
Bioinformatics with large datasets. 13.2. 2012 1

Exercises, Part 1

1. Command line and using the archive server

This exercise familiarizes you with copying and moving files with the command line, the tar and gzip commands
and also using the archive server.

Log into hippu.csc.fi

Move into the $METAWRK folder

cd $METAWRK

First copy some files to play with:

cp /p/appl/molbio/test_data/haplo.* .

Check what you copied.

ls

You can get more information on the files with

ls -l

Make a new folder called "haplo_files"

mkdir haplo_files

Move the files into the new folder

mv haplo.* haplo_files

Check that the copying was succesful

ls haplo_files

We will now package the haplo_files folder into a single file called haplo_files.tar and then compress it using the
gzip program.

tar cvf haplo_files.tar haplo_files
gzip haplo_files.tar

Alternatively you can do this with single command

tar czvf haplo_files.tar.gz haplo_files

We then copy the resulting file into archive server

cp haplo_files.tar.gz $ARCHIVE

Bioinformatics with large datasets. 13.2. 2012 2

You can check that the copying was successful with

ls $ARCHIVE

You can then delete the files from your working directory

rm haplo_files.tar.gz
rm -r haplo_files

By default the computer asks you to confirm each deletion. This might not be desirable especially when deleting
many files. You can override this behavior with the switch "-f". Just remember to be careful, especially when
using wild-cards.

rm -rf haplo_files

You can retrieve the archived files in the following manner. First copy the file back to you working directory

cp $ARCHIVE/haplo_files.tar.gz .

Then uncompress

gunzip haplo_files.tar.gz

And finally open the tar package

tar xvf haplo_files.tar

You can also uncompress and open with a single command

tar xzvf haplo_files.tar.gz

Bioinformatics with large datasets. 13.2. 2012 3

2. Running a serial batch job

For this exercise we need the files we used in exercise 1.

Log into vuori.csc.fi

Vuori computing nodes can only see the $WRKDIR, so we need to copy the files there

cd $WRKDIR
mkdir merlin
cd merlin
cp $METAWRK/haplo_files/* .

Write a serial batch script called "merlin_job" that uses one core, requires 1 GB memory and 15 minutes wall
clock time. Also capture the stderr and stdout (options -o and -e).

Use the following command line for merlin:
merlin -d haplo.dat -p haplo.ped -m haplo.map --best > merlin.out

Remember to load the merlin module!

Submit the job

sbatch merlin_job

Check the status of the job

squeue

After the job has finished you check what resources it used with

sacct

To see details of a single job you can use

sacct –l –j <jobid>

sacct lists a rather long list of values, many of which are of interest mainly to sysadmins. To get a more
manageable output you can use the –o option to define which fields you want to see.

sacct -o jobid,jobname,maxrss,maxvmsize,state,elapsed -j <jobid>

Here we have elected to show jobid (JobID), jobname (JobName), maximum used memory (MaxRSS),
maximum used virtual memory (MaxVMSize), state of the job (State) and elapsed time (Elapsed). These can be
helpful when we decide on the resource allocation parameters for our next similar job.

For details on the different available fields and other options see

man sacct

When the job has finished review the results. What files were created? What do they contain?

Bioinformatics with large datasets. 13.2. 2012 4

3. Running an array job

Make directory called "arraytest".

Copy file
/p/appl/molbio/test_data/ex4.tar.gz

to the arraytest folder and open the package as before.

Write a batch job script that runs an array job that runs the EMBOSS program getorf for each of the sequences.
Reserve 1 core, 1 GB memory and 15 min wall clock time.

Command line for getorf is of the format:
getorf <inputfile> <outputfile> -minsize 100

Remember to load the emboss module.

Hint: There are many ways to do this exercise. One option is to make a list file of the input file names and then
go through that

Making a list:

ls *.seq > list

Command lines for the batch script

set seq = `sed -n "$VUORI_JOBINDEX"p list`
getorf $seq “$seq”.out -minsize 100

sed –n <line number>p returns a single line from the input file. Here we use the $VUORI_JOBINDEX
variable to go through all the lines one at a time. We use the sed command to set the variable $seq and the use
the variable to set the input and output file name arguments for the program.

To submit the job we need to know the number of lines in “list”. You can find this out with

wc –l list

or

sed -n '$=' list

You can also include these commands directly into the command line. (Note that the inner and outer quotes are
different. See the lecture notes on using different quotes):

array_sbatch -file arrayjob -from 1 -to `sed -n '$=' list`

Bioinformatics with large datasets. 13.2. 2012 5

Exercises, part 2

1. Moving query sequences from your local machine to Hippu with Scientist's User
Interface

The MyFiles tool in scientist's interface offers a handy way to transport files between CSC and your local
computer. However, Firefox and Explorer browsers have a general limit of 2 GB for uploading files. For larger
files you can use Chrome or Safari browsers. If this is not feasible Scientist's User Interface provides you
another, a bit more complicated tool that you can use for data transport. That is: using GSI SSH console and
SFTP session.

In this exercise we use SFTP just to see, how the system works. The file we are going to upload is so small that
it could be easily moved to CSC by using the MyFiles tool.

But first Download the file (R.fasta) to your computer with you browser. You can find it from:

https://extras.csc.fi/biosciences/kurssit/R.fasta

Then do the transport with GIS SSH console:

A. Login to Scientist's User Interface (https://sui.csc.fi)

B. Launch the SSH Console by clicking the icon in the Services Desktop or by selecting the tool from the
Services Menu.

C. When the console is launched, it asks for your user account and the name of the server you want to connect
(the password will be asked only later on). As you wish to copy data for to Hippu, you should define:

Username: your_account
Remote Host: hippu.csc.fi

And then launch the SSH console.

Bioinformatics with large datasets. 13.2. 2012 6

When the Java based console program starts you may need to accept launching the process in you local
machine and allow the process connect CSC. When the console is running it will ask you to choose the
authentication method to be used. Select: password and press Proceed.

After this a Password Authentication window opens. Type in your password and press OK.

Now a ssh console window opens to your screen.

D. You can use the console to use the CSC servers, but it contains also other tools than just the command line
client. You can use it for example for file transport or secure tunneling of server ports. In this case you can utilize
the SFTP file transport tool.

Bioinformatics with large datasets. 13.2. 2012 7

Go to the “Tools” menu of the client window and select:

 Tools | SFTP session

Bioinformatics with large datasets. 13.2. 2012 8

This launches a file transport terminal to your screen.

E. By default the file transport terminal shows the content of your CSC home directory. To move data to your
$METAWRK directory at CSC change the directory path in the “Address” filed to:

 /fs/metawrk/your_account

Where your_account is replace by the user account you are using. To upload your file, go to the “File” menu and
select

 File | Upload Files

Select the file to be uploaded (R.fasta) using the file selection window that opens to your screen and start the
upload process.

Bioinformatics with large datasets. 13.2. 2012 9

2. Retrieving the target sequences from web

Later on in this exercise we want to compare our query sequences against the genome of bacteria
Pseudomonas aeruginosa. This genome is not available at CSC but you can download it from the ftp site of
NCBI. First you need to locate the file to be downloaded.

Point you web browser to address: ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

In the listing you can find four Pseudomonas_aeruginosa genomes. Open the folder:
 Pseudomonas_aeruginosa_PA7_uid58627.

There the nucleotide sequence is stored into file:
 NC_009656.fna .

Right click this file name and copy the link location so you can use just paste the address to the command line
after the wget command.

In the command shell, move to you $METAWRK directory:

 cd $METAWRK

Then retrieve the data with command (all in single line)

wget ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_aeruginosa_PA7_
uid58627/NC_009656.fna

Check what you got with commands:

 ls -ltrh
 head NC_009656.fna
 tail -20 NC_009656.fna
 module load emboss
 infoseq_summary NC_009656.fna

Bioinformatics with large datasets. 13.2. 2012 10

3. Using IDA

In this exercise you will use IDA storage service to store and share data. In this case we will use IDA through the
iRODS commands in Hippu.

Setting up your IDA account

Before you can start using IDA you must first define your iRODS environment. This needs to be done only once.

Log in to Hippu and give commands:

 module load iRODS
 iinit

The iinit command asks the information of your iRODS (i.e. IDA) account. Define the values as below. Replace
the trngXX with your training account (trng01, trng02 , etc), not with your personal account.

One or more fields in your iRODS environment file (.irodsEnv) are

missing; please enter them.

Enter the host name (DNS) of the server to connect to:ida.csc.fi

Enter the port number:1247

Enter your irods user name:trngXX

Enter your irods zone:csc

Those values will be added to your environment file (for use by

other i-commands) if the login succeeds.

Enter your current iRODS password:
yuh28rex

The settings are stored to file .irods/.irodsEnv in your home directory. For smooth usage, let's add one more line
to the .irodsEnv file.

echo "irodsHome /csc/internal/bifld/trngXX" >> .irods/.irodsEnv

Finally, copy your .irods folder also to your $WRKDIR to be able to use iRODS commands also in batch jobs in
the Vuori cluster.

cp -r .irods $WRKDIR/

All the steps above need to be done only once. Later on it is enough to give just the setup command:

module load iRODS

Bioinformatics with large datasets. 13.2. 2012 11

and start using the iRODS commands. Try first ils command to see the content of your IDA home directory:

 ils

Create a new IDA directory and move the Pseudomonas aeruginosa genome there in compressed format

 imkdir genomes
 icd genomes
 gzip NC_009656.fna
 iput NC_009656.fna.gz
 ils -l

All the IDA training accounts belong to the same project an so they have a common shared directory. Change
this shared directory as the current iRODS directory and check the content of the directory:

 icd /csc/internal/bifld/shared
 ils

Download a file called query.fastq. You will use the file later on in exercise 5.

 iget query.fastq

4. Using screen

Screen is a virtual window manager. When running programs in screen they will continue to run even if your
connection is cut of. It is mostly useful when running long interactive jobs on Hippu.

Screen is machine specific, so you need to take note which machine (hippu1-4) you are logged in. You can see it
e.g. from the command prompt

 hippu2 ~>

Begin a new screen session

screen

We can now try de-attaching and re-attaching to a screen

De-attach from screen press:

 ctrl-a-d

or give command

screen -d

You can list the running screen sessions with

screen -ls

Bioinformatics with large datasets. 13.2. 2012 12

You should see something like this:

There is a screen on:
 11870.pts-17.c553 (Detached)
1 Socket in /tmp/uscreens/S-trngXX.

Since there is only one screen running you can reconnect it with command:

screen -r

If there would be several screens running you could specify one by the process id

screen -r 11870

Screen also works if the connection is cut off unexpectedly. We will test this later on.

5. Running BWA read mapping job in the grid

Aligning large sets of short sequences, reads, to a reference sequence set is an essential step in many next-
generation sequencing (NGS) based analysis work-flows. For reads sets, containing hundreds of millions of
short sequences, the mapping task can take weeks of computing.

One way to speed up the mapping tasks is to use grid computing. The read mapping tasks can be divided into
numerous sub-tasks that can be executed in grid in parallel fashion and later on merged back together. In this
exercise we use grid interface of Burrows-Wheeler Aligner, BWA. The interface is called grid_bwa. It executes
automatically following five basic steps. 1. Checking input, 2. Indexing the reference. 3. Splitting the mapping
task into sub-jobs, 4. Executing sub-jobs in the grid. 5. Collecting the results.

In the beginning, make sure you are in your screen session. You can check this by giving command:

 screen -r

This command should now show you something like:

There is a screen on:

 28744.pts-14.hippu1 (Attached)

There is no screen to be resumed.

Here the word Attached tells that you are within this screen.

Then move to your $METAWRK directory.

cd $METAWRK

setup BWA environment:

 module load bwa

The update you gird proxy:

 grid-proxy-init -rfc -valid 24:00

Bioinformatics with large datasets. 13.2. 2012 13

Now you are ready to launch the BWA job with command:

 grid_bwa aln -query query.fastq -ref NC_009656.fna -out aln.bam -nsplit 20

Once the command is running you can step out form the screen session with by pressing:

 ctrl-a-d

And return to the screen with command:

screen –r

6. Connection break simulation with screen

Close the ssh window, while you are in your screen session. This simulates the connection being cut off

Log in again. Make sure you log in to the correct machine.

You can list the running screens as before

screen -ls

The re-attach as before

screen -r

You should find everything as you left it. The grid BWA process is still running.
When the BWA process is finished you should close the screen session with command:

exit

after that try listing screens

 screen -ls

The command should return something like:

No Sockets found in /tmp/uscreens/S-trngXX.

Screen can be useful especially when running programs that use stdout, but you should be careful and not leave
unnecessary screen sessions hanging.

NOW, PLEASE DE-ATTACH FORM YOUR SCREEN AND LET THE GRID BWA RUN IN THE BACKGROUND
WHILE YOU DO THE NEXT EXERCISE.

7. Working with data columns

Submit the BLAST search again using the pb blast that runs in Hippu. In this case our query set is rather small.
For larger query sets you could use pb blast in Vuori and for really huge BLAST task you could run the job using
Grid BLAST.

Bioinformatics with large datasets. 13.2. 2012 14

You should be able to submit the BLAST job with commands:

 cd $METAWRK

 module load blast+

 pb blastn -query R.fasta -dbnuc NC_009656.fna -out pb_blast_results -outfmt 7

By running command:

 head -50 pb_blast_results

You can see that the result file contains columns, where the query sequences are in the first column and the hit
sequences in the second column. You can now check, how many hits each query sequence got with command:

 awk '{print $1}' pb_blast_results | grep -v "#" | sort | uniq -c | sort -k1n

Study how this command works by executing it step by step:

awk '{print $1}' pb_blast_results

 awk '{print $1}' pb_blast_results | grep -v "#"

 awk '{print $1}' pb_blast_results | grep -v "#" | sort

 awk '{print $1}' pb_blast_results | grep -v "#" | sort | uniq -c

 awk '{print $1}' pb_blast_results | grep -v "#" | sort | uniq -c | sort -k1n

You can check the number of query sequences in the input file with command:

 grep -c ">" R.fasta

Alternative ways to count number of sequences with EMBOSS:

module load emboss

seqcount R.fasta

 infoseq_summary R.fasta

If you compare that to the number query sequences in the result file:

awk '{print $1}' pb_blast_results | grep -v "#" | sort | uniq -c | wc -l

You can notice that the command used above shows no information for those query sequences that did not get
any matches.

Extra task:
Use linux commands to sort out those query sequences that did not produce any hits. There is no singe right
way to do this task. You probably need several commands and temporary files to get the result. You can also try
linux scripting.

