues in PR 
are Q725 and R766, and N719 and C891, respectively (Figure 7A-B). They anchor the 
binding ligands via hydrogen bonding networks and are thus important for both binding 
affinity and specificity. 

All steroidal and non-steroidal AR and PR ligands co-crystallized with their 
respective receptor LBDs have been shown to form hydrogen bonds to the polar patch 
of residues Q and R either directly or indirectly via a structural H2O molecule [47, 102, 
103, 107-110]. Hydrogen bonding to the other polar area is more varied. The 17-
hydroxyl group of the steroids T and DHT hydrogen bonds to both N705 and T877 of 
AR [103, 108], while no comparable polar interactions occur between the 17-acetyl group 
of P and the residues N719 and C891 of PR [102]. The non-steroidal AR or PR ligands 
have been shown to form a single hydrogen bond to the N residue [47, 107, 109] or to 
make no hydrogen bond contacts at this end of the LBP [110] when co-crystallized with 
their respective receptors. 

The crystal structures determined to date for the wild-type (WT) AR and PR LBDs 
in complex with various synthetic agonists, including steroidal and non-steroidal 
molecules, have demonstrated that the LBP is remarkably flexible (e.g. [107, 111, 112]). 
The LBP volume can be adapted to accommodate ligands with various structures and 
sizes much larger than the natural steroids without disrupting the active AF2 surface. 
This is primarily achieved by altering the side chain conformations of only a few LBP 
residues and/or by small changes in the protein main chain [107, 111, 112]. In AR, the 
mobility of W741 and M895 is important for accommodation of larger ligands (Figure 
7C). The volume of the AR LBP has been shown to increase from about 600 Å3 (DHT-
bound) to over 800 Å3 upon binding of a bulky steroid agonist EM5744 mainly by 
reorienting the side chains of W741 and M895 [111]. A similar increase in volume is 
observed when the non-steroidal agonist S-1 (4 in Figure 2) [39, 80] is bound to the AR 
LBP [107]. Besides affecting the volume of the LBP, such ligand-induced adjustments in 
the LBP structure generate additional non-polar and polar interaction sites that are 
important for the ligand binding affinity. 
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Figure 7. The LBP structures of AR LBD (A and C) and PR LBD (B) depicted in comparable 
orientations. The residues shown are the six residues that differentiate AR LBP from PR LBP 
(AR residues M749, M780, Q783, F876, T877, L880), the polar residues forming hydrogen bond 
interactions with the ligands (N705, Q711, R752, T877), and the two residues important for ac-
commodation of larger ligands to the AR LBP (W741 and M895). Comparison of figures A and C 
reveals the flexibility of the AR LBP: reorientation of W741 and M895 increases the LBP volume 
drastically and enables binding of larger ligands to AR LBP. A) (PDB 1I37) [103], B) (PDB 1A28) 
[102], C) (PDB 2AXA) [107]. 

 
The LBP serves also as the binding site for antagonists. From a mechanistic point of 

view, ligands become antagonistic when the LBP is unable to adapt its volume to the 
binding ligand. This push introduces changes in the tertiary structure of the LBD that 
inhibit the receptor from functioning. However, the mechanistic viewpoint is too simple 
to represent the whole truth. For example, the AR antagonist HF is comparable in size 
to the natural androgens, indicating a different structural basis for antagonism. Currently, 
there are no crystal structures available for AR antagonists in complex with the WT AR. 
The structural modifications upon antagonist binding are discussed in more detail in 
section 2.4.2. 
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Understanding receptor-ligand interactions and receptor flexibility is important when 
one attempts to identify new target-selective hit compounds for drug development. The 
design of new AR-selective modulators is tricky because the LBPs of SRs are very similar 
and share common ligand-binding features. PR demonstrates the most similar LBP 
structure to AR: the LBP of PR differs only by six residues from the LBP of AR (Table 
1). The design of AR antagonists for CaP treatment is additionally complicated by LBP 
mutations that are frequently found in CaP patients (Table 1) [5]. The mutated ARs, 
T877A and W741C variants in particular, have the ability to bind and be activated by a 
broadened spectrum of ligands including a variety of hormones but also antiandrogenic 
drugs [107, 113-115]. T877A mutant confers antagonist-to-agonist conversion of the 
non-steroidal antiandrogen HF and the steroidal antiandrogen cyproterone acetate (CPA) 
[107, 115-118]. W741C/L mutations result in agonist activity of bicalutamide [107, 113, 
117]. Design of AR antagonists that retain their activity in several mutated AR variants 
besides the WT AR is a major goal for CaP treatment [8]. 
 
 

 

 

 

 

 

 

 

Table 1. Selective AR-targeted ligands are structurally difficult to design because 1) there are only 
six residues that differentiate AR LBP from PR LBP in the hormone-bound active form (left 
column) and 2) AR LBP mutations that broaden ligand specificity are frequently detected in CaP 
patients (right column). 
 

2.4  Structural basis for activation and inactivation of AR with 
ligands 

2.4.1  Activation by agonists 

A functional AF2 surface on the LBD that enables CoA recognition is essential for the 
transcriptional activation of SRs (Figure 8A-B). AR appears to differ from the other SRs 
in terms of CoA recruitment. Compared to other SRs the AF2 in AR LBD interacts 
poorly with the LXXLL motif containing CoAs and displays therefore weak AF2 activity 
[88, 119, 120]. Instead, the AF2 of AR prefers binding of phenylalanine-rich FXXLF 

AR LBP - PR LBP 

residues 

CaP (AR LBP) 

mutations  

M749 - L763 L701H 

M780 - F794 W741C 

Q783 - L797 M749I 

F876 - Y890 T877A/S 

T877 - C891 L880Q 

L880 - T894 M895V 
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motifs that are found within the AR NTD and in a subset of AR interacting CoAs [121-
124]. The N-terminal 23FQNLF27 sequence has been shown to mediate direct, 
interdomain interaction between the NTD and LBD (N/C interaction) in an androgen-
dependent manner [121] and this interaction is proposed to have functional importance 
in the regulation of some, but not all, AR target genes [125]. Due to the N/C interaction 
the AF2 surface becomes unavailable for interaction with LXXLL-containing CoAs 
[119], thus making the NTD AF1 the main activation region responsible for CoA 
recruitment in AR [126, 127]. 

 

 
 
Figure 8. Crystal structures of SR LBDs illustrating the location of the functional AF2 surface 
(A) and the dynamic behavior of helix H12 (green) (B-D) upon ligand binding (see text for de-
tails). Ligands are shown as spheres. A) AR-agonist complex (PDB 1I37) [103]. The helices H3, 
H4, and H12 forming the AF2 surface are highlighted in green. The charge clamp residues are 
shown as blue (lysine) and red (glutamate) sticks. B) AR-agonist-CoA complex (PDB 1XOW) 
[120]. Agonist-bound AR LBD structure with a CoA peptide (light blue) interacting with the AF2. 
C) ER-antagonist complex (PDB 3ERT) [105]. Antagonist-bound structure of ER LBD where 
H12 has swung onto the surface of AF2 thereby inhibiting CoA binding to AF2. D) PR-SPRM-
CoR complex (PDB 2OVM) [128]. SPRM-bound PR LBD structure with H12 displaced from 
the active position and CoR peptide (magenta) bound to AF2. 

 
The structural basis for the distinct preference of AR AF2 for FXXLF motifs 

compared to other SRs has recently been elucidated by analyzing the contacts formed 
between the agonist-induced functional AF2 surface and various peptide fragments 
conforming to either FXXLF or LXXLL motifs [120, 129, 130]. The experimentally 
determined structures show that the general mechanisms for binding the FXXLF motifs 
are similar to those used in binding LXXLL motifs by other SRs [105, 131]. The 
common hydrophobic and electrostatic interactions are formed when the α-helical 
peptide fragment docks into the AF2 cleft. Nevertheless, the AR AF2 is unique in being 
able to rearrange the AF2 surface into a deeper cleft that can accommodate the bulky 
aromatic side chains of the FXXLF motif, thus providing enhanced hydrophobic 
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interactions. Hydrogen bonds are formed to both charge clamp residues (K720 and 
E897) by the FXXLF-containing peptides, while a shift in the position of LXXLL-
containing peptides enables interactions with only one charge clamp residue (K720). 
Together, these differences may explain why the AR LBD binds the FXXLF-containing 
peptides with higher affinity than the LXXLL-containing peptides [106, 120, 130]. 
 

2.4.2  Inhibition by antagonists 

The first antagonist-bound SR structures were determined for ER and provided insight 
into the structural basis of antagonism [105, 132]. The structures revealed that antagonist 
ligands with a bulky extension sterically interfered with positioning of H12 into its active 
orientation as a consequence of not being able to fit the extension within the binding 
cavity. Instead of adopting the agonist conformation, H12 swings onto the surface of 
AF2 (Figure 8C). This relocation is feasible because H12 of ER harbors a recognition 
sequence (540LLEML544) that resembles the LXXLL motif of CoAs and is able to 
mediate interactions with the AF2 cleft. Because the AF2 becomes engaged in binding of 
the repositioned H12, there is no functional AF2 surface available for CoA recruitment. 
The AF2 antagonist model, as it is called, was proposed as the general mechanism for SR 
antagonism [99] and has subsequently been observed also in GR [133]. 

In AR, the sequence corresponding to 540LLEML544 of H12 in ER is 895MAEII899. 
Whether this H12 sequence interacts with the AF2 surface to inhibit AR activity by 
blocking N/C interaction and/or CoA recruitment is unknown at the moment. The 
structural basis for AR antagonism is unclear, because no antagonist-bound structures of 
WT AR LBD are available. In the lack of proper antagonist AR structure, insight into the 
structural mechanism for AR antagonism has been sought by co-crystallizing AR 
antagonists with AR LBD mutants that are known to induce agonist activity for the 
antagonists, thus permitting the complex to be crystallized in the agonist conformation 
[45, 107, 118, 134]. AR antagonists have been crystallized in complex with either T877A 
(HF, CPA, and isoindoledione-based compound) or W741L (bicalutamide) variants of 
AR LBD [45, 107, 118, 134]. Comparison of the CPA-complexed T877A structure with 
the DHT-bound WT structure demonstrated a steric overlap between T877 and the 
bulky antagonist. The clash is expected to induce unfolding of the C-terminal end of 
H11 in the WT AR, ultimately leading to displacement of H12 and disruption of a 
functional AF2 surface. Indeed, dislocation of the loop linking H11 and H12 was 
demonstrated in the CPA-T877A AR structure [118]. The isoindoledione-based 
antagonist is assumed to inhibit AR activity in a similar fashion [44-46]. Interestingly, 
binding of the smaller HF antagonist seems not to be hindered by T877, suggesting a 
different structural origin for HF-based antagonism. Comparison of the bicalutamide-
bound W741L AR with the WT AR structure bound to the structurally similar agonist   
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S-1 (Figure 2) [107] revealed that the sulfonyl linker of bicalutamide would sterically 
prevent positioning of M895 at the N-terminal end of H12 [107, 134]. The hindrance to 
accommodate M895 is likely to induce unfolding of H12, which offers a structural 
explanation for bicalutamide-based AR antagonism. Mutating the methionine residue 
into a smaller threonine (M895T) restored agonist activity for bicalutamide in vitro 
confirming the role of M895 in the bicalutamide-initiated antagonism [107]. Taken 
together, these structures provide a lot of data on the primary structural source of AR 
antagonism but do not reveal the whole picture. Whether the predicted AR unfolding 
only results in disruption of the functional AF2 surface or also in movement of H12 to 
the CoA-binding cleft cannot be deciphered based on the available structural data. 

Other mechanisms for AR antagonism have been proposed including recruitment of 
CoR proteins NCoR and SMRT [26-29]. A recent structural study on PR confirmed that 
when bound to a steroidal SPRM, H12 was blocked from assuming the active orientation 
by a CoR peptide binding to a region of the LBD that partly overlaps with the AF2 
surface (Figure 8D) [128]. Due to dislocation of H12, a longer groove is formed between 
helices H3 and H5. The interaction of CoR peptides with this groove is mediated by a 
consensus motif LXX(I/H)IXXX(I/L) termed the CoRNR box [21, 135]. The CoRNR 
box resembles the NR box of CoAs but forms a longer helix thereby preventing the 
active positioning of H12. Comparison of H12 sequences in various NRs/SRs indicates 
that those NRs that are known to display poor CoR binding possess a H12 sequence 
resembling the CoRNR box sequence, whereas NRs that exhibit good CoR binding have 
a shorter H12 with less similarity to the CoRNR box sequence [136]. As shown for ER, 
there is an internal CoRNR box substitute within H12 that interacts with the AF2 
surface itself and acts as a barrier to CoR binding (AF2 antagonist model) [105, 132, 
136]. Other SRs have a shorter H12 with an incomplete CoRNR box-like sequence, 
which is unable to oppose CoR binding [136]. Given that CoR peptide interaction was 
demonstrated for PR and that AR and PR possess H12 of equal lengths, it is possible 
that AR antagonism is also mediated by CoR binding to AR LBD. Nevertheless, the 
structural basis for AR antagonism remains unclear. 
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3  Aims of  Study 
 
The ultimate goal of the study was to discover non-steroidal AR modulators with novel 
structural scaffolds and selectivity over PR by means of computational modeling, which 
relied on publicly available data. To reach the goal both ligand-based and receptor-based 
methods were used in the studies reported in Papers I-IV with the following aims: 
 
Paper I – The aim was to combine molecular docking and 3D QSAR analysis to develop 
a computational approach that identifies, by means of molecular field data, structurally 
important features for binding affinity of a diverse set of non-steroidal AR ligands. 
Docking was used to predict the bioactive conformations and to generate the ligand 
alignment needed for 3D QSAR analysis. 
 
Paper II – The aim was to find novel non-steroidal scaffolds as hit compounds for AR-
targeted lead development by receptor-based VS. Methods developed in the 3D QSAR 
analysis of AR ligands were integrated into the VS protocol because an additional aim 
was to find out whether the derived 3D QSAR model was able to contribute to detection 
of such AR hits. 
 
Paper III – The aim was to characterize the functional activities of compounds from 
novel AR hit classes and to use advanced docking that incorporates protein flexibility to 
explain the experimentally determined activity profiles. 
 
Paper IV – The aim was identical to that in Paper I, but now the study was carried out 
on a set of non-steroidal PR ligands. The underlying idea is to integrate the results of the 
two 3D QSAR analyses as part of a future VS protocol, whereby their ability to detect 
ligands with selectivity to AR over PR and vice versa could be assessed. 
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4  Methods 
 
Computational methods that can be used in drug development processes are at the heart 
of this work and they are the focus of the following chapter. The concept of VS is intro-
duced shortly, while a more comprehensive presentation is given on molecular docking 
and 3D QSAR analysis, which were the main computational tools applied in this thesis 
and also integrated in the receptor-based VS for AR hits. In vitro experiments, including 
binding affinity determination and functional profiling, were combined with computa-
tional methods to create a coherent picture of the ligand-induced modulation of receptor 
function from both computational and experimental viewpoints. 
 

4.1  Structural and biological data (Papers I-IV) 

Publicly available structural and biological data for proteins and ligands were used 
throughout this work. The crystal structures of AR LBD and PR LBD were obtained 
from the Protein Data Bank (PDB) [137]. The PDB codes for the used AR and PR 
structures are 1GS4 and 1I37, and 1ZUC, respectively. The structural and biological data 
for AR [36, 38, 40, 42, 43] and PR ligands [64, 65, 70-72] were collected from several 
publications, which report experimentally comparable binding data for the respective 
ligand series. A commercial collection of over 200 000 compounds provided in the Gold 
Collection of Asinex Europe (http://www.asinex.com) was used as the VS database. 
 

4.2  Virtual screening (Paper II) 

VS encompasses a variety of computational methods that are used to evaluate large 
chemical databases in order to discover new ligands for a drug target of interest [11-18]. 
Typically, the objective is to identify hits with structurally novel scaffolds that can be 
used as starting points for development of new, patentable lead molecules. VS processes 
usually apply sequential computational phases to reduce the search space for potential 
drug candidates by filtering out compounds unlikely to interact with the target. In the 
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initial phases there is a need for computationally inexpensive filters because databases 
may comprise millions of compounds, most of which have little chance of being hits for 
a specific drug target [11, 138]. Such initial filters are rather unspecific for a particular tar-
get and consider simple compound properties like molecular weight, clogP, and number 
of hydrogen bonding groups and rotatable bonds [138, 139]. A common practice is also 
to use substructure queries to filter out compounds that contain moieties known to be 
problematic, like highly reactive functional groups [138]. When the database decreases in 
size, more sophisticated and computationally demanding VS methods with target-speci-
ficity can be applied. The applicable methods take advantage of information on ligands 
known to interact with the target protein (ligand-based VS) or 3D structure of the target 
itself (receptor-based VS). Prioritization of database compounds requires a means to 
measure the likelihood of compounds being active towards the given target. Computed 
similarities (e.g. using the Tanimoto coefficient [140] as a measure of similarity) between 
the structures of the database compounds and the known bioactive structure(s) are used 
to prioritize compounds in ligand-based similarity methods [15], while estimates of bind-
ing affinities computed by so called scoring functions are employed in receptor-based 
docking methods [141-143]. There is often a need for additional data analysis together 
with visual inspection of the top-ranked compounds before the final decision on com-
pounds to be selected for experimental testing is made. 

In this thesis, a receptor-based VS protocol was developed to discover chemically 
novel hit compounds for AR. Initial filtering protocol, which is described in more detail 
in the Results and Discussion chapter, was applied to reduce the screening database into 
a more manageable size prior to docking into the AR LBP. The pre-generated 3D QSAR 
model of AR ligands (Paper I) together with three common scoring functions were then 
applied in rank ordering the docked compounds according to their predicted binding 
preferences for AR and in selection of compounds for in vitro assessment of binding 
affinity. 
 

4.3  Molecular docking (Papers I-IV) 

It is well-known that the activity of a drug is attained through its interaction with the 
active site of the target protein. In drug discovery, one therefore attempts to find com-
pounds that match the geometry and chemistry of the protein binding site. The best way 
to study intermolecular interactions is to solve the structure of a protein-ligand complex 
experimentally, e.g. by X-ray crystallography. Experimental structure determination is 
however an impractical approach in the initial phases of drug discovery where large 
amount of compounds need to be screened. To this end, computational approaches have 
become very useful tools in rational drug design. Molecular docking is a broadly used 
computational method for predicting ligand conformation and orientation in the protein 
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binding site. It is therefore a useful strategy for 1) studying the binding mode of a single 
ligand, 2) finding new hit compounds with good complementarities for the target in 
virtual database screening, and 3) aligning (superimposing) ligands in 3D space for e.g. 
3D QSAR analyses [144-147]. During this work, docking was used for all these three 
purposes. 

There is a large number of different docking programs available (reviewed in [141, 
142, 148]). A common feature for all of them is a combined use of a search algorithm for 
sampling ligand binding modes and generating ensembles of docking solutions called 
poses, and a scoring function for evaluation of the different poses to determine the most 
likely biological binding mode for each ligand. 
 

4.3.1  Docking search algorithms  

Early search algorithms treated both the protein and the ligand as rigid bodies [149]. 
Today, the most commonly used docking programs introduce ligand flexibility into the 
docking protocol [148]. Because ligand binding often induces conformational changes in 
protein binding site (e.g. [107, 111, 128]) docking programs that consider protein flexibil-
ity as well are increasing in number. 

The search algorithms used to explore the conformational space of the ligand are 
classified into systematic, stochastic, and simulation methods [141, 142]. Systematic 
search algorithms seek to explore all conformations of a ligand. The search space in-
creases rapidly as the degrees of freedom increase for a ligand. In order to avoid combi-
natorial explosion, many search algorithms employ an incremental construction ap-
proach where the ligand is initially fragmented into rigid and flexible components, which 
are then sequentially linked back together to grow the ligand within the binding site. The 
ligand growth is started from the rigid anchor fragments that are placed within the bind-
ing site by rigid body docking. The flexible fragments are then linked to the anchor one 
at a time while systematically scanning the conformational space of each added fragment. 
The success of this approach depends whether the anchor fragments form good binding 
interactions or not. FlexX [150] and DOCK 4.0 [151] are examples of docking programs 
that use incremental construction algorithms for docking. 

Stochastic search algorithms explore ligand flexibility by introducing random 
changes in an iterative fashion to a single ligand or a population of ligands. Monte Carlo 
(MC) methods (e.g. AutoDock [152]) and genetic algorithms (GAs) (e.g. GOLD [153]) 
are two widely used random search approaches. At each iteration in a standard MC 
search the ligand conformation in the binding site is changed by randomly assigning new 
torsion angles or cartesian coordinates. Following energy minimization Metropolis crite-
rion is used to determine whether the resulting ligand structure is retained [141, 142]. A 
large number of iterations are needed to ensure detection of low energy conformations. 
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To enhance the exploration of the conformational space and to increase the chance of 
reaching the global minimum energy conformation, simulated annealing MC performs 
repeated MC cycles at gradually reduced temperatures with the first cycle simulated at a 
high temperature. In GA methods a population of initial ligand conformations, or possi-
ble solutions, are generated. Possible solutions are encoded into data structures called 
chromosomes, which undergo genetic operations such as mutations and crossing-over 
between two parent chromosomes in order to create a new generation of solutions. The 
GA thus mimics the process of evolution and introduces even evolutionary pressure by 
biasing the selection of parent chromosomes towards the fittest individuals of the popu-
lation based on the assigned fitness scores. Due to the evolutionary origin of GAs the re-
sults are influenced by the initial population size, mutation and cross-over rates as well as 
number of evolutionary cycles that are ran [141]. 

Ligand flexibility may also be explored by simulation methods such as molecular 
dynamics (MD) and energy minimization. The quality of the results in simulation meth-
ods depends heavily on the starting conformation of the system under study because 
these algorithms tend to get stuck in local minima due to their inability to cross high-
energy barriers [141, 142, 148]. Use of multiple starting conformations and increased 
temperatures in the simulations are examples of approaches used to circumvent the 
problem [141, 142, 148]. Contrary to MD, energy minimization is rarely used as an inde-
pendent search strategy but rather as a complement to other search algorithms such as 
incremental search methods [151]. 

Inclusion of protein flexibility into docking adds to the complexity of the system as 
the degrees of freedom increase significantly. MD simulations can be used to introduce 
protein flexibility into docking but such methods are computationally expensive and are 
therefore restricted to studies on a small set of ligands. Thus, various approaches requir-
ing less computational power have been developed to deal with protein flexibility in 
docking [154]. Treatment of protein flexibility is usually restricted to binding site resi-
dues. The simplest method is soft docking to rigid protein, which in an indirect way 
accounts for small adjustments in protein structure by allowing some steric overlap 
between the ligand and protein. Other methods allow for side chain flexibility e.g. by 
sampling the positions of terminal hydrogen bonding groups to optimize hydrogen 
bonding networks or by sampling side chain conformations using rotamer libraries. For 
more advanced approaches available for treating protein mobility in docking simulations 
the reader is advised to the review of Alonso et al. [154]. 
 

4.3.2  Docking scoring functions 

Scoring functions have a dual role in molecular docking. First, when docking a single 
ligand a scoring function is needed to evaluate the fitness of the generated poses to be 
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able to distinguish between the correct and incorrect binding conformations. Second, 
when docking a series of ligands, as in VS, a scoring function is additionally required to 
rank order the ligands so that active compounds can be distinguished from inactives. 
Scoring functions try to accomplish these tasks by estimating the total free energy change 
upon binding of a ligand to its target [141, 143]. 

Molecular recognition is a highly complex phenomenon that is driven by a number 
of factors – hydrophobic effect, van der Waals interactions, electrostatic interactions, 
hydrogen bonding interactions, desolvation and entropy changes among others – each of 
which influence the total free energy of ligand binding to its target (i.e. the binding affin-
ity) [141, 143]. Estimating the binding free energies accurately requires consideration of 
all contributing factors, which makes the calculations computationally complex and time-
consuming. As a consequence, all scoring functions used in docking simulations make 
simplifying approximations in order to speed up computational estimation of binding 
free energies, thereby enabling screening of vast amount of ligands against a target pro-
tein. 

A wide range of scoring functions has been developed owing to their impact on the 
quality of docking results. They are commonly categorized into force field -based, 
empirical, or knowledge-based scoring functions [141-143]. Binding energy estimates 
using the scoring functions based on molecular mechanics force fields are obtained by 
summing up contributions from electrostatic and van der Waals interaction energies for 
the protein-ligand complex. A weakness of standard force field -based functions is that 
they ignore most of solvent and entropic effects, because the functions were originally 
formulated to model binding energies or enthalpies in the gas phase. Empirical scoring 
functions estimate binding energies as a sum of several uncorrelated terms, which are 
functions of the ligand and protein coordinates and describe specific interactions con-
tributing to the binding event such as hydrogen bonding, hydrophobic interactions, and 
entropic contributions. The weights of each term in the function are derived from a 
regression analysis using a training set of protein-ligand complexes and associated experi-
mental binding energies. Consequently, the major limitations of empirical scoring func-
tions are related to the experimental data used to train the function: successful predic-
tions of binding free energy are only expected for compounds making similar interac-
tions as ones used to train the scoring function. Knowledge-based scoring functions are 
founded on statistical analyses of interatomic contact frequencies observed in a database 
of experimental protein-ligand complex structures. The premise of such scoring func-
tions is that interactions occurring with high frequency in the experimental structures are 
assumed to be energetically favorable while low occurrence frequency reflects energeti-
cally unfavorable interactions. Summing up the many interatomic contact contributions 
gives the binding estimates of knowledge-based scoring functions. One limitation on de-
riving such scoring functions is their dependence on information encoded in limited sets 
of experimental protein-ligand complex structures. 
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The performance of a given docking program is influenced by the search algorithm 
and scoring function being used as well as by the chemical nature of the ligand and the 
protein active site. Comparative evaluations have shown that no single docking program 
performs well on all targets and that success is largely case dependent [155, 156]. A gen-
eral conclusion is that many currently available docking search algorithms are capable of 
thorough sampling of ligand conformations/orientations and reproducing the crystal-
lographically determined ligand binding mode with adequate accuracy [155, 156]. On the 
other hand, there is room for improvement for scoring functions in the detection of the 
experimentally determined, “true”, binding conformation as the top-scoring pose from a 
pool of decoy conformations [155, 156]. An additional problem of scoring functions 
entails binding affinity prediction: there is at best only a moderate correlation between 
the predicted and the experimentally determined ligand binding affinities [156-158]. 
Together these weaknesses in scoring cause a variety of challenges in hit identification 
and lead optimization by computational methods. Enhanced performance has been 
achieved by using different scoring functions for fitness evaluation during docking and 
for final ranking of the generated ligand poses [159]. Consensus scoring schemes, which 
combine the predictions of two or more scoring functions, have on several occasions 
suggested to augment the identification of true binding conformations as well as true 
actives from databases as a result of improved scoring accuracy [158, 160-162]. The 
rationale for consensus scoring is that the reliability of a prediction improves if the same 
prediction is made by a number of scoring functions. Each of the scoring functions in-
corporated should, however, have relatively high performance individually and have 
quite different scoring characteristics in order to improve the probability of identifying 
actives [163]. Nevertheless, automated consensus scoring is not yet possible in our opin-
ion; an intelligent filter, a scientist, is needed to interpret the computational results for 
the best outcome. 

 

4.3.3  Docking and scoring in this thesis 

In Papers I, II, and IV and Paper III, the docking programs GOLD [153] and Glide 
[164], respectively, were used. Both of the docking algorithms treat ligands as flexible 
structures. Protein flexibility is disregarded in Glide, while GOLD introduces partial 
protein flexibility by allowing optimization of -OH group of serine, threonine, and tyro-
sine, as well as -NH3+ group of lysine. GOLD was used to predict the bioactive binding 
conformations and to derive an alignment for series of known non-steroidal AR (Paper 
I) and PR ligands (Paper IV) that were subjected to 3D QSAR analysis. Additionally, 
GOLD was used as the docking tool in VS for the identification of new hit compounds 
for AR (Paper II). The Induced Fit Docking (IFD) protocol of Schrödinger [165, 166], 
which samples both ligand and protein flexibility by combining Glide docking with pro-
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tein side chain predictions of binding site residues with the program Prime, was used for 
a more detailed analysis of ligand-induced structural changes in AR (Paper III). 

GOLD applies a GA to optimize ligand conformations in complex with the target 
binding site. The GA of GOLD utilizes three types of genetic operators: mutations for 
introducing random changes, cross-over for combining features from two parent chro-
mosomes, and migration for exchanging entire chromosomes between subpopulations, 
which are used in GOLD instead of a single large population. Each operator is assigned 
a weight that determines its probability of selection. Initially, random subpopulations of 
chromosomes are generated and each member is assigned a fitness score. An operator is 
then randomly selected based on operator weights and applied to parent chromosome(s) 
chosen with a slight selection pressure towards the best members of the population. The 
fitness of the child chromosome(s) is evaluated and if not already present in the popula-
tion, it replaces the least-fit member of the population. The GA run terminates after a 
predefined number of genetic operations are performed or when no improvement to the 
docking solution is achieved. The fitness of the docking solutions is evaluated using a 
force field -based scoring function, Gold-Score, which sums up energy terms that 
account for the hydrogen bonding energy of the protein-ligand complex, the interaction 
energy between the ligand and protein, and the internal steric energy of the ligand con-
formation. GOLD has been shown to reproduce the experimental binding modes of 
hydrophilic ligands with high success rates, whereas with hydrophobic ligands it may run 
into problems because the algorithm does not properly account for hydrophobic inter-
actions [153]. The binding free energy predictions are also unlikely to be accurate as the 
scoring function underestimates the hydrophobic effect, as it does not account for desol-
vation or entropic effects. GOLD is thus likely to encounter problems when rank-
ordering a set of ligands. In Papers II and IV alternative scoring functions were used to 
re-rank the docking solutions generated with GOLD. The empirical scoring function F-
Score, which is drawn from the scoring function used by FlexX [150] and which is inte-
grated within the CScore [162] module in the molecular modeling package SYBYL [167], 
was used in Paper IV. F-Score estimates protein-ligand binding free energies as a sum of 
terms accounting for hydrogen bonding interactions (neutral and ionic), interactions 
between aromatic groups, lipophilic contacts, and torsional entropy losses of the ligand 
upon protein-ligand complexation. In Paper II, the docked database compounds were re-
ranked with our 3D QSAR model of AR ligands, F-Score, and another empirical scoring 
function X-Score [168]. 

Glide, implemented in the IFD protocol [165, 166], uses a systematic search method 
for exploring ligand flexibility [164]. To narrow the search space a series of hierarchical 
filters is applied to a pre-generated library of ligand conformations. In the IFD, an initial 
ensemble of ligand poses is produced using rigid protein docking with Glide together 
with a soft docking approach. Soft docking applies reduced van der Waals radii of both 
the ligand and protein atoms, allowing close contacts to be formed between the atoms of 
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the ligand and protein. The initial poses are ranked according to the GlideScore, which 
combines both empirical and force field -based terms. The function for GlideScore in-
cludes terms for lipophilic and metal-ligation contacts, three types of hydrogen bonding 
interactions (neutral-neutral, neutral-charged, charged-charged) and interactions of polar 
non-hydrogen atoms in hydrophobic environments. The function also comprises terms 
for estimates of entropy losses, solvation effects, and contributions from electrostatic 
and van der Waals interaction energies. In the following step, the side chains of the pro-
tein binding site residues of the top-scoring initial poses are subjected to conformational 
sampling and energy minimization using the Refinement module of Prime. The ligand 
and protein backbone of the low-energy conformations are also energy-minimized. The 
resultant induced fit structures with low-energy according to the total energy estimate of 
the system, defined as Prime energy, are subsequently used to re-dock the ligand with 
Glide, now with default parameters. Final ranking of the re-docked ligand poses is based 
on IFDScore, which is a composite score of GlideScore (95 %) and Prime energy (5%). 
 

4.4  3D QSAR Analysis (Papers I and IV) 

The basic idea underlying quantitative structure-activity relationship (QSAR) analysis is 
that the biological activity of a molecule is dictated by its chemical structure. As a conse-
quence, molecules with similar structure will have similar bioactivities arising from inter-
actions with the same target proteins and changes in structure will be reflected as 
changes in bioactivity. The objective of QSAR analyses is to establish a quantitative cor-
relation of molecular structure and biological activity for a series of biologically graded 
compounds using statistical methods. QSAR techniques are in regular use in modern 
drug design because the generated QSAR models, if successful, can be used to predict 
activities for compounds whose bioactivity is unknown, thereby assisting the optimiza-
tion of existing lead series or even enabling discovery of completely new hit compounds 
as exemplified in this work (Paper II). 

QSAR techniques utilize molecular descriptors of diverse nature to characterize the 
structures and physicochemical properties of the molecules. Depending on the type of 
descriptors used, the QSAR techniques can be classified into classical (2D) QSAR and 
nD QSAR (n = 3,4,5,…) methods [169-171]. 3D QSAR methods differ from classical 
QSAR in that they incorporate the ligands’ 3D structures and inherent properties affect-
ing their interaction with the target protein into building the QSAR model [170]. Confor-
mational flexibility of each ligand is incorporated as the fourth dimension in 4D QSAR 
[172], while an ensemble of induced fit receptor models constitute the fifth dimension in 
5D QSAR [173]. 

The earliest classical QSAR approach (Hansch analysis) was introduced already in 
the 1960’s by Hansch and Fujita [174], while the first applicable 3D QSAR approach 
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(comparative molecular field analysis, CoMFA) was published in the 1980’s by Cramer et 
al. [175]. The CoMFA methodology is one of the most broadly known and used 3D 
QSAR techniques. It has laid the basis for the development of many other currently used 
3D QSAR methodologies. One CoMFA-modification, which was developed to improve 
the limitations of CoMFA, is the comparative molecular similarity indices analysis 
(CoMSIA) [176]. In this work, CoMSIA was applied to two distinct ligand sets, namely 
non-steroidal AR and PR ligands (Papers I and IV), to identify structural features im-
portant for their activity. Additionally, the CoMSIA model of AR ligands was applied in 
the VS as a “tailored scoring function” for AR and used to rank-order the database com-
pounds. In the following sections, the CoMSIA method is described in more detail. 
 

4.4.1  CoMSIA 

Data preparation 

CoMSIA, like other alignment dependent 3D QSAR methods, requires that the mole-
cules are aligned in space in their putative bioactive conformation. The generation of a 
rational/reliable alignment is the most critical and challenging step in 3D QSAR analysis. 
At many instances, this task is facilitated by the knowledge of an experimentally deter-
mined bioactive conformation for a molecule included in the series under investigation. 
There were no co-crystal structures of non-steroidal AR ligands available at the time of 
the 3D QSAR analysis of AR ligands. Because the 3D structure of AR was known, the 
prediction and alignment of bioactive conformations was performed with molecular 
docking. The same alignment approach was utilized also for the non-steroidal PR ligands 
for their 3D QSAR analysis. Combining docking as an alignment generation tool to 3D 
QSAR analysis has previously been shown to yield predictive models [144-147]. 

For calculation of CoMSIA descriptors, the aligned compounds for which atomic 
point charges have been calculated are enclosed in a sufficiently large box (4 Å beyond 
the compound set as default) and a regularly spaced grid (default grid spacing 2 Å) is 
placed over the molecules. In CoMSIA each molecule is assessed for the steric, electro-
static, hydrophobic, and hydrogen bond donor and acceptor property fields [176, 177]. 
These molecular descriptor fields are calculated as similarity indices between each mole-
cule of the dataset and a common probe atom at every grid point. The similarity indices 
AF,k for the five physicochemical properties k at each grid point q are calculated as a sum 
over all atoms i of the molecule j using the following equation 
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where wprobe,k is the property of the probe atom and wik is the actual value of property k of 
atom i. The properties of the probe atom comprise a 1Å radius, +1 charge, +1 hydro-
phobicity, and +1 for the hydrogen bond donor and acceptor properties [176, 177]. For 
each atom i, the steric property is evaluated by the third power of atomic radii, the elec-
trostatic property by pre-calculated point charges, hydrophobic property by atom-based 
parameters developed by Viswanadhan et al. [178], and hydrogen bonding properties by 
representative spatial sites for donors and acceptors defined from distributions of small 
molecule crystal structures [177]. 

In the similarity determination, the distance dependence riq between the probe atom 
and the atoms of the molecule is considered using a Gaussian-type function and adjusted 
with the attenuation factor α (default value being 0.3). Use of this functional form allows 
calculation of descriptors at every grid point, including those within the space occupied 
by a molecule. 
 

Data analysis 

In order to establish a relationship between the vast amount of calculated similarity indi-
ces (X-variables) and the biological activity values (Y-variables), multivariate statistical 
technique of partial least squares (PLS) [179] is used. PLS is an algorithm that extracts 
linear combinations of principal component -like vectors termed latent variables from 
the X-variables in a manner that best models the Y-variables. The latent variables are 
orthogonal, meaning that they only describe variance within the X- and Y-variables not 
explained by previously introduced latent variables. Large amount of the X-variables are 
useless for explaining the Y-variables and are detrimental for the robustness of predic-
tion, since they can start to model the noise of the measured values [170]. To avoid 
inclusion of irrelevant X-variables in the PLS analysis, variable selection approaches are 
applied, such as a minimum sigma cut-off value, which is used to eliminate those grid 
points that show a variance below a user defined cut-off value (2 kcal/mol by default). 
More sophisticated techniques have been developed but these procedures are not within 
the scope of this thesis and thus not covered. 

It is important to determine the optimum number of latent variables to be included 
in the PLS analysis in order to avoid over-fitting of the data. Generally five to six latent 
variables are sufficient for generating a realistic QSAR model [180]. The optimum num-
ber in each case is usually determined by cross-validation, which is an approach to evalu-
ate the internal predictivity or goodness-of-prediction of the QSAR model. In leave-one-
out cross-validation one compound at a time is excluded from the model building and 
the biological activity of the excluded compound is predicted by the model built from 
the residual compounds. The same procedure is repeated for every compound within the 
analyzed series of compounds, after which the statistical values of q2 (cross-validated 
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correlation coefficient) and SDEP (standard deviation of the error of prediction) are cal-
culated from the experimental and predicted activities according to following equations:  
 

∑

∑

=

=

−

−
−=

N

i

meanexp

N

i

predexp

YY

YY

q

1

2

1

2

2

)(

)(
1  

 

N

YY

SDEP
predexp

N

i

2

1

)( −
=
∑

=
 

 
Here Yexp is the experimental activity value for a compound i, Ypred is the predicted activ-
ity value, Ymean is the mean value of the experimental activities, and N is the number of 
compounds. The q2 measures the predictive ability of the model. Extraction of statisti-
cally significant latent variables in the PLS analysis results in an increase in q2 and a 
decrease in SDEP values, whereas extraction of too many variables decreases q2 and 
increases SDEP [170]. Hence, the lowest SDEP value is recommended as the criterion 
for the optimal number of latent variables to be used in the final model building. Models 
with a q2 value greater than 0.5 are usually regarded as robust and predictive [180] but we 
generally apply 0.6 as the threshold value. 

PLS analysis calculates also the conventional r2 (non-cross-validated correlation coef-
ficient) of the final model and the corresponding standard deviation. These values are 
calculated by replacing Ypred with Ycalc (activity value calculated by the model) in equations 
used to compute q2 and SDEP. The r2 is a measure of how well the input data is fitted by 
the model. Goodness-of-fit improves as more latent variables are extracted, ultimately 
leading to perfect correlations. Therefore, the conventional r2 is not a good criterion for 
the validity of the model without other statistical parameters [170]. 

The result of the PLS analysis is a regression equation consisting of a large number 
of terms and coefficients [170]. This equation can be used to predict the biological 
activity for an unknown molecule, providing that the similarity indices have been calcu-
lated for this molecule in its’ aligned conformation within the grid box. A more informa-
tive way of presenting the PLS results is to visualize them as contour plots, which repre-
sent spatial areas of physicochemical properties that significantly contribute to the 
model. Both favorable and unfavorable areas of these properties are contoured at user-
defined levels to denote locations having a positive or negative effect on activity. 
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Model validation 

Cross-validation provides a way to define the number of statistically significant latent 
variables but is also used to estimate the predictive power of the model. The above 
described leave-one-out cross-validation procedure often gives too optimistic results for 
predictivity, particularly when analyzing redundant data sets [170]. More rigorous cross-
validation approaches, which exclude several compounds from the data set at a time, are 
regularly applied for larger data sets for obtaining more reliable q2 values. The group of 
compounds to be eliminated in a cross-validation run is assigned randomly, thus being 
different in each run and affecting the statistical outcome. As a consequence, evaluation 
of the statistical significance of the model using cross-validation in random groups needs 
to be repeated several times. In Papers I and IV, cross-validation of ten and five ran-
domly selected groups with 25 repetitions was performed in addition to leave-one-out 
cross-validation. 

It has become evident that high q2 values do not necessarily confer high predictive 
ability for the model [181]. Therefore, external validation with a sufficiently large test set 
of compounds that are completely excluded from the model building is proposed as the 
only way to estimate the true predictive power of the model [181]. The external test set 
must provide both structure and activity wise a good representation of the compounds 
used in model building to obtain reliable statistics for the comparison of experimental 
and predicted activities for these compounds (predictive r2). A reliable model is charac-
terized by both high internal (q2) and external predictivity (predictive r2). The 3D QSAR 
models reported in Papers I and IV were therefore validated also with external test sets. 
 

4.5  Integration of docking and 3D QSAR for receptor-based 

virtual screening 

Docking and 3D QSAR models constructed for our work aim to describe the same bio-
logical phenomenon – binding interactions of two molecules resulting from weak forces 
between them. These two independent descriptions of the phenomenon can be logically 
combined. Independency of the descriptions means that the models can be constructed 
separately from one another using different initial data and that construction of one 
model does not require preliminary information of the other. 

Formation of intermolecular receptor-ligand complexes is a fundamental require-
ment for proper function of receptors and in consequence of entire cells. In docking 
simulations mathematical and statistical functions, which model the physical and chemi-
cal forces of molecular interactions, are applied together with diverse algorithms for con-
formational optimization to guide the binding ligand into the receptor binding site. 
Based on these functions each ligand is assigned a score that represents the strength of 
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the binding interaction. Comparison of the interaction strength between structurally dis-
similar ligands using the assigned computed scores as the only reference is not by itself 
reliable prediction. It is therefore a good idea to look for complementary information to 
support the docking models. 

3D QSAR models are constructed typically from a set of few dozens of ligands that 
are known to interact with the target receptor as a result of ligand binding experiments. 
Statistical methods are used to explain data derived from spatially overlaid ligand struc-
tures in order to uncover structural features that have a positive or a negative effect on 
ligand binding. An essential precondition for the construction of a 3D QSAR model is 
that the ligand set comprises structurally sufficiently diverse, but yet comparable, mole-
cules. Additionally, model building requires expertise to identify chemically equivalent 
structural moieties, so called bioisosteres, within the diverse ligands. Carboxylic acid       
(-C(O)OH) and a five-membered pyrazole ring with two adjacent nitrogen atoms, one of 
which is in a protonated state (Smiles string c1cn[nH]c1), are examples of bioisosteric 
groups. They are comparable in size and capable of both donating and accepting hydro-
gen. Before statistical analysis can be applied in 3D QSAR modeling, the bioisosteric 
groups of ligands need to be overlaid in 3D space. This is a stage where docking 
becomes useful. Docking provides an automated and objective idea of positions of the 
different bioisosteres of ligands within the receptor binding site. A docking simulation 
performed for each of the molecules gives as a result a proposal of the best binding pose 
for each compound. These poses represent a natural alignment of the binding ligands 
from the receptor viewpoint where positioning is guided by the receptor binding site 
structure. Docking simulation thus produces a suggestion how, and if, bioisosteric 
moieties of the structurally dissimilar molecules become naturally overlaid, which is a 
requirement for the construction of 3D QSAR model. In this manner, the two separate 
computational methods of the binding phenomenon can be logically combined. 

Performing the statistical analysis is straightforward after the bioisosteric moieties of 
the ligands are aligned in the 3D space. Properties such as the ability to donate or accept 
hydrogen bonds are computed for the docked ligands and then used in the statistical 3D 
QSAR analysis. If bioisosteres such as carboxylic acid and pyrazole are aligned in the 
docking simulations and if the hydrogen bond interactions formed by them turn out as 
favorable for ligand binding in the statistical analysis, the spatial volume where such a 
bioisostere should be positioned for increased biological activity is delineated in the 3D 
space of the receptor binding site. The volume can be visualized within the receptor 
binding site because docking was used for alignment generation. The presence of com-
plementary interacting chemical groups in the receptor structure in the proximity of such 
a volume, which is created solely from information derived from ligands, validates the 
quality of the 3D QSAR model. 

The volumes that are revealed in the 3D QSAR analysis and that represent favored 
and disfavored interactions for ligand binding are useful in many ways. They can be used 
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for interpreting the docking results, which include the final pose in the binding site and 
the assigned score for the pose. As mentioned above, scoring with current technology is 
not by itself reliable enough for predicting ligand binding. Yet, if a molecule is assigned a 
good score, and its bioisosteric groups are positioned in the binding site regions that are 
favorable for its intermolecular interaction types according to the receptor structure and 
3D QSAR model, it means that the two independent computational methods have con-
verged into a same prediction. Experimentally observed ligand binding is explained with 
data originating from receptor and ligand structures. Furthermore, the favored and disfa-
vored volumes can be used to examine that a binding ligand does not have chemically 
incompatible or structurally clashing moieties according to the 3D QSAR model. If a 
ligand is able to fulfill all the conditions set by the computational methods, it is more 
likely to display true binding affinity for the receptor when tested for activity. 

This ensemble of computational models is applicable in VS of molecular databases. 
During the last decade, all the major chemical vendors have provided their compound 
collections in an electronic format. A VS workflow that is capable of searching new 
bioisosteric moieties, as those computationally described in 3D QSAR models, can be set 
up to screen molecular databases for novel bioactive scaffold structures for a target 
receptor. It is likely that the databases encompass molecules that are able to fulfill the 
conditions set by docking and 3D QSAR models, but whose interactions with biological 
systems have not yet been determined. Such molecules are important starting points for 
drug discovery and thus intensely sought after by means of computations. 
 

4.6  Experimental methods 

Modern drug discovery and development integrates computational and experimental 
approaches in an iterative fashion. Computational techniques can be used to explain pre-
existing experimental knowledge and to introduce new ideas for the next generation of 
compounds to be tested. Experimentalists –chemists, biologists, pharmacologists– then 
carry out series of biological analyses, which in turn generate new raw data to be used for 
the next round of computational modeling. Discovery and optimization phases of drug 
development require repetitive experimental and computational cycles, thus making drug 
development a lengthy collaborative effort of a multidisciplinary team. In this thesis, all 
the experimental measurements performed for compounds selected with computational 
methods were either outsourced to a biopharmaceutical company (Paper II) or per-
formed by our collaborators (Paper III). Detailed descriptions of the experimental analy-
ses are given in the original Papers II and III. 
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5  Results and Discussion 
 
This thesis work aimed at the discovery of structurally novel non-steroidal AR ligands 
from a commercial compound library that was subjected to receptor-based VS. The 
success of receptor-based VS relies on how well the selected scoring function manages 
to rank the active database compounds in the top positions of the rank list of docked 
compounds. It is well-known that current scoring functions have difficulties in per-
forming this task. Due to this limitation of scoring functions, we were eager to test an 
alternative scoring approach, namely scoring with a 3D QSAR model. Such models are 
typically used in the optimization of a particular ligand scaffold structure for a target 
protein of interest, not as a scoring function in receptor-based VS. Nevertheless, we were 
interested in challenging the conventional use of a 3D QSAR model and assessing its 
potential as a tailored scoring function for AR in receptor-based VS. 

In this chapter the results from our receptor-based VS experiment are presented 
step-by-step, starting from the generation of the 3D QSAR model of AR ligands to be 
used in rank-ordering the docked database compounds in VS, continuing with the VS 
procedure itself, and ending with the functional profiling of a subset of identified AR hit 
compounds. In addition, the 3D QSAR model of PR ligands is introduced. When used 
in concert, these two 3D QSAR models could be valuable tools for detection of AR- and 
PR-selective ligands in receptor-based VS. 
 

5.1  3D QSAR models (Papers I and IV) 

5.1.1  CoMSIA of AR ligands 

3D QSAR analysis with CoMSIA [176] was performed on a series of 61 AR ligands 
(Tables 1-6 in Paper I) [36, 38, 40, 42, 43] to determine the structural features that 
contribute to the binding affinity of these compounds. The analyzed ligands were diverse 
in terms of both structure and function. Six structural classes, the majority of which were 
derivatives of the non-steroids HF, nilutamide, and bicalutamide, and the entire spec-
trum of functionalities ranging from agonists to partial agonists and antagonists were 
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represented in the ligand set. Generating an alignment, which is needed to quantify 
binding characteristics with 3D QSAR statistical methods, of such a diverse set of 
ligands within the AR binding site posed a significant challenge. Moreover, at the start of 
the work we lacked experimentally confirmed knowledge about the binding mode for the 
non-steroidal ligands and structural changes induced by antagonists on AR LBD. The 
latter still remains unknown as discussed in the literature review. 

The ligand alignment was derived within the active, agonist structure of the AR 
ligand-binding site by generating possible binding poses with the docking program 
GOLD [153] and using Gold-Score in the selection of a representative docking pose for 
each ligand (Figure 1 in Paper I). Hydrogen bonding to the few polar residues within the 
otherwise hydrophobic binding site (Figure 7) is proven to be important for binding of 
both steroidal and non-steroidal ligands [103, 182]. Formation of receptor-ligand hydro-
gen bond interactions was emphasized by using the DHT structure to guide pose 
generation in docking simulations. To enable the large non-steroidal AR ligands to form 
these key interactions there was a need for a modification in the AR LBP structure. A 
F876A mutation that we expected to partly account for the structural changes taking 
place upon binding of the large non-steroidal ligands was introduced. This mutation 
opened up the binding cavity, providing an entrance to the receptor surface. As a result, 
the search space for ligand conformations in docking increased significantly and there-
fore DHT guided docking served also the purpose of limiting the number of alternative 
poses and ensuring that the non-steroids were positioned completely within the binding 
cavity. 

PLS analysis and various cross-validation methods indicated that hydrophobic and 
hydrogen bond acceptor descriptors calculated for the aligned ligands yield a statistically 
significant and robust model for binding affinity predictions. Leave-one-out cross-
validation yielded a q2 value of 0.656, while more rigorous cross-validation of ten and 
five groups yielded average q2 values of 0.612 and 0.571 per 25 repetitions, respectively. 
Despite the somewhat lower q2 values for the random group cross-validations all the 
values reflect an internally consistent, or predictive, model. The final model was derived 
using the optimum of five latent variables as determined by leave-one-out cross-
validation and yielded a non-cross-validated r2 value of 0.911. The predictivity of the 
model was further evaluated with an external test set of nine compounds representing 
structural features and a wide range of activities included in the compound set used to 
train the model. The model managed to clearly separate the high- and low-affinity com-
pounds. The test set yielded a predictive r2 value of 0.800 indicating a good external 
predictive power for the model. Taken together, the internal and external validation 
methods suggest that the model is robust and predictive (Figure 2 in Paper I). 

The statistically relevant results of the CoMSIA model were visualized as 3D con-
tour plots within the receptor binding site (Figure 3 in Paper I) and the contours ex-
plaining the variation of the binding affinity of the ligands were interpreted in terms of 



 38 

the binding site structure. The favored and disfavored volumes for placing hydrophobic, 
hydrophilic or hydrogen bond acceptor groups within the binding cavity correlate with 
the amino acid residues of the AR binding site in proximity to these volumes. Possible 
interactions formed between these binding site residues and the ligands in the training 
and external test sets in the docking simulations. Altogether, this consensus creates con-
fidence towards the generated ensemble of models because the discovered, statistically 
significant correlation is only dependent on the ligand structures and their alignment, and 
not on the protein binding cavity. 

The predictive potential of the model was assessed one step further with a small set 
of bicalutamide-related high-affinity compounds reported by Marhefka et al. incorporat-
ing structural features not included in the model building [39]. The docking poses gener-
ated for each compound were rank-ordered according to the binding affinities predicted 
with the model. The pose with the highest prediction was picked as the representative 
binding conformation for each compound. These docking poses were well aligned with 
the ligands used to build the model. With this approach, the model was able to recognize 
these compounds as high-affinity AR ligands, although with a larger standard error of 
prediction compared to the nine compound external test set. Based on the results, the 
model was suggested to be applicable for identification of active compounds in virtual 
database screening. 

Good statistics and consistency of the model with the AR LBP structure indicated 
that the alignment used to build the CoMSIA model consisted of biologically active con-
formations of the non-steroidal ligands. Prior to the publication of our CoMSIA model 
Bohl et al. reported their CoMFA model of AR ligands [144]. They also generated the 
ligand alignment with docking but used a PR LBD -based homology model of AR LBD 
as the target structure instead. Their alignment differed from ours but produced a statis-
tically significant model as well. Later, Bohl et al. solved the binding mode of the 
bicalutamide-like agonist S-1 (Figure 2) by crystallography [107]. It turned out to be 
different from both our and their predictions made by docking simulations. 

Despite the inconsistency in the experimental and predicted binding modes, the 
CoMSIA model was considered suitable for receptor-based VS purposes because the 
contour plots were in agreement with the AR LBP structure. Incorporation of various 
functional profiles into the model permits the model to be used for binding affinity 
prediction of putative AR ligands without consideration to the possible modulation of 
receptor activity. New AR ligand scaffolds were indeed found and the model predictions 
contributed to their detection as indicated in Papers II and III. 
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5.1.2  CoMSIA of PR ligands 

3D QSAR analysis with CoMSIA [176] was performed to study the structure-activity 
relationships of 64 PR ligands (Tables 1-3 in Paper IV) [64, 65, 70-72]. An additional goal 
was to derive the model in a comparable manner to the model of AR ligands and thereby 
enable their parallel use in e.g. VS for receptor-selective non-steroidal ligands for AR and 
PR. Therefore, the modeling procedure was analogous to the previous analysis. As in 
Paper I the ligands represented several different scaffold structures and various pharma-
cological activities, majority being antagonists however. Similarly to AR, the antagonist-
induced changes to the receptor structure were unknown at the time of starting the work 
as it was only very recently when the antagonist structure of PR LBD was reported [128]. 
Nevertheless, the co-crystal structure of the non-steroidal agonist Tanaproget with the 
PR LBD became available while the work was initiated [109]. Tanaproget has a closely 
related structure to many of the studied PR agonists and antagonists. The co-crystal 
structure thereby provided insight into the binding interactions for such compounds and 
assisted in the alignment generation for the 3D QSAR analysis. 

The alignment was constructed in the agonist structure of PR LBD from ligand 
poses generated with the docking program GOLD [153] (Figure 1 in Paper IV). Selec-
tion of representative docking poses for the alignment was based on the FlexX-derived 
[150] scoring function F-Score from the CScore [162] module in SYBYL [167] instead of 
Gold-Score as used for the AR ligands in Paper I, because the F-Score-based alignment 
resulted in a higher statistical quality for the model. F-Score was also able to identify the 
best Tanaproget docking solution with the lowest RMSD from its crystallographically 
determined conformation and was therefore considered the most suitable scoring func-
tion for this work. 

The structure-activity relationships for the analyzed set of ligands were best ex-
plained with the electrostatic, hydrogen bond donor, and hydrophobic properties of the 
ligands. PLS analysis of the three descriptor fields and binding affinities for the ligands 
yielded a statistically significant and robust model determined with internal cross-
validation methods. Leave-one-out cross-validation gave a q2 value of 0.637, and cross-
validation with ten and five randomly selected groups yielded average q2 values of 0.601 
and 0.563 per 25 repetitions, respectively. The optimum of six latent variables was used 
to derive the final model yielding a non-cross-validated r2 value of 0.878 (Figure 2 in 
Paper IV). External validation was performed with a test set of ten compounds, which 
produced a predictive r2 value of 0.833, indicating strong predictive ability for the model. 
Regarding the statistical quality, the CoMSIA model of PR ligands was equivalent to the 
model of AR ligands. 

Significant statistical data of the final model was represented as 3D contour plots 
within the ligand-binding site (Figure 3 in Paper IV) and interpreted with respect to the 
receptor structure. A good agreement exists between the chemical environment of the 
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binding site and the favorable and unfavorable electrostatic, hydrogen bond donor, and 
hydrophobic contours. Many of the contour plots are in line with experimental SAR data 
and the crystallized Tanaproget structure, which further supports the reliability of the 
model. 

The model was considered to be of high quality and to be derived from an alignment 
that comprised biologically active conformations of the PR ligands. The binding con-
formations predicted by docking are corroborated by the bioactive conformation deter-
mined for the structural analogue, Tanaproget [109]. 
 

5.2  Virtual screening of novel non-steroidal AR ligand 
scaffolds (Paper II) 

A workflow for receptor-based VS was developed and experimentally tested to find non-
steroidal AR ligand scaffolds with structural novelty. Based on the previous study (Paper 
I), 3D hydrophobic and hydrogen bond acceptor interactions (3D QSAR model) can 
explain most of the variation in ligand binding affinity to AR. Hence, the 3D QSAR 
model of AR ligands was applied as part of the workflow as a tailored scoring function 
for AR to assist in the selection of candidate compounds for experimental assessment of 
AR binding. QSAR methods that are based on an overlay of molecules (such as 
CoMSIA) are often criticized due to lack of credibility to identify novel actives for a 
specific target by VS and are therefore rarely applied in VS. This VS study served thus as 
a further test for the predictive quality of the model because the goal was to seek 
compounds structurally unrelated to those used to build the 3D QSAR model. 

The use of a successful 3D QSAR model as part of an ensemble of computational 
methods in receptor-based VS is well-founded and covered already in Methods section 
4.5. In short, the statistical correlation in 3D QSAR is dependent only on the ligand 
structures and their alignment. Docking in turn uses the structural information within the 
binding cavity to create superimposed ligand conformations. Docking can thus extend 
the 3D QSAR method by supplying a superimposed set of ligands for the 3D QSAR 
model building while incorporating information from the receptor binding site. Further, 
the regions or volumes of space around the ligand that are found in a successful 3D 
QSAR analysis to affect binding can be visualized within the binding cavity. In our 
model, the volumes are consistent with the residues providing interactions to the ligands 
within the AR binding cavity in proximity to these volumes. For that reason docking and 
3D QSAR models can be used in concert to predict binding affinities for database com-
pounds in search for new AR ligands. First, different poses of a compound to be 
evaluated are created with docking inside the binding cavity. Second, different poses are 
scored using the 3D QSAR model of AR ligands. When the top-scoring pose is chosen, 
it is typically automatically aligned within the AR binding cavity in a biologically sensible 
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conformation. Third, since structurally and chemically different scaffolds can create 
similar molecular interactions that are generalized in the 3D QSAR model, the model 
was expected to detect new compound scaffolds as AR ligands. For these reasons, 
created 3D QSAR model of AR ligands was considered suitable for compound screening 
purposes. 

A commercial compound library provided by Asinex was used as the screening data-
base in the VS. The database, which comprised over 200 000 compounds, was subjected 
to a chain of filters (Table 1 in Paper II) in order to reduce the size of the database prior 
to docking. Due to the hydrophobic nature of the AR binding site, some bias toward 
compounds with higher lipophilicity was allowed. Filtering was started with simple 
physicochemical filters and continued with a more target-specified substructure query 
derived from known AR ligands deposited in the MDDR (MDL Drug Data Report) 
database. The search query was not made too stringent so as to retain a large number of 
distinct scaffold structures in the following stages of VS. After removal of chiral and 
highly reactive compounds, the database had reduced to a size of less than 4000 com-
pounds. These were docked into the AR LBP with the program GOLD to predict their 
binding conformations within the binding site. The docking procedure was similar to 
that reported in Paper I for generation of ligand alignment for the 3D QSAR analysis 
and Gold-Score was used in the docking simulations to evaluate the fitness of the 
generated poses. Subsequently four scoring approaches, i.e. the 3D QSAR model and the 
scoring functions F-Score [150, 167], Gold-Score [153], and X-Score [168], were used in 
ranking the docked database compounds. Compound selection for experimental testing 
was guided by these rankings with most weight put on the 3D QSAR model predictions. 
Three hundred top-ranked compounds from the rank list based on 3D QSAR model 
predictions were evaluated visually and a few non-steroidal structures with distinct 
scaffold structures were selected with support from the predictions of the other scoring 
functions. Selection of distinct scaffolds was done because the objective was to form 
small clusters of analogous compounds rather than picking out single representatives of 
non-steroidal structures. For each scaffold, a few chemically similar compounds were 
then chosen (Table 2 and Figure 1 in Paper II). Chemical similarity is one of the most 
important concepts in pharmaceutical development and chemical toxicology based on 
the hypothesis that similar compounds have similar properties. There are numerous 
examples supporting this hypothesis as well as examples where this hypothesis is not 
valid. In the latter case, a small change in chemical structure can paradoxically lead to a 
significant change in biological activity. Extension of the chosen scaffolds from the 
ranked sets of compounds was done to avoid this paradox. 

The in vitro binding of the non-steroidal compounds for AR LBD was analyzed in a 
competitive binding assay. All the compounds were able to displace the reference ligand 
from the binding site, thus showing affinity for the AR LBD (Figure 2 in Paper II). The 
IC50 values were below 10 µM for most of the compounds, below 3 µM for some of the 
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compounds and in nM range for the highest affinity compound (Table 2 in Paper II). 
Experimental screening thereby verified that the selected scaffolds interact with the tar-
get receptor, yet with rather low binding affinities. A few compounds were additionally 
tested for PR binding using a corresponding assay system for PR as was used for AR 
binding. Only one of the tested compounds showed better binding to PR than AR, while 
others did not bind or had a lower PR affinity (Table 3 in Paper II). Taken together, the 
binding experiments confirmed detection of structurally novel AR ligands and even 
ligands with some binding preference for AR over PR. Nevertheless, it must be noted 
that the AR binding affinity predictions by the 3D QSAR model did not correlate with 
the experimentally measured affinities. This was no surprise however, since the inability 
to accurately estimate binding affinities is a well-known limitation of all generally used 
scoring functions [156-158]. 

An additional aim of this study, besides the discovery of previously unknown non-
steroidal ligand scaffolds as AR hits, was to find out whether the 3D QSAR model could 
contribute to identification of such hits and serve as a tailored scoring function for AR. 
Examination of the rankings assigned to the experimentally tested compounds by the 3D 
QSAR model and the common scoring functions F-Score, Gold-Score, and X-Score 
clearly displayed lack of correlation. In fact, the rankings of the model usually opposed 
the rankings of the other scoring functions, while somewhat better correlations exist 
between the three scoring functions (Figure 3 in Paper II). Despite the discrepancies in 
the rankings, the VS results indicated that the model was able to contribute to detection 
of several reported AR binding ligand scaffolds either independently or together with 
other scoring functions. The model enabled even detection of scaffold classes that would 
probably remain unidentified by the common scoring functions due to low rankings. 
According to the results of this work, it can be concluded that the 3D QSAR model can 
be integrated in receptor-based VS as a tailored scoring function for AR to uncover 
weakly binding, structurally novel AR hits with non-steroidal scaffolds distinct from ones 
used in model building. 
 

5.3  Molecular modeling of antagonist mechanism identified 

for diphenyl- and phenylpyridine –based AR ligands 
(Paper III) 

5.3.1  Functional characterization in vitro 

The 3D QSAR model used in our receptor-based VS predicts only the likelihood of a 
compound to bind to AR. It is unable to predict the functional activities of AR binding 
compounds because it is derived from compounds representing a mixture of functional-
ities. We selected a set of six µM AR ligands, which represented two structural scaffolds 
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(Figure 1 in Paper III), from the hits identified in the receptor-based VS and subjected 
them to in vitro functional profiling. Biological effects induced by the diphenyl- and 
phenylpyridine-based compounds (termed E5 and G1-G5, respectively, according to 
internal nomenclature) upon interaction with WT and T877A variant of AR were 
studied. The assays were performed in two cell lines: 1) CV1 cell line, which is devoid of 
endogenously expressed SRs and thus allows responses to particular transfected receptor 
to be measured, and 2) LNCaP cell line, which expresses AR with the binding site muta-
tion T877A often associated with CaP [183]. Agonist activity on AR transactivation was 
not observed for any of the compounds in neither WT nor mutant AR as demonstrated 
by reporter gene assays in CV1 cells. On the contrary, a range of antagonist effects was 
displayed by the compounds at the tested concentration of 10 µM. The degree of 
antagonism was found to be different for the compounds on the T877A mutant com-
pared to the WT AR. This observation indicated that the compounds affect the AR 
transactivation through binding to the ligand-binding site of AR LBD since the activity is 
affected after introduction of the mutation in the binding site. Two of the newly identi-
fied AR antagonists (G1 and G4) were able to repress the androgen-dependent cell pro-
liferation of LNCaP cells with the mutant receptor. This finding was in line with their 
antagonist character on AR transactivation in CV1 cells transfected with mutant AR. 
Together, the in vitro results suggest discovery of two structurally new non-steroidal AR 
antagonists with inhibitory activity for both WT and T877A mutant AR. 

Detection of compounds that inhibit the activity of mutated AR variants found in 
CaP patients besides WT AR is of great value when designing drugs for CaP treatment. 
Several binding site mutations are known to cause resistance to the current antiandro-
gens that are used in the treatment of CaP. T877A mutation, for example, overcomes the 
antagonist activity of HF and converts it to an agonist instead. Bicalutamide, on the 
other hand, retains its antagonistic behavior in the T877A variant of AR and can there-
fore be used as a second-line treatment when resistance to HF following T877A muta-
tion has occurred. Bicalutamide is in fact the most attractive antiandrogen currently 
available for CaP treatment. AR mutations that confer antagonist-to-agonist conversion 
of bicalutamide are also known however and they may occur during the progression of 
CaP too. There is therefore a need for new sex organ -selective AR antagonists that are 
able to inhibit the activity of several AR variants that are observed in CaP [8]. Future will 
show whether such drugs can be designed and developed as safe treatments. 
 

5.3.2  Induced fit docking 

Inspired by the newly characterized AR antagonists we performed additional computa-
tional modeling with the aim of gaining insight into the mechanism behind the antago-
nism of the phenylpyridine-based compounds. Since the docking program GOLD that 



 44 

was used in receptor-based VS ignores protein flexibility apart from optimization of 
hydrogen bonds, we decided to explore the antagonist-induced conformational changes 
in the AR structure using a more advanced computational docking method. The IFD 
protocol of Schrödinger [165, 166] addresses protein flexibility more thoroughly by 
means of side chain predictions and allowing small movements in the protein backbone. 
Modeling of large movements, like repositioning of H12, as is shown to take place in the 
antagonism of the related ER [105, 132], are out of scope with current computational 
methodologies including this docking method. Whether AR antagonism involves such 
structural movement, is in any case uncertain. For this reason, induced fit docking 
seemed to be a sufficient tool to extend the modeling one step further from what was 
achieved with GOLD in VS. The aim was to obtain suggestions for interaction points 
between the antagonists and protein, which in turn could induce more extensive struc-
tural changes affecting the function of the protein. 

Induced fit dockings were performed for three antagonists (G1, G2, and G5) to 
both WT and T877A mutant AR in order to find a possible structural explanation for the 
observed experimental results (Figure 4 in Paper III). In the WT AR, all the docked 
antagonists were shown to induce a noticeable reorientation of residues W741 and 
M895. This result is in line with the residue movements in the published crystal struc-
tures of AR LBD. W741 and M895 are among the most flexible LBP residues and enable 
accommodation of various larger-sized ligands to AR LBP [107, 111]. The antagonist-
induced movement of the indole ring of W741, which also necessitates repositioning of 
M895 side chain, was proposed to be needed to enhance hydrogen bonding to the 
receptor. In the mutant AR, similar movement of W741 and M895 side chains was 
observed only for one of the antagonists (G1). In the in vitro assays, this compound 
inhibited the T877A mutant form of AR in the transactivation assay and also repressed 
the androgen-dependent cell growth of LNCaP cells. On the other hand, the other two 
compounds (G2 and G5) exhibited reduced or no inhibition of mutant AR transactiva-
tion and completely lacked inhibitory effect on LNCaP cell proliferation. Because there 
are no other major structural modifications predicted to take place according to the 
representative induced fit docking poses for G1, G2, and G5, it was hypothesized that 
the movement of W741 and M895 could be mechanistically involved in the initiation of 
the antagonism for the studied phenylpyridine-based antagonists. The movement of 
these residues could in turn lead to more extensive structural reorganization required for 
antagonism. 
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6  Conclusions 
 
It has become a regular practice in modern drug discovery to combine computational 
methods with experimental methods throughout the drug development process from hit 
discovery to lead optimization and beyond. Computational modeling is regularly used in 
drug development to explain the existing experimental data, e.g. data on ligand binding 
affinity, and to use the gained knowledge when designing the next generation of com-
pounds to be tested. In the present thesis, the discovery of new structural scaffolds for 
AR-targeted drug development was attempted using computational methods and infor-
mation from public structural and biological data resources. The wealth of experimental 
data stored in scientific literature and in public databases offers an excellent opportunity 
to initiate drug discovery as academic projects, even without an own wet-lab as was the 
situation in this project. In such cases collaboration with experimentalists is of utmost 
importance in order to prove the modeling results right or wrong, but also to generate 
together new research hypotheses for subsequent collaborative work. 

The major computational tools employed during the course of the work were 
molecular docking and 3D QSAR analysis with CoMSIA method. In Paper I, the binding 
properties of a diverse set of AR ligands were investigated by combining the two 
methods. The results demonstrated the usability of molecular docking as the alignment 
generation tool for deriving a statistically significant 3D QSAR model that is applicable 
in the prediction of AR binding affinities of docked compounds. The reliability and 
predictivity of the 3D QSAR model was extensively validated; the model was statistically 
of high quality and it reflected the structure and possible interactions of the AR ligand-
binding site. Overall, the results indicated that the 3D QSAR model could be combined 
into receptor-based VS for detection of new AR ligands from compound databases. The 
future plans for the project include updating the model because lots of new information 
on AR ligands and their interactions with the receptor structure has become available 
since the initial model was generated. 

Arranging the docked database compounds according to their binding preference for 
the target receptor is a major problem in receptor-based VS. Scoring functions are 
typically used for this purpose but receptor-based VS is still far from being automated 
because scoring functions, although improved, still have limited and often case-
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dependent success in identifying active compounds from inactive compounds. In Paper 
II, receptor-based VS of AR ligands from a commercial database was performed. In 
addition to uncovering novel non-steroidal ligand scaffolds as AR hits, the work aimed at 
exploring whether our previously generated 3D QSAR model of AR ligands could serve 
as a tailored scoring function for AR and contribute to detection of such AR hits. The 
3D QSAR model was hence applied in the VS workflow as a scoring function together 
with three common scoring functions. The VS led to the discovery of AR hits exhibiting 
previously unknown non-steroidal scaffold structures but rather weak binding affinities. 
Nevertheless, the results indicated that the 3D QSAR model, as part of the developed 
workflow, contributed to detection of these new AR ligand scaffolds, even ones that are 
likely to remain unidentified by the common scoring functions due to low rank positions. 
Furthermore, many of the identified AR ligands displayed a binding preference for AR 
over PR. This indicated that a 3D QSAR model that is built within the ligand-binding 
site of a target protein and therefore reflects the chemical environment of a particular 
binding site could be used as a tailored scoring function for identification of ligands with 
binding preference for the particular target. The future goal of the project is to focus on 
a few of the identified scaffold structures and try to increase their binding affinity for 
AR. A second round of VS should thus be carried out. 

In Paper III, the functional profile of a few AR ligands discovered in the VS study 
was studied in vitro. Interestingly, AR ligands with antagonist activity in both WT AR and 
T877A mutant AR frequently associated with CaP were uncovered. These antagonists, 
although they clearly have too low binding affinities at this stage of development, could 
potentially be used in the future as a starting point for design of more potent AR 
antagonists for CaP treatment. Furthermore, in this study, the structural basis for the 
observed AR antagonism was modeled with induced fit docking methodology. Docking 
results suggested that movement of residues W741 and M895 could mechanistically 
initiate the structural reorganization ultimately giving rise to their antagonist activity. 
More detailed study of the structural alterations triggered by the analyzed antagonists is 
out of scope at the moment, because too little is known in general about AR antagonism 
at the structural level. It would be very important to solve the AR LBD structure in 
complex with an antagonist ligand so that the mechanism for AR antagonism could be 
verified. Moreover, the antagonist structure could also make the design of AR 
antagonists easier. 

In Paper IV, the binding properties of diverse PR ligands were investigated in a 
similar fashion with docking and 3D QSAR analysis as the AR ligands were studied in 
Paper I. The resulting 3D QSAR model of PR ligands could also be implemented in 
receptor-based VS of new PR ligands, but this was not done in this thesis. In the future, 
further investigations on the suitability of 3D QSAR models as custom scoring functions 
in receptor-based VS are definitely required and whether the 3D QSAR model of PR 
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ligands is able to identify new PR ligands with binding selectivity over AR and perhaps 
even other SRs should be tested. 

In summary, the case studies presented in this work show that computational meth-
ods are able to provide added value to existing experimental data in the drug discovery 
process, especially in finding new molecular scaffolds and structural ideas for develop-
ment. Computations are not independent, however, and require collaboration with 
chemists and biologists who can carry out experimental investigations based on the 
modeled theories. It is worth remembering that the quality of the experimental data sets 
the limits for the quality of theoretical modeling throughout the drug development 
process: the quality of modeling results can never exceed the quality of experimental data 
on which the modeling is based on, making good quality modeling feasible only from 
high quality experimental data. Hence, successful drug design projects always rely on a 
concerted effort of a multidisciplinary team. 
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