
Introduction to Fortran 95/2003

Mikko Byckling
Sami Saarinen
Sami Ilvonen

Apr 23 – Apr 25, 2014
@ CSC – IT Center for Science Ltd, Espoo

All material (C) 2014 by CSC – IT Center for Science Ltd.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License, http://creativecommons.org/licenses/by-nc-sa/3.0/

Agenda

Wednesday, April 23rd

09:00-09:45 Getting started with Fortran

09:45-10:00 Coffee break

10:00-10:45 Arrays

11:00-12:00 Exercises

12:00-13:00 Lunch break

13:00-13:45 Procedures and modules

14:00-14:45 Exercises

14:45-15:00 Coffee break

15:00-15:45 Exercises

15:45-16:00 Wrap-up day 1

Thursday, April 24th

09:00-09:45 Advanced arrays

09:45-10:00 Coffee break

10:00-11:00 Exercises

11:00-12:00 File I/O

12:00-13:00 Lunch break

13:00-14:00 Exercises

14:00-14:45 Derived data types

14:45-15:00 Coffee break

15:00-15:45 Exercises

15:45-16:00 Wrap-up day 2

Agenda

Friday, April 25th

09:00-09:45 Useful new features

09:45-10:00 Coffee break

10:00-11:00 Exercises

11:00-12:00 Interoperability with C

12:00-13:00 Lunch break

13:00-13:45 Exercises

14:00-14:45
Outlook on Fortran
2003/2008

14:45-15:00 Coffee break

15:00-15:30 Course wrap-up

Web resources

CSC’s Fortran95/2003 Guide (in Finnish) for free
http://www.csc.fi/csc/julkaisut/oppaat

Fortran wiki: a resource hub for all aspects of Fortran programming
http://fortranwiki.org

GNU Fortran online documents
http://gcc.gnu.org/onlinedocs/

FORTRAN 95/2003 EXERCISES

FORTRAN 95/2003 exercises

General information
 Stubs (or skeletons) of all source codes are available through

tar-file FTN_stubs.tgz

 To untar it, issue the following Unix-command:

tar zxvf FTN_stubs.tgz

 All exercises are under subdirectories of exercises/stubs/

 Each lecture has its own exercise sub-directory (ex1, ex2, …)

 For every given exercise you are meant to edit/correct the
stubs source code. Look for TODO-tags (!TODO:) in the
source and provide a fix

 Once finished, you use the Unix make command and the
provided makefile to build and run the executable

 GNU compilers are used by default

 All solutions are provided in a tar-file FTN_solutions.tgz, in
subdirectories of exercises/solutions/

Fortran 95/2003 exercises
(exercises/stubs/ex1)

Getting started with Fortran
1. Hello world (hello.F90)
a) Compile and run the supplied “Hello world”-program with the provided makefile.

b) Compile and run the supplied “Hello world”-program without resorting to the provided
makefile.

2. Variables and control structures (varcontrol.F90)
a) Add types for variables in the program in the following way: okmessage and failmessage

should be character strings; n=100 and div=13 integer parameters; i, cumsum and asum
integer; divbyn logical.

b) Compute arithmetic sum from 1 to n to cumsum-variable by using a do –loop. In
addition, compute the arithmetic sum to asum by using the formula
 𝒊=𝟏
𝒏 𝒊 = 𝒏(𝒏 + 𝟏)/𝟐.

c) Complete the do –loop to find a number greater or equal to n which is divisible by div.

3. Implicit variables (implicit.F90)
a) Compile and run the supplied program. Does it work as expected? Add an IMPLICIT

NONE –clause and try to recompile. Correct the program by adding any missing variable
definitions.

Fortran arrays
1. Array constructs (loops.F90)
a) Use the array syntax to initialize arrays.

b) Modify loops to comply with the array syntax where applicable.

2. Linear algebra operations with array syntax (linalg1.F90)
a) Write a dot product code by using the array syntax.

b) Implement the transpose of a rectangular matrix.

c) Calculate the trace of a square matrix (i.e. the sum of diagonal elements).

3. (bonus *) 2D nearest neighbor data exchange with a fixed
halo-width (xchange.F90)

a) This problem is a common one in multiprocessor applications, where the computational
area has been split across different processors (PEs) using a technique called domain
decomposition. The array syntax offers a neat way of handling data copies for buffers to
be exchanged between PEs. A simulator, but not a fully functioning parallel code, needs
to be demonstrated.

Fortran 95/2003 exercises
(exercises/stubs/ex2)

X

Y

Fortran 95/2003 exercises
(exercises/stubs/ex3)

Procedures and modules
1. Functions and subroutines (procedure.F90)
a) By using a loop, write a function to compute the factorial 𝒏! = 𝟏 ∗ 𝟐 ∗ ⋯∗ 𝒏 of a given

integer number 𝒏.

b) By using recursion, write a function to compute the factorial of a given number 𝒏.

c) Write a subroutine which takes an array of integers as an input and computes their
factorials as an output.

2. Interfaces (interface.F90)
a) Declare two vectors of given length 𝒏 and compute their dot product with sdot –

function from a BLAS –library. The prototype for sdot function is
real function sdot(n,x,incx,y,incy)
integer n,incx,incy
real x(*),y(*)

Linking to the BLAS –library is done by adding “–lblas” -flag to the compiler link line (as
already done in the provided Makefile).

3. Modules (module.F90 and samplemodule.F90)
a) Use a module to abstract the call to the sdot –function from BLAS.

b) Complete the function verifydot, which uses Fortran intrinsic function dot_procuct to
check the correctness of a value of a dot product.

4. (bonus *) Coordinate transformation module (coord.F90
and coordmod.F90)
a) Complete the module coordmod, which transforms points from Cartesian 2D-

coordinates (𝒙, 𝒚) to polar coordinates (𝒓, 𝜽) and vice versa. Use the formulas

𝒔𝒊𝒏𝜽 =
𝒚

𝒓
, 𝒄𝒐𝒔𝜽 =

𝒙

𝒓
, 𝒓 = 𝒙𝟐 + 𝒚𝟐.

x

y
r
𝜽

Fortran 95/2003 exercises
(exercises/stubs/ex4)

More about Fortran arrays
1. Array intrinsic functions (arrfuncs.F90)
a) Find the size, shape and dimension of the array A.

b) What is the sum of elements across the 2nd dimension of A?

c) Find the location coordinates of the maximum elements of A using MAXLOC.

d) What is the absolute minimum value of the array A?

e) Create a vector V from the array A by using RESHAPE function.

f) How many elements of V are greater than 0.5?

g) Are all the elements of V greater than equal to zero?

h) Are any elements of V smaller than zero? How many?

2. Allocate/de-allocate and data packing / unpacking (pk.F90)
a) Create a packed vector V from input matrix A containing only its positive values.

b) Unpack and expand vector X into 4-by-4 dense matrix M. Use automatic array for M.

c) Extract upper bi-diagonal values of matrix C into vector Y using FORALL construct.

3. More linear algebra with arrays (linalg2.F90)
a) Write a dot product code using function call to DOT_PRODUCT -function.

b) Implement transpose of a rectangular matrix by using TRANSPOSE -function.

c) Multiply the aforementioned matrix and its transpose together by using MATMUL -
function.

4. (bonus *) Fortran POINTER exercise (pointer.F90)
a) Create a POINTER vector PV pointing to the diagonal values of the matrix A.

b) Where values of PV are greater than zero, replace the elements with their reciprocal.
Print the matrix A after changing the values via PV.

Fortran 95/2003 exercises
(exercises/stubs/ex5)

Input/output
1. Internal io (internalio.F90)
a) Complete the supplied program to read and print a list of integers from the variable

intstring.

b) Complete the supplied program to read and print a list of reals from the variable
realstring.

2. File io (fileio.F90)
a) Complete the given program to open / close the file “inputfile.in” and read and output

the file line by line.

b) If the first non-whitespace character of a line is “#”, the line is a comment line. Complete
the iscommentline-function for checking whether a given line is a comment line.

c) Each line that is not a comment in the given input file has the following structure:
integer integer integer string
For each line that is not a comment, output the contents of each line as
“string” integer integer integer

Fortran 95/2003 exercises
(exercises/stubs/ex6)

Derived data types
1. Numerical precision (precisionmod.F90 and precision.F90)
a) Modify the precisionmod –module (in precisionmod.F90) to contain INTEGER and

REAL types which are 4 and 8 bytes in length by using SELECTED_INT_KIND and
SELECTED_REAL_KIND -functions.

b) In stead of using SELECTED_INT_KIND and SELECTED_REAL_KIND, implement the
assignment in a) by using the intrinsic module ISO_FORTRAN_ENV.

2. Derived types (linkedlist.F90 and linkedlistmod.F90)
a) Construct a data type for entries in a simple linked list with integer keys. The data type

list nodes should be accessible only from within the list module itself.

b) Construct a data type and implement a simple list iterator which can be used to traverse
a list from the beginning to the end.

Fortran 95/2003 exercises
(exercises/stubs/ex7)

Useful new features
1. Use of standardized operating system utilities (os.F90)
a) Get all command line arguments of a program into a string and print it.

b) Get number of arguments, get them one-by-one (also command itself) and print them.

c) Find out the value of environment variable $HOME.

d) Execute Unix-command 'echo $HOME' and check the exit status.

2. New ALLOCATABLE features (alloc.F90)
a) Supply source code for automatic argument allocation in subroutine

test_auto_alloc.

b) Supply source code for procedures with allocatable arguments and return values in
subroutine alloc_ia and function func_alloc_ia.

c) Do we have to explicitly allocate a character string of length of LENCH in the subroutine
test_string_alloc?

d) (bonus *) Use I0 and G0 edit descriptors whenever appropriate.

Fortran 95/2003 exercises
(exercises/stubs/ex8)

Language interoperability
1. Call C-function from Fortran to calculate a dot product of

two vectors (callc.F90 and cfunc.c)
a) Supply correct INTERFACE block with a C-binding in the Fortran program.

2. Access global C-data from Fortran (global.F90,
globalmod.F90 and cdata.c)

a) Modify Fortran module file (globalmod.F90) to map C-variables to the corresponding
Fortran variables. Also supply C-binding to the cinit-function within the main program.

b) (bonus *) The C-struct may not be optimal from data alignment point of view. Fix the
alignment in the C-code make sure the Fortran code gets corrected as well.

