Challenges and solutions in human genetics research – case CSC

7.10.2020

Johannes Kettunen
Background
Past solutions
Challenges
Future prospects
Group Kettunen, systems medicine

- **Epidemiology, biomarkers**
 - Risk prediction: metabolic biomarkers for all-cause mortality etc

- **Genetic epidemiology**
 - Biomarkers: Metabolomics, inflammation
 - Diseases: FINNGEN

- **Causal inference**
 - Utilizing genetics in triangulation to understand causality of biomarkers, and to proxy trial effects
Background – genome to metabolome

Computational burden
- Each study cohort has genomic information for all participants for whole genome
 - 20 million genomic variables for each participant
 - Typically each cohort has thousands of participants
 - Does not change, serves as basis
- All other variables are correlated against genomic markers
- Very simple models
- I/O intensive
- Parallelization
Past solutions and need for special settings

- Parallel computing
- Using similar environments to CSC puhti
- Thousands to tens of thousands of cores

GDPR
- Law did not change, interpretation did
- One measurement (LDL cholesterol concentration) is personal information (pseudonymization)
- Puhti and similar solutions not in our reach

NB! our data does not have names or personal details attached
Usual workflow

- Genome-wide association study of serum lipids
 - NFBC66 cohort, 3300 participants from born in Northern Finland in 1966
 - Whole genome information for all
 - 800 serum lipids measured for all participants from 46-year follow-up survey
 - Linear regression of genetic variables against all 800 serum lipid concentrations
- Generates 800 output files with 20 million lines
- 1 process takes approx 3 hours
- 800*22 processes = 17600 ~ 53000 cpu hours ~ 6 cpu years
In case of 1 cohort: NFBC cohort, 3300 participants

Each 20 million lines

- Lipid 1 concentrations → Output for lipid 1 concentrations
- Lipid 2 concentrations → Output for lipid 2 concentrations
- Lipid 3 concentrations → Output for lipid 3 concentrations
- Lipid 4 concentrations → Output for lipid 4 concentrations
- Lipid 880 concentrations → Output for lipid 880 concentrations

20 million markers
Usual workflow - challenges

- 6 years, one study?
- Usually several cohorts
- Other linear models?
- Another layer of complexity, sensitive data and ePouta
 - Data has to be analyzed in secure environment, standard CSC puhti is not available
 - ePouta has solved our needs
 - Data in secure environment, and sensitive personal data can be analyzed
- Note that the output files are not sensitive data, the starting files are
Usage, present and future

- We have used 86 CPU years of computing at CSC in various projects during 5 years
- These projects have generated data that requires 20 Tb active use storage
- We have new data coming and we foresee that we will use same amount of core time and storage in the coming few years
- CSC now provides a platform that fits our current needs well
Usual workflow – to final result

- Several cohorts
- Quality control
- Meta-analysis
- Final results
Future prospects

- **Current needs are well met by CSC**
 - Sensitive data analysis and parallelization of thousand processes in ePouta keeps us working
 - These types of projects will run for years to come
 - Note, no need for supercomputing

- **LUMI in genomics?**
 - There will very likely be need to change from very simple models to optimized models
 - Using genetic information in disease risk prediction
 - Analyzing large numbers of genetic markers simultaneously in more complex models for optimization

Cetainly a task where LUMI will be a great asset

Thank you for your attention!