
Bioinformatics with large data-sets

Ari-Matti Sarén
Kimmo Mattila



CSC Environment



Louhi

Cray XT4/XT5 Massively Parallel Processor 
(MPP) supercomputer 

• quad-core 2.3-GHz AMD Opteron 64-bit 
processors

• 9424 cores
• 1 GB or 2 GB memory/core
• SeaStar2 interconnects

Meant for jobs that parallelize well
• project resources only after scalability test
• normally 64-512 cores/job
• can be increased for Grand Challenge projects

Louhi user’s guide
• http://www.csc.fi/english/pages/louhi_guide



Vuori

HP CP4000 BL ProLiant supercluster
• 2x 6-core 2.6 GHz AMD Opteron 64-bit or 6-core Intel 

X5650 processors/node 
• 128 nodes with 16 GB memory (1,33 GB/core)

112 nodes with 32 GB memory (2,66 GB/core)
24 nodes with 96 GB memory (8 GB/core)

• These nodes have Intel X5650 processors
• 8 nodes with GPU (for CUDA programs)

• 24 GB memory/node
• InfiniBand 20Gb/s (40GB/s for large memory nodes) 

interconnects

Meant for serial and mid-size parallel jobs
• 1-144 cores/job (more posible after scalability tests)

Vuori user’s guide
• http://www.csc.fi/english/pages/vuori_guide



Murska

HP CP4000 BL ProLiant supercluster
• 2 x dual-core 2.6 GHz AMD Opteron 64-bit 

processors /node
• 2176 cores
• 128 cores 8 GB, 512 cores 4 GB, 512 cores 2 GB, 

1024 cores 1 GB
• InfiniBand (4x DDR) network

Meant for serial and mid-size parallel jobs
• 1-256 cores/job (1-32 typical, 128 without

scalability tests)

Murska user’s guide:
• http://www.csc.fi/english/pages/murska_guide



Hippu

2x HP ProLiant DL785 G5 (Hippu1, Hippu2)
• 8x 4-core 2.5 GHz AMD Opteron 8360 SE 

64-bit processors/node
• 64 cores total
• 512 GB shared memory/ node

2x HP ProLiant DL58 G7 (Hippu3, Hippu4)
• 4x 8-core Intel Xeon X7560/node
• 64 cores total
• 1 TB shared memory/node

Meant for interactive jobs
• job length not limited
• no queue system installed

Hippu user’s guide:
• http://www.csc.fi/english/pages/hippu_guide



Directory Intended use Default
quota/
user

Visibility Storage
time

Backup

$HOME Initialization scripts, source codes, 
small data files. Not for running
programs or research data.

1 GB Common, excluding
computing nodes

Permanent yes

$USERAPPL Users’ own application software 
installations

Server specific Permanent Yes

$TMPDIR Run-time temporary files Server or computing
node specific

~1 day No

$WRKDIR Temporary data files Unlimited Server specific At least 7 days No

$METAWRK Program development, analysis of 
results

200 GB Common, excluding
computing nodes

30 days No

project Common storage for project
members. A project can consist of 
one or more user accounts

On request Common, excluding
computing nodes

Permanent Yes

$ARCHIVE Long-term storage. After user
account is closed, its data will be
removed from the archive

Default 550 GB 
or 10 000files. 
1 file maximum
size 350 GB

Common, excluding
computing nodes

permanent Two tape
copies

File systems and directories

http://www.csc.fi/english/pages/data-services/Introduction/csc_disks



Visibility of personal directories at CSC



Data handling



Some brief generalizations:

It’s usually faster to move one large file than many
small ones

On the other hand you should avoid too large files
• it’s nicer to re-send one 10 GB chunk than the whole 100 GB 

file

Consider compression

Prefer file formats that have checksums or other
verification mechanisms

Data should also be packaged for saving in 
$ARCHIVE



tar
• concatenates files but does not compress
• preserves directory structure

many compression programs don’t handle directories well/at all
answer: first tar, then compress

• making a tar package:
tar cf myfolder.tar myfolde

• opening a tar package:
tar xf myfolder.tar

• checking tar file contents
tar tf myfolder.tar

http://www.csc.fi/english/pages/data-services/linux_tools/compression#5.2.1



File compression

File compression/decompression takes time, but 
saves time on upload/download

• net gain depends on data size
Files used in bioinformatics (sequences, pedigree files 
etc) are often text-based and compress well (to ~30% 
of original size)
Compressed file formats typically include checksums

• if you can uncompress the file without error messages you 
know your data is intact

Commonly used compression programs:
• zip
• gzip
• bzip

http://www.csc.fi/english/pages/data-services/linux_tools/compression#5.2.2



zip
• compressing

zip myfiles.zip file1 file2

• uncompressing
unzip myfiles.zip

• leaves origan file intact

gzip
• compressing

gzip myfile

• uncompressing
gunzip myfile.gz

• replaces original file with the compressed file

bzip2
• slightly better compression ratio than zip/gzip
• mostly linux spesific
• compressing

bzip2 myfile

• uncompressing
bunzip2 myfile.bz2

• replaces original file with the compressed file



Linux
• tar, zip, gzip, bzip2 part of most standard distributions

Windows
• 7-Zip

free
makes and opens tar, zip, gzip, bzip2
http://www.7-zip.org/

Mac
• tar, zip, gzip available on standard installation



Moving data
to and from CSC

http://www.csc.fi/english/pages/data-services/transport



Scientist’s Interface
• MyFiles tool for files up to 2 GB

• Uploading files larger than 2 GB works on some browsers (Chrome, Safari)

• GSI-SSH Console based SFTP for larger files

http://www.csc.fi/english/pages/data-services/transport/scientists_interface



scp is a standard tool and works well 
scp myfiles.tar.gz ’user1@murska.csc.fi:$WRKDIR’

scp ’user1@murska.csc.fi:$WRKDIR/myfiles.tar.gz’

http://www.csc.fi/english/pages/data-services/transport/file_transport

rsync can be used for data mirroring and moving very large files
rsync -avz -e ssh my_data kkayttaj@hippu.csc.fi:/wrk/kkayttaj

http://www.csc.fi/english/pages/data-services/transport/rsync

Several graphical file transport tools exisits
- e.g. Fugu for mac

File transport tools for Linux and Mac



most commercial ssh programs have graphical file moving 
interfaces

commonly used PuTTY does not (it does have command line 
based scp and sftp)

winSCP is good free option

http://winscp.net/eng/index.php

File transport tools for Windows



Remote disc mounts

Fuse ( linux) and MacFusion (Mac) allow you to mount 
you disk areas to your local computer

With this arrangement you can use locally installed 
tools to work with data that locates at CSC 

You can also transport 
data in drag-and-drop style. 

http://www.csc.fi/english/pages/data-services/transport/remote_mounts



Using the archive server

Tape based storage
• very large capacity (currently 560 TB)
• retrieving the files may take a few minutes

Can be accessed with normal unix commands: cp, mv, rm etc.
• mounted as $ARCHIVE on Hippu and on log-in nodes of Murska, Vuori and Louhi

Avoid archiving small individual files on the server
• If you have to archive small files, you should first combine them to tar format and 

compress

Default size 550 GB or 10 000 files
Can be increased by application

Maximum file size 350 GB

http://www.csc.fi/english/pages/data-services/csc_disks/archive



IDA storage service @CSC
Based on iRODS technology

(Integrated Rule-Oriented Data System)

http://www.csc.fi/sivut/ida



IDA storage service 

iRODS based storage system for storing, archiving and sharing 
data
Currently in pilot phase. Research IDA will be officially launched 
later on this year
Usage through personal accounts and projects
Each project has a shared directory too
Speed: about 1 GB/min at the servers of CSC

Three interfaces:
WWW interface in Scientists' User Interface
network directory interface for Linux, Mac (and Windows XP)
command line tools (i-commands installed at the servers of CSC)



IDA interfaces at CSC

Some iRODS commands
iput file move file to IDA
iget file retrieve file from IDA
ils list the current IDA directory
icd dir change the IDA directory
irm file remove file from IDA
imv file file move file inside IDA
irsync synchronize the local copy 

with the copy in IDA
imkdir create a directory to IDA 
iinit Initialize your IDA account

IDA In Scientist's User Interface



How to run you jobs

Interactive jobs
Batch jobs
Parallel jobs
Array jobs
Grid jobs



Interactive jobs

Interactive jobs are best run on Hippu
• no time limit on jobs
• no need to reserve a node
• if job takes long, it should be run as background job

myprogram &
or use screen

If the job: 
• Can be run in batch mode
• Takes a long time
• Can use more than one core
you should consider running it as a batch job in Vuori



Interactive jobs

Interactive jobs can be run on Murska and Vuori by
reserving resources

• Time limit max 4 h
• Maximum number of cores for an interactive job:

• Murska: 32
• Vuori: 12 (1 node)

• Example: reserve 1 core with 1 GB memory for 2 hours
• In Murska: 

bsub –n 1 –M 1048576  -W 02:00 -Ip $SHELL –I
• In Vuori:

salloc -n 1 --mem-per-cpu=1000 -t 02:00:00 -p interactive 



screen
screen is a virtual window manager

• available on Vuori, Murska and Hippu
• your session stays ”as is” even if you disconnect

Basic commands
• open a new screen

screen

• list open screens
screen –ls

• re-attach to a screen (if only one open)
screen –r

• re-attach to screen with id 12345 (as shown by screen –ls)
screen –r 12345

• detach from screen
screen -d

• screen exits when all processes (including the shell) exit. Or type
Ctrl+a Shift+k



Batch jobs

Best suited for single, long jobs

Steps for running a batch job

1. write a patch job script
• Scrip format depends on server
• You can use the Batch Job Script Wizard in Scientist’s User Interface

2. make sure all the necessary files are in $WRKDIR
• Cluster computing nodes can not see $HOME, $METAWRK, etc.

3. Submit your job
On Murska: bsub < myscript
On Vuori: sbatch myscript
On Louhi: qsub myscript



Batch Job Script wizard in Scientist’s User Interface



Batch Job Script wizard in Scientist’s User Interface



#!/bin/tcsh
#SBATCH -J myjob
#SBATCH -e myjob_err_%j
#SBATCH -o myjob_output_%j
#SBATCH --mail-type=END
#SBATCH --mail-user=a.user@foo.net
#SBATCH --mem-per-cpu=4000
#SBATCH -t 02:00:00
#SBATCH -n 1

module load myprog
srun myprog -option1 -option2

Example serial batch job script on Vuori:



#!/bin/tcsh

Tells the computer this is a script that should be run 
using tcsh shell

Everything starting with ”#SBATCH” is passed on to 
the batch job system

Everything starting with ”# ” is considered a comment

Everything else is executed as a command

Course examples use tcsh, but you can use other 
shells if you wish



#SBATCH -J myjob

Sets the name of the job

When listing jobs e.g. with squeue, only 8 first characters of 
job name are displayed. 



#SBATCH -e myjob_err_%j
#SBATCH -o myjob_output_%j

Option –e sets the name of the file where possible error
messages (stderr) are written

Option –o sets the name of the file where the standard
output (stdout) is written

When running the program interactively these would be
written to the command promt

What gets written to stderr and stderr depends on the 
program. If you are unfamiliar with the program, it’s always
safest to capture both

%j is replaced with the job id number in the actual file name



#SBATCH --mail-type=END
#SBATCH --mail-user=a.user@foo.net

Option --mail-type=END = send email when the job
finishes

Option --mail-user = your email address.

If these are selected you get a email message when the job
is done. This message also has a resource usage summary
that can help in setting batch script parameters in the future. 



#SBATCH -n 1

Number of cores to use

It’s also possible to control on how many nodes you job is 
distributed

• This is sometimes necessary for memory management

• --ntasks-per-node=12

Check software documentation
• most bioinformatics software can not utilize more than one core

OpenMP applications can only use cores in one node



#SBATCH --mem-per-cpu=4000

The amount of memory reserved for the job in MB
• 1000 MB = 1 GB

Memory is reserved on per-core basis even for shared memory
(OpenMP) jobs

Keep in mind the specifications for the nodes. Impossible
requests are rejected directly

If you reserve too little memory the job will use swap disk and 
become very slow

If you reserve too much memory your job will spend much
longer in queue



#SBATCH -t 02:00:00

Time reserved for the job in hh:mm:ss

When the time runs out the job will be terminated!

With longer reservations the job might spend longer in the 
queue

Limit for normal serial jobs is 7d (168 h)
• if you reserve longer time, the job will go to ”longrun” queue

(limit 21d)
• In the longrun queue you run at your own risk. If a batch job in 

that queue stops prematurely no compensation is given for lost 
cpu time! 



module load myprog
srun myprog -option1 -option2

Your commands
• See application documentation for correct syntax

Also remember to load modules if necessary

By default the working directory is the directory where you submitted
the job

• If you include a cd command, make sure it points to correct directory

Remember that input and output files need to be in $WRKDIR



Managing batch jobs in Vuori

The script file is submitted with command
sbatch batch_job.file

The job can be followed with commands
squeue (shows all jobs in queue)
squeue –u <username> -l (shows all jobs for a single user)
squeue –j <jobid> (shows status of a single job)

You can delete a job with command
scancel <jobid>

more information:
– http://www.csc.fi/english/pages/vuori_guide/batch_jobs



Parallel jobs

Only applicable if your program supports parallel running

Check application documentation on number of cores to use
• Speed-up is often not linear
• Maximum number can be limited by the algorithms

Mainly two types: MPI jobs and shared memory (OpenMP) jobs
• OpenMP jobs can be run only inside one node

• All cores access same memory space

• MPI jobs can span several nodes
• Each core has its own memory space

Memory is always reserved per-core basis
• For OpenMP jobs divide total memory by number of cores
• Take care to only request possible configurations



Parallel jobs

Each server has different configuration so setting up parallel jobs in 
optimal way requires some thought

See server manuals for specifics
• http://www.csc.fi/english/pages/louhi_guide/batch_jobs/parallel_jobs/index_html
• http://www.csc.fi/english/pages/murska_guide/batch_jobs/parallel_jobs/index_html
• http://www.csc.fi/english/pages/vuori_guide/using_vuori/running_programs/index_html



Array jobs

Best suited for running the same analysis for large number of files

On Vuori array jobs are submitted with command array_sbatch
array_sbatch -file slurm_batch_job_file -from integer -to integer

When submitted variable $VUORI_JOBINDEX will be replaced with
the array job index

• Example:
srun myprog –i input.$VUORI_JOBINDEX –o output.$VUORI_JOBINDEX

For information on running array jobs in Murska see:
• http://www.csc.fi/english/pages/murska_guide/batch_jobs/serial_batch_jobs/



Using grid resources

The Finnish Grid Initiative – FGI

http://www.csc.fi/grids



FGI and NDGF BIO VO

In grid computing you can use several computing clusters to run 
your jobs

Grids suit well for array job like tasks where you need to run a large 
amount of independent sub-jobs. 

FGI:  10 computing clusters, about 6000 CPUs. (Gradually 
emerging during 2012)

NDGF Bio VO: about 10 clusters and over 10 000 computing cores.

FGI and NDGF Bio VO use same middleware and authentication



Getting started with FGI-Grid

1. Apply for a grid certificate from TERENA ( a kind of grid passport)
2. Join the FGI VO (Access to the resources) 
3. Install the certificate to Scientists' User Interface and Hippu.

Instructions:
http://www.csc.fi/english/research/sciences/bioscience/programs/blast/gb

Please ask help to get started!
grid-support@csc.fi



Using Grid
You can submit jobs using the ARC middleware

Using ARC resembles submitting batch jobs in Hippu and Vuori
ARC is installed in Hippu and Vuori, but you can install it to your 
local machine too. Setup command:

module load nordugrid-arc

Basic ARC commands:
grid-proxy-init -rfc (Set up grid proxy certificate for 24 h)
ngsub job.xrsl (Submit job described in file job.xrsl)
ngstat -a (Show the status of all grid jobs)
ngkill job_id (kill the given grid job)
ngclean -a (remove job related data from the grid)



Sample ARC job description file
&
(executable=runbwa.sh)
(jobname=bwa_1)
(stdout=std.out)
(stderr=std.err)
(gmlog=gridlog_1)
(walltime=24h)
(memory=8000)
(disk=4000)
(runtimeenvironment>="APPS/BIO/BWA_0.6.1")
(inputfiles=
( "query.fastq" "query.fastq" )
( "genome.fa" "genome.fa" )
)
(outputfiles=
( "output.sam" "output.sam" )

)



Sample ARC job script (runbwa.sh)

#!/bin/sh
echo "Hello BWA!"
bwa index genome.fasra
bwa aln -t $BWA_NUM_CPUS genome.fasta query.fastq > out.sai 
bwa samse genome.fasta out.sai query.fastq > output.sam
echo "Bye BWA!"
exit



Using Grid

At CSC you can use “Gridified” versions of some tools.
These command line interfaces  automatically split and submit the given task 
to be executed in the grid. The results are also automatically collected and 
merged.
You don't have to know ARC to use these tools!

Gridified tools:
BWA
SHRiMP
BLAST
HHsearch
Matlab (through Matlab to C conversion)
AutoDock

Please suggest a tool that should be “gridified”



Managing files in unix command line



Unix commands

Basic syntax:

comand -option argument
ls
ls -l
ls -l myDirectory

Use man command to get information about
possible options

man ls



Commands for directories:

cd change directory
ls list the contents of a directory
pwd print (=show) working directory
mkdir make directory
rmdir remove directory



Commands for files:

cat print file to screen
cp copy
less view text file
rm remove
mv move/rename a file
head show beginning of a file
tail show end of a file
grep find lines containing given text
wc count number of words or lines



Special characters:

*(asterisk), wild card, means any text
ls *.fasta

| (pipe) guides output of a command to an input of another commands
ls *.fasta | less

> Writes output to a new file
ls > files_of_the_directory.txt

~ (tilde) means your home directory as does $HOME
cp test.txt ~/file.txt

cp text.txt $HOME

& runs command in background
gzip my_big_file.tar  &



Quotes

The tcsh shell is very picky about quotes. 

’’ Take text enclosed within quotes literally
` ` Take text enclosed within quotes as command and 

replace with output
”” Take text within quotes literally after substituting any variables

Compare the results of these commands:
set var = ”test”; echo ’echo $var’
set var = ”test”; echo `echo $var`
set var = ”test”; echo ”echo $var”



Some useful commands for parsing lines

Try these to see what they do!

sed
echo "one this two this three" | sed s/this/that/
echo "one this two this three" | sed s/this/that/g

awk
echo ”one two three” | awk ’{print $2}’
echo ”one;two;three” | awk –F”;” ’{print $2 $3}’

cut
echo ”123456789” | cut –c 4
echo ”123456789” | cut –c -4
echo ”123456789” | cut –c 4-
echo ”123456789” | cut –c 4-7
echo ”one_two_three” | cut –d ”_” –f 2

All of these have much more options. See man pages for details.



Automating analysis:
Introduction to shell scripting



Scripting

For more complex operations it is advisable to use a 
full-fledged programming language (e.g. python, perl)

Shell scripting can be very usefull for automating
analysis, handling large number of files, doing
repetitive tasks etc.

You can get a lot done with just a handful of 
commands

Course examples are in tcsh, but other common 
shells available



Getting started:

Write & save the script using a text editor
• Make sure to save in text format (not in Word .doc or similar)
• If importing files from Windows it’s good idea to run dos2unix:

dos2unix myfile

Every tcsh script should start with
#!/bin/tcsh

Remember to give yourself execution rights to the script
chmod u+x filename

If the scripts are not in your $PATH, remember to give path in command
(same as with all other programs)

• to run a script in your current directory
./myscript

Remember: man command and Google are your friends



Variables

set variable = (value)

$variable

set array = (a b c)

$array[1], $array[2], $array[3]

Note:
$argv[] holds command line arguments

Example:

set len = (1)

echo $len



Conditional structures
if (condition) command

if (condition) then
commands

else
commands

endif

Example: 

if ($n < 10) then
echo ”small”

else
echo ”large”

endif



while loop

while (condition)

commands

end

Example:

set n = 1

while ( $n < 10)

echo $n

set n = (`expr $n + 1`)

end



Foreach structure

foreach variable (value_list)
commands

end

Examples:

foreach gap ( 5 10 15 20 25 )

foreach sequence (`ls *.seq`)

foreach sequence (`ls | grep .seq$`)

foreach line (”`cat myfile.txt`”)



Logical operators

You can use the normal conditional operands
== equal to
!= not equal to
=~ similar to (allows wildcards)
!~ not similar to (allows wildcards)
> greater than
< smaller than
>=  greater or equal to
<=  smaller or equal to
&&  AND
|| OR
! NOT



File-test operators

There are a number of operators you can use to test different attributes 
of a file: 

-e file true if file exists 
-z file true if file exists and is zero size 
-d dir true if dir exists and is a directory

-o file true if file exists and is owned by the user 
-r file true if file exists and is readable 
-w file true if file exists and is writable 
-x file true if file exists and is executable 

Examples

if (-e file) echo ”file exists”
if !(-e file) echo ”file does not exist”



Example scripts

The following two scripts use two loops to study the gap opening penalty and 
gap extension penalty for global alignments of sequences swiss:cas1_human
and swiss:cas1_sheep. Gap creation penalty is varied from 5 to 50 with step
size of 5 and the gap extension penalty from 1 to 5 with step size 1. The 
resulting similarity and identity values are sorted according to the similarity
and stored to file ”sorted.out”

Note that the expr comand can only handle integers, so if you would like to 
use step size less than one, you should use different commands.

The first version of the sample scripts uses a foreach loop and the second
version a while loop. Results are the same in both cases



#!/bin/tcsh

use emboss
echo "Testing matcher" > result.out

set gap = (5)
set n = (1)

foreach gap (5 10 15 20 25 30 35 40 45 50)

foreach len (1 2 3 4 5)

stretcher swiss:cas1_human swiss:cas1_sheep -gapopen $gap -gapextend \
$len -outfile out.pair -auto

echo "`grep Similarity out.pair` Len= $len Gap $gap" >> result.out
rm -f out.pair

end
end

sort result.out > sorted.out

Example 1



#!/bin/tcsh
use emboss
echo "testing matcher" > result.out

set gap = (5)
set n = (1)

while ($gap <= 50)
set len = (1)

while ($len <= 5)

stretcher swiss:cas1_human swiss:cas1_sheep -gapopen $gap \
-gapextend $len -outfile out.pair -auto

echo "`grep Similarity out.pair` Len= $len Gap $gap" >> result.out
rm -f out.pair
set len = (`expr $len + 1`)

end

set gap = (`expr $gap + 5`)
end

sort result.out > sorted.out

Example 2



kaivos.csc.fi

MySQL-database services @CSC



MySQL-database services @CSC

Kaivos.csc.fi can be accessed form Hippu and Murska
No login to the server, just remote MySQL-client connections
Size and the number of simultaneous connections (5) is limited
No personal database accounts, but database specific

• DBname_admin can create and remove tables and indexes for the database.
• DBname_user can read, write, change and delete data from the database tables. However, 

this account can’t change the structure of the database
• DBname_read can do only queries to the database.

The database administrator (i.e. you) is responsible of the structure and content of the 
database!

Database application
http://www.csc.fi/english/customers/university/useraccounts/databaseservice.pdf



MySQL-database services @CSC

Tools
MySQL-client
Graphical interfaces mysqlcc (Murska) mysql-query-browser (Hippu)
Perl and Python API (not officially supported)

Benefits
SQL-queries
Same data can be used from Hippu, Murska and Vuori and from you local 
computer (requires ssh-tunnel)
You can use the database from batch jobs in Murska and Vuori
Up to 100 GB backuped database size

http://www.csc.fi/english/pages/data-services/databases


