

CSC computing resources

Tomasz Malkiewicz CSC - IT Center for Science Ltd.

Program

- 10-11 CSC presentation
- 11-11:15 TTA presentation
- 11:15-11:30 Round
 - robin
- 11:30-> F2F meetings

Outline

- CSC at glance
- CSC supercomputers Phase 2
 - Sisu (Cray XC30)
 - Taito (HP cluster)
- Other resources available for researchers

CSC at glance

- Founded in 1971
- Operates on a non-profit principle
- Facilities in Espoo and Kajaani
- Staff ~255 people

Kajaani modular datacenter datacente datacenter datacenter datacenter datacenter datacenter datacen

Users of computing resources by discipline 2013

Computing usage by discipline 2013

Users of computing resources by organization 2013

CSC Computing Capacity 1989–2014

PHASE 2 RESOURCES

- SISU
- TAITO
- DDN (PHASE 3)
- BULL

Sisu: Cray Supercomputer

- Future Intel® Xeon® processor E5-2600 v3 product family
- Cray Aries Interconnect
- ~ 40 000 cores
- 64 GB memory per node

How to prepare?

- Old binaries may run off-hand, CSC advises to recompile the code
- OS upgrade in June (login nodes)
 - Major upgrade (software on the same level as on Sisu Phase 2)
 - Anything running on *login nodes* needs to be recompiled
- Porting strategy
 - Under preparation

Sisu

- AVX-2
 - May need to optimize for wider vectors' size
- DDR4
 - Higher bandwidth, lower power consumption
- Max job size likely to increase
- Native SLURM on the way, unlikely to be available after Sisu July hardware update

Sisu (un)availability in summer 2014

- June 2014 software upgrade break
 - Probably 3 days of downtime
- July 2014 hardware upgrade break
 - At least 2 weeks downtime expected

Taito: HP Supercluster

- Intel® Xeon® processor E5-2600 v2 product family & Future Intel® Xeon® processor E5-2600 v3 family
- FDR InfiniBand interconnect
- ~ 17 000 cores
- Different memory per node sizes: 64, 128, 256 GB and 1.5 TB

Taito is a heterogeneous cluster

- Different jobs need different resources
- Bulk Sandy Bridge compute nodes
- Largemem Sandy Bridge compute nodes
- Hugemem Sandy Bridge compute nodes
- Bulk new architecture compute nodes
- Local /tmp disk 2 TB on each node
- > reserve only what you need

One SLURM to serve them all...

- Do old applications run on new CPUs
 - May run, CSC recommends re-compiling
 - Build your software for both (old and new) architecture
 - Gain depends on architecture
- Batch job scripts need to be updated
 - Number of cores per node may change
 - Memory changes
 - Instructions will be available
- How to submit jobs to either architecture only
 - Specify to which partitions you send your jobs

SLURM configuration: Fair usage

- SLURM uses fair share: the highest priority jobs go into execution next
 - Priority is decreased by the total amount of resources used in last 2 weeks per user
 - Priority is increased by time spent queueing
 - Backfiller will try to put small jobs into gaps due to current available resources and highest priority job
 - Jobs labeled "Association limit" are not eligible to run (due to too many jobs in queue by the user)
- Due to abuse, a maximum limit of jobs in queue now enforced
- Chain jobs (--dependency –flag for SLURM) if you need long running time
- Don't overallocate memory (add this command to your batch script used_slurm_resources.bash will print requests vs. used at stdout)
 - If you request a full node (-N 1), use -mem=55000 instead of -mem-percore=something)
 - If you see abuse or think that the setup is unfair, contact helpdesk@csc.fi
- SUI has a monitoring tool for your jobs and used resources (Services -> eServices -> My Project)

Taito (un)availability in summer 2014

- June 2014 software upgrade break
 - Probably 3 days of downtime

Current Plan for Phase2 Sisu and Taito

- Sisu: planned installation in July-August 2014
 - General availability planned for Q3 2014
- Taito: planned installation in Q4 2014

How to prepare?

- Porting strategy
 - Not much to do at this stage
 - Compilers, libraries, flags, ...
 - Preliminary performance data?
 - Add AVX-2 flag when compiling your code

Bull

- In pilot/project until end of August 2014
- No guarantee on availability
- 38 NVidia K40 nodes (76 gpus)
 - 12 GB memory per card
- 45 Xeon Phi nodes (90 Xeon Phis)
 - 16 GB memory per card
- Energy efficient CPU's

How to access (plan)

- Accessing the resources
 - Xeon Phi: ssh taito-mic.csc.fi (TBC)
 - Nvidia K40: ssh taito-gpu.csc.fi (TBC)

Pettu Phase 3

- System size will increase to ~4 PB
 - About 1.9 PB will added to the current configuration
 - Aggregate bandwidth > 80 GB/s (currently ~48 GB/s)
- Available together with Phase2 supercomputers
- Downtime on all systems (~1 day)

Disks in total

- 4.0 PB on DDN
 - New \$HOME directory (on Lustre)
 - \$WRKDIR (<u>not backed up</u>), soft quota 5 TB / user
 - Up to 100 TB / project
- HPC Archive
 - 2 TB / user, common between Cray and HP
- 3 PB disk space through TTA/IDA
 - 1 PB for Universities
 - 1 PB for Finnish Academy (SA)
 - 1 PB to be shared between SA and ESFRI
 - more could be requested
- /tmp (around 1.8 TB) to be used for compiling codes

Grid computing with Finnish Grid Infrastructutre (FGI)

Clusters

Getting started with FGI-Grid

- Apply for a grid certificate from TERENA (a kind of grid passport)
- 2. Join the FGI VO (Access to the resources)
- 3. Install the certificate to Scientists' User Interface and Hippu.
- 4. Install ARC client to your local Mac or Linux machine for local use)
- 5. Instructions: http://research.csc.fi/fgi-preparatory-steps

Please ask help to get started: helpdesk@csc.fi

FGI user guide: http://research.csc.fi/fgi-user-guide

Pouta – Computing in the Cloud

- Virtual machines on demand
 - Taito hardware
 - Dedicated resources (HPC focus)
- More freedom
- More responsibility
- More work

https://pouta.csc.fi:8777/v2/csc/servers/0532b4d0-9ac6-4e8a-8637-4192f1039039 https://pouta.csc.fi:8777/v2/csc/flavors/1a0f1143-47b5-4e8a-abda-eba52ae3c5b9

https://pouta.csc.fi:8777/v2/csc/images/

REST API

Pouta audience

- Advanced users able to manage servers
- Difficult workflows can't run on Taito
- Complex software stacks
- Ready made virtual machine images
- Deploying tools with web interfaces
- "no I really need root access!"

If you can run on Taito – run on Taito
If not – Pouta might be for you

Pouta user guide: https://research.csc.fi/pouta-user-guide

Grand Challenges

- Normal GC (in half a year / year)
 - new CSC resources available for a year
 - no bottom limit for number of cores
- Special GC call (mainly for Cray) (based on your needs)
 - possibility for short (day or less) runs with the whole Cray
 - Deadline: May 30th, 2014, at 12:00
- Remember also PRACE/DECI

Courses

- Sisu Phase 2 workshop
 - Possibly Autumn 2014
- Taito Phase 2 workshop
 - Likely in early 2015

- CSC courses: http://www.csc.fi/courses
 - CSC HPC Summer School
 - Spring, Autumn, Winter Schools

CSC Phase2 resources' summary

- Sisu supercomputer
 - Installation planned in July-August 2014
 - General availability planned for Q3 2014
- Taito supercluster
 - Installation planned in Q4 2014
- Bull system
 - General availability planned for Q3 2014
 - 45 nodes with 2 Intel Xeon Phi coprocessors each
 - 38 nodes with 2 NVIDIA Tesla K40 accelerators each
- DDN HPC storage system
 - Added 1.9 PB, in Q3 2014 totaling 4 PB of fast parallel storage
 - Supports Cray and HP systems, aggregate bandwidth > 80 GB/s

Atte Sillanpää CSC – IT Center for Science Ltd.

Round robin

- What are your research interest?
 - How CSC can help?
 - Special libraries/tools?
- Queue length: 3 days enough?
 - Codes that can't checkpoint?
- Is memory an issue for you?
 - 1.5 TB/nodes usage policy?
- Applying for Grand Challenge?
 - Special Grand Challenge?
- Need to move a lot of files? (from where?)
- Interested in GPGPU/MICs? Which code?

Feedback form

https://www.webropolsurveys.com/S/5766 5DDA29516729.par