

# (b) CSC computing resources

Tomasz Malkiewicz, Kimmo Mattila, Nino Runeberg and Stina Westman

CSC – IT Center for Science Ltd.

### **Program**



- 10-11:30 CSC presentations
  - How to utilize new CSC computing resources in your research (1h10')
  - Services for sharing your data (20')
  - Interactive! Q&A welcome
- 11:30-12:00 Round robin
  - / free discussion
- 12:00 F2F meetings



# Outline: How to utilize new CSC computing resources in your research



- CSC at a glance, services for researchers
- CSC supercomputers Phase 2
  - Compute in Sisu (Cray XC30)
  - Compute in Taito (HP cluster)
- Virtualised compute Cloud and FGI
- Training



## **CSC** at glance

CSC

- Founded in 1971
- Operates on a non-profit principle
- Staff ~255 people
- Facilities in Espoo and Kajaani
- Free of charge services for higher education institutions in Finland



# **Datacenter CSC Kajaani**





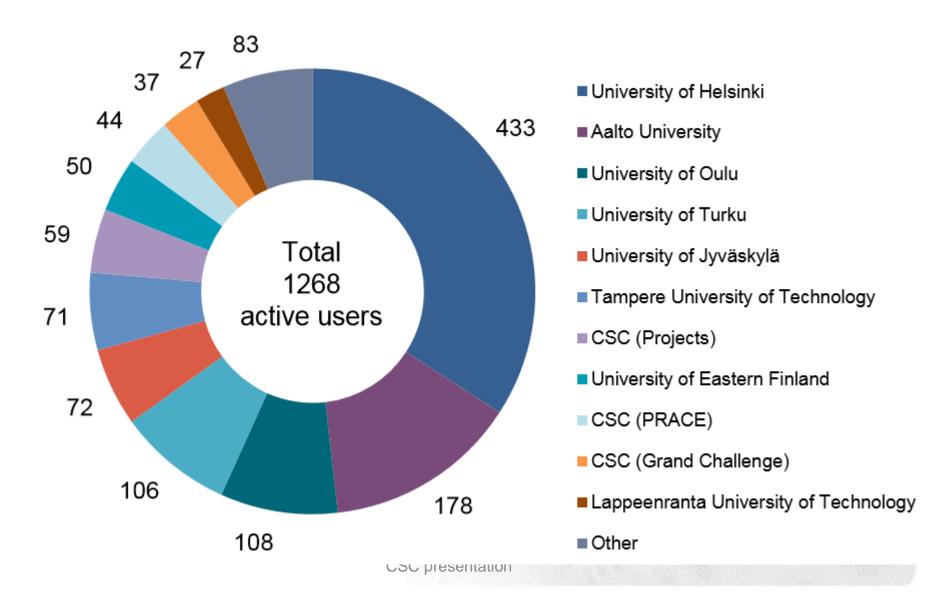


### CSC's Services



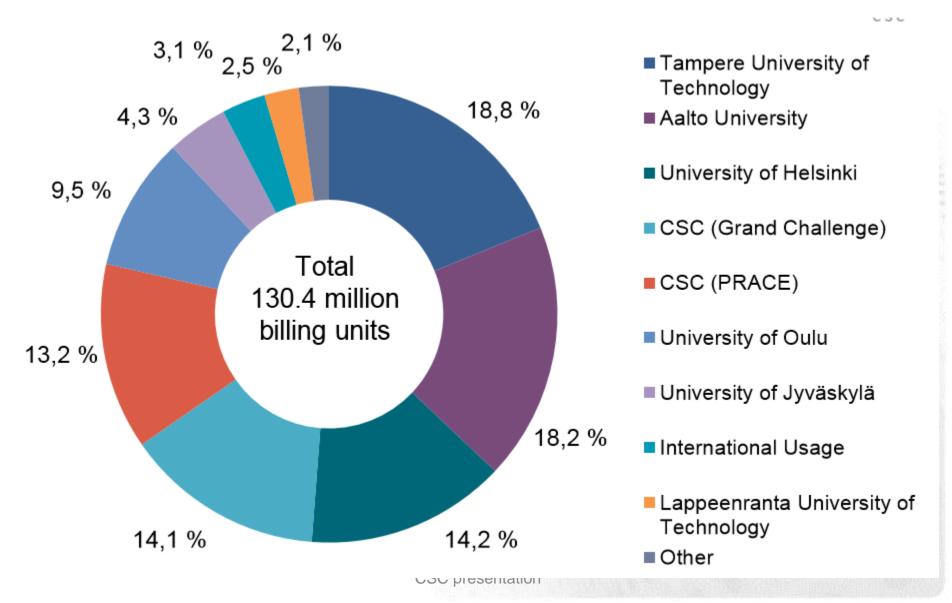
- FUNET Services
- Services for Research
  - Computing Services
  - Application Services
- Data Services for Science and Culture
- InformationManagement Services

Universities
Polytechnics
Ministries
Public sector
Research centers
Companies


### **Users**

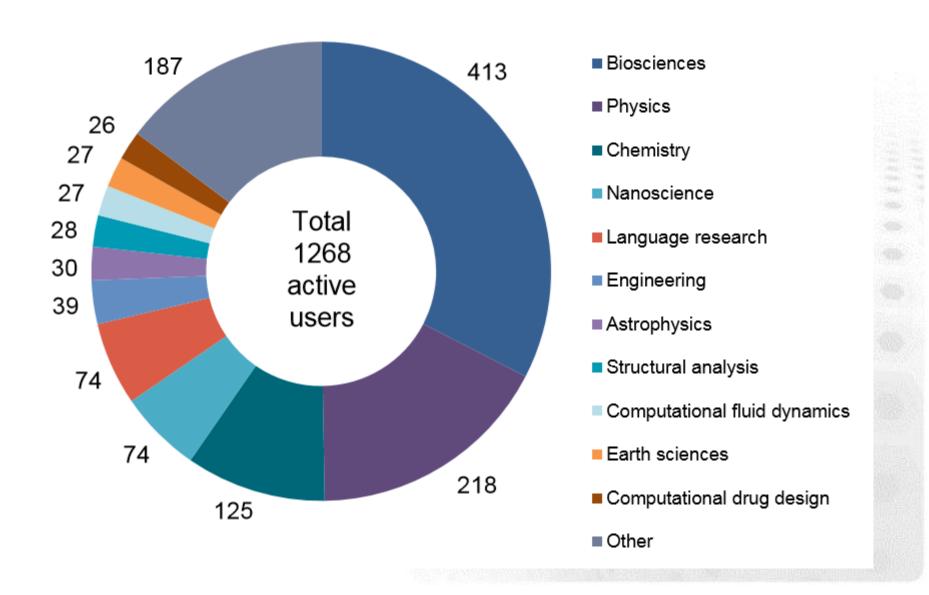


- About 700 active computing projects
  - 3000 researchers use CSC's computing capacity
  - 4250 registered customers
- Haka-identity federation covers all universities and higher education institutes (287 000 users)
- Funet Finnish research and education network
  - Total of 370 000 end users



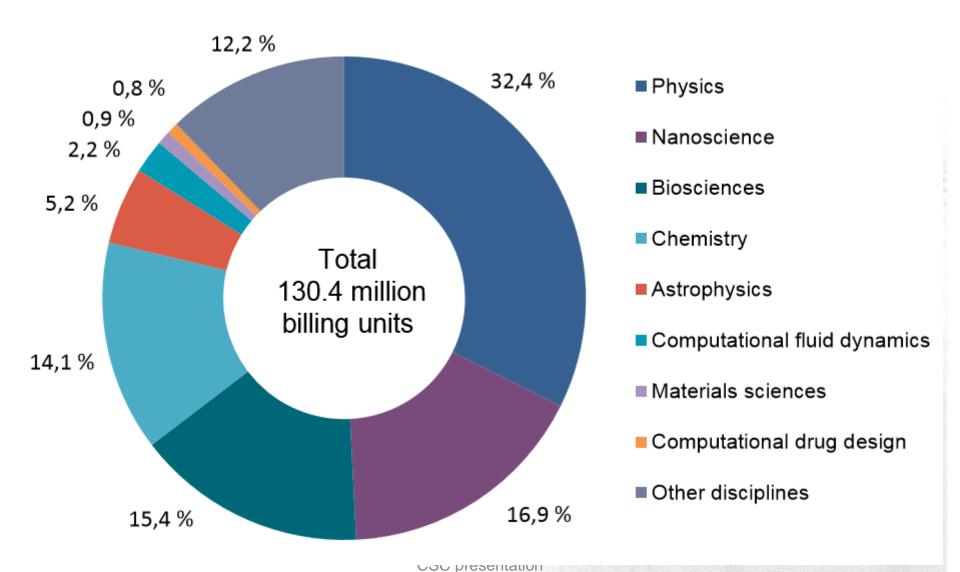

# Users of computing resources by organization 1H2014




### Computing usage by organization 1H2014

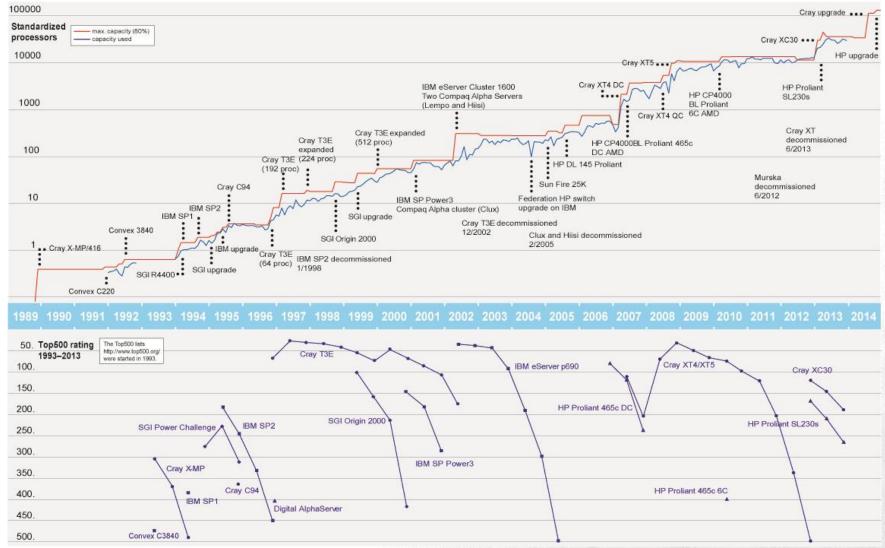





### Users of computing resources by discipline 1H2014






### Computing usage by discipline 1H2014





### CSC Computing Capacity 1989–2014





# Software and database offered by CSC

- Large selection (over 200) of software and database packages for research <a href="https://research.csc.fi/software-for-science">https://research.csc.fi/software-for-science</a>
- Mainly for academic research in Finland
- Centralized national offering: software consortia, better licence prices, continuity, maintenance, training and support



#### Software and databases

Through Funet network researchers ca sofware and databases in Finland.

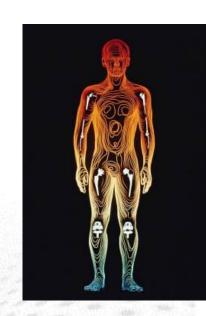
#### Fields of science

- Biosciences
- Chemistry

Computational drug design

- Computational fluid dynamics
- Earth sciences
- Language research
- Mathematics
- Nanoscience
- Physics
- Statistics
- Structural analysis
- Visualisation

#### Biosciences


Sequence database hor Protein modeling and vi Gene regulatory network Boolean Best Fi network model. CD-HIT Sequence clustering too CHARMM Molecular meachanics a ClustalW Multiple sequence align dbEST EST sequences decomptool Decomposition of bioche Delphi Electrostatic potential DHSMAP LD-based fine mapping DISCOVER Molecular mechanics an DiscoveryStudio Molecular modeling pronucleotide sequences **EMBOSS** sequence analysis pack enzyme data eukarvotic promoters exonerate Sequence alignment pro Sequence database sea **FBAtool** A program for flux balar genehunter Parametric and nonpara GeneSpring GX DNA microarray data an Promoter analysis softw estimation of multi-site haploassoc Gene mapping haploview Gene mapping Profile HMMs for protein immunological sequence

### **New customers**

Apply for CSC account:

https://research.csc.fi/accounts-and-projects

- Most of CSC services are free for academic researchers, but usually a CSC user account is required.
  - > Basic usage: register as CSC customer via SUI
  - Larger computing resources via an application form
- Benefits
  - A wide selection of scientific programs and databases available at CSC servers.
  - ICT resources and science-aware support (helpdesk@csc.fi)
  - Courses and events covering many areas are organized regularly.
  - Guide books and magazines in PDF.
  - CSC's research and development to improve services.
  - Networks bring together people with similar interests in science and technology.





# **HPC PHASE 2 RESOURCES**

- SISU, TAITO
- BULL
- STORAGE: DDN (PHASE 3)

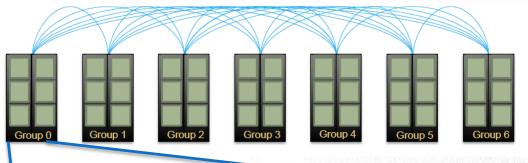


# Sisu: Cray Supercomputer

- Intel® Haswell® processor E5-2690 v3 product family
- Cray Aries Interconnect
- 40 512 cores
- 64 GB memory per node

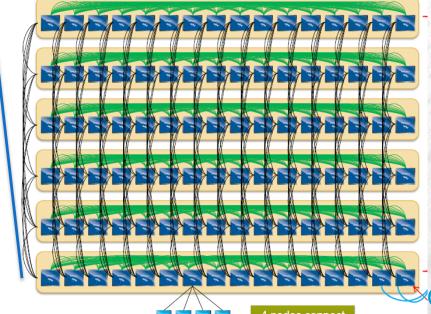


### Running on Sisu Phase 2




- Sisu guide
  - https://research.csc.fi/sisu-user-guide
- Phase 1 binaries may run off-hand, CSC advises to recompile the code
- OS upgraded (login nodes)
  - Anything running on *login nodes* needs to be recompiled
- Scalability tests for more than 1008 cores
  - https://research.csc.fi/sisu-scalability-tests

# **Cray Dragonfly Topology**








All-to-all network between groups

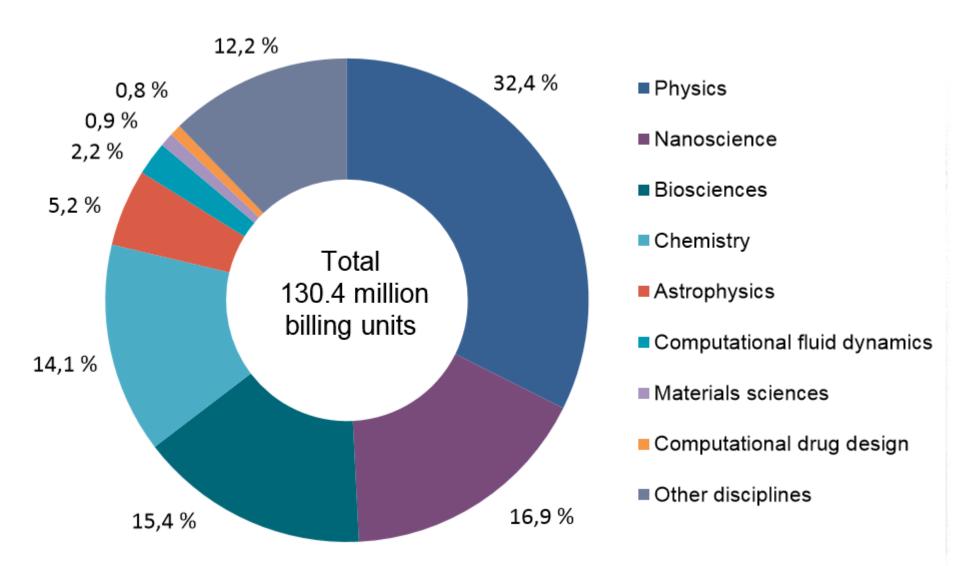




2 dimensional all-to-all network in a group

Source: Robert Alverson, Cray Hot Interconnects 2012 keynote 4 nodes connect to a single Aries

Optical uplinks to inter-group net


### Sisu Phase 2 features



- AVX-2
  - May need to optimize for wider vectors' size
- DDR4
  - Higher bandwidth, lower power consumption
- Max job size increased
- Native SLURM on the way
  - We might be moving to it at some point

# Parallel application software usage on CSC supercomputers 1H2014





# **Taito: HP Supercluster**



- Intel® Xeon® processor E5-2600 v2 product family & Future Intel® Xeon® processor E5-2600 v3 family
- FDR InfiniBand interconnect
- ~18 000 cores
- Different memory per node sizes: 64, 128, 256 GB and 1.5 TB

# Taito is a heterogeneous cluster



- Different jobs need different resources
- Bulk Sandy Bridge compute nodes
- Largemem Sandy Bridge compute nodes
- Hugemem Sandy Bridge compute nodes
- Bulk new architecture compute nodes

- Local /tmp disk 2 TB on each node
- > reserve only what you need

### One SLURM to serve them all...



- Do old applications run on new CPUs?
  - May run, CSC recommends re-compiling
  - Build your software for both (old and new) architecture
  - Gain depends on architecture
- Batch job scripts need to be updated
  - Number of cores per node may change
  - Memory changes
  - Instructions will be available through user guides
  - Partition CPU architecture can be specified

# **SLURM** configuration: Fair usage



- SLURM uses fair share: the highest priority jobs go into execution next
  - Priority is decreased by the total amount of resources used in last 2 weeks per user
  - Priority is increased by time spent queueing
  - Backfiller will try to put small jobs into gaps due to current available resources and highest priority job
  - Jobs labeled "Association limit" are not eligible to run (due to too many jobs in queue by the user)
- Due to abuse, a maximum limit of jobs in queue now enforced
- Chain jobs (--dependency –flag for SLURM) if you need long running time
- Don't overallocate memory (add this command to your batch script used\_slurm\_resources.bash will print requests vs. used at stdout)
  - If you request a full node (-N 1), use -mem=55000 instead of -mem-percore=something)
  - If you see abuse or think that the setup is unfair, contact helpdesk@csc.fi
- SUI has a monitoring tool for your jobs and used resources (Services -> eServices -> My Project)



## **How to prepare for Taito Phase 2?**

### Porting strategy

- Getting started document and a User Guide for Sisu prepared
- Compilers, libraries, flags, ...
- Preliminary performance data
- Add AVX-2 flag when compiling your code
- CSC ports and optimizes a number of applications for the new architectures



### Status of Phase 2 Sisu and Taito

Sisu: available since 9.9.2014

Taito: general availability planned in Q4 2014

# Bull



- Official opening scheduled for 1.10.2014
- Accelerators and coprocessors
  - 38 NVIDIA K40 nodes (76 gpus)
    - 12 GB memory per card
  - 45 Intel Xeon Phi nodes (90 Xeon Phis)
    - 16 GB memory per card
  - Energy efficient CPU's



### How to access Bull

- Accessing the resources
  - Intel Xeon Phi: ssh taito-mic.csc.fi (TBC)
  - NVIDIA K40: ssh taito-gpu.csc.fi



# Fast and large storage: DDN Phase 3

- HPC storage used by Sisu and Taito
- System size will increase to ~4 PB
  - About 1.9 PB will added to the current configuration
  - Aggregate bandwidth > 80 GB/s (currently ~48 GB/s)
- Available together with Phase2 supercomputers
- Downtime on all systems on 6-8.10.2014

### **Disks in total**



- 4.0 PB on DDN
  - + SHOME directory (on Lustre)
  - \$WRKDIR (not backed up), soft quota 5 TB / user
  - Up to 100 TB / project
- HPC Archive
  - 2 TB / user, common between Sisu and Taito
- 3 PB disk space through TTA/IDA (next presentation)
  - 1 PB for Universities
  - 1 PB for Finnish Academy (SA)
  - 1 PB to be shared between SA and ESFRI
  - more could be requested
- 1.1 PB cloud NFS (Netapp) for virtual machines of laaS customers funded by ELIXIR Finland
- /tmp (around 1.8 TB) to be used for compiling codes on login nodes

# Cloud computing: three service models







# Pouta – Computing in the Cloud

- Virtual machines on demand
  - Taito hardware
  - Dedicated resources (HPC focus)
- More freedom
- More responsibility

### **Pouta on Taito**



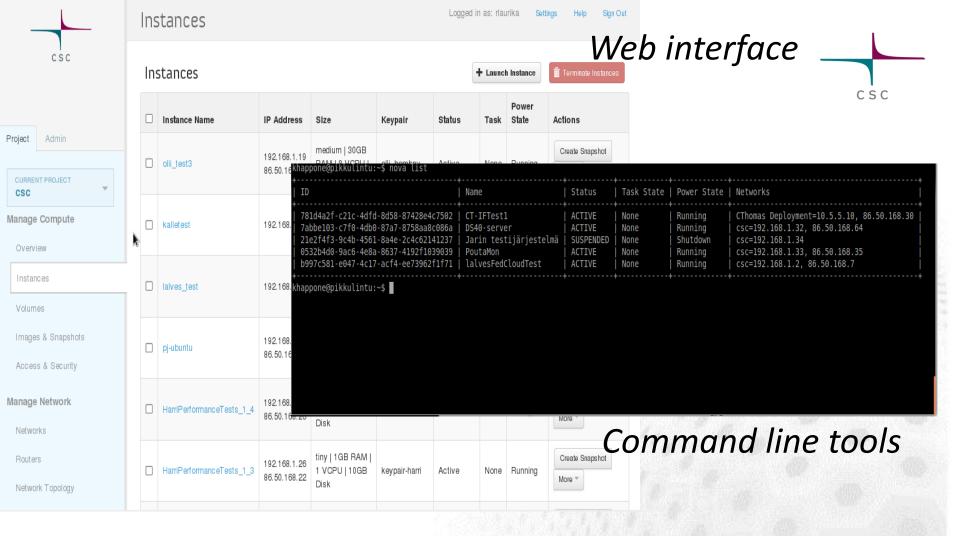
#### Taito cluster:

two types of nodes, HPC and cloud

HPC node

HPC node

Cloud


#### Cloud node

Host OS: RHEL

Virtual machine

 Guest OS: Ubuntu Virtual machine

Guest OS: Windows



https://pouta.csc.fi:8777/v2/csc/servers/0532b4d0-9ac6-4e8a-8637-4192f1039039 https://pouta.csc.fi:8777/v2/csc/flavors/1a0f1143-47b5-4e8a-abda-eba52ae3c5b9

https://pouta.csc.fi:8777/v2/csc/images/

REST API



## Cloud service development in 2014

Pouta (virtualisation) = CSC cloud service

https://research.csc.fi/cloud-computing

- In Production "Amazon-type" Pouta for Research Communities and Organisations
  - Anyone can apply access
- In development: Enterprise i.e. Biomedinfa –type virtual hosting to collaborate on organisational ICT capacities.
- Development focus: Security features to support biobank (secure) data handling
- Data replication of key EMBL-EBI datasets to CSC
  - E.g. Computational access to local Ensembl from virtual machnies

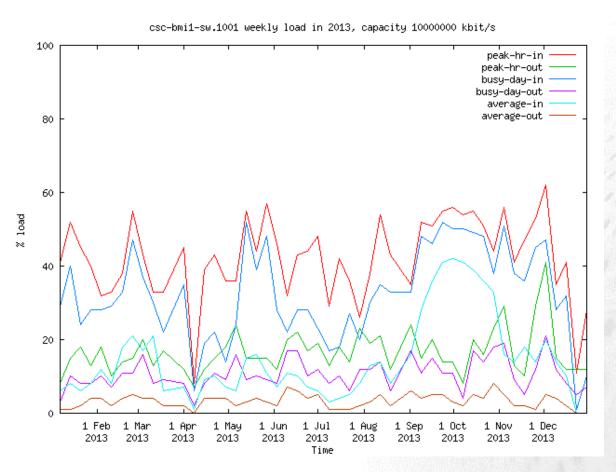
### Pouta's use cases



- Enhanced security isolated virtual machines
- Advanced users able to manage servers
- Difficult workflows can't run on Taito
- Complex software stacks
- Ready made virtual machine images
- Deploying tools with web interfaces
- "We need root access"

If you can run on Taito – run on Taito
If not – Pouta might be for you

Pouta user guide: <a href="https://research.csc.fi/pouta-user-guide">https://research.csc.fi/pouta-user-guide</a>


#### **ePouta**

- Renewing the cloud cluster equipment in Espoo in 2015
  - Changes to OpenStack cloud middleware (autumn 2014)
  - Focus on secure computing and service for organisations
  - Idea: seamless scaling of local resources using a trusted compute center (in Finland)
  - Requires local IT admin contact
  - Funding model and resource allocation policy is still under debate, supported by ELIXIR Finland





# CSC – Meilahti genomics laaS data traffic 2013



5.8 PB in 1.4 PB out

Avg. 221 MB/s 24 hours a day all year round



## Summary of cloud resource @ CSC

- Pouta cloud services in production https://research.csc.fi/cloud-computing
  - Support researchers ("Communities") and of organisations ("Enterprise") to integrate to virtualised capacities on the CSC cloud platform
  - Cloud NFS net storage to 1.1 PB
  - Active replication of key biological datasets
  - Further information: contact@csc.fi

# Grid computing with Finnish Grid\_ Infrastructure (FGI)

ARC Grid Monitor

2014-05-27 CEST 12:45:37

**00字X** 

CSC

Processes: Grid Local



| Country   | Site                | CPUs  | Load (processes: Grid+local) | Queueing       |
|-----------|---------------------|-------|------------------------------|----------------|
|           | Aesyle (FGI)        | 72    | 0+35                         | <b>0</b> +0    |
|           | Alcyone (CMS)       | 892   | 156+312                      | <b>1040</b> +0 |
|           | Alcyone (FGI)       | 892   | 6+461                        | <b>19</b> +0   |
|           | Asterope (FGI)      | 192   | 84+8                         | <b>10</b> +1   |
|           | Celaeno (FGI)       | 448   | 172+0                        | 9+0            |
|           | Electra (FGI)       | 672   | 0+478                        | <b>0</b> +0    |
| + Finland | Jade (HIP)          | 768   | 227+541                      | 25+49          |
|           | Maia (FGI)          | 768   | 360+408                      | 14+0           |
|           | Merope (FGI)        | 1612  | 0+1319                       | 14+0           |
|           | Pleione (FGI)       | 288   | 144+0                        | <b>13</b> +0   |
|           | Taygeta (FGI)       | 360   | 42+174                       | <b>15</b> +0   |
|           | Triton (FGI)        | 6972  | 182+0                        | 2+0            |
|           | Usva (CSC/FGI/test) | 144   | 12+0                         | <b>0</b> +0    |
| TOTAL     | 13 sites            | 14080 | 1385 + 3728                  | 1161 + 50      |



#### **FGI**



- In grid computing you can use several computing clusters to run your jobs
- Grids suits well for array job like tasks where you need to run a large amount of independent sub-jobs
- You can also use FGI to bring cluster computing to your local desktop
- FGI: 12 computing clusters, about 10 000 computing cores
- Software: Run Time Environment include applications from all fields, e.g., bioinformatics, chemistry, physics:
  - https://confluence.csc.fi/display/fgi/Runtime+Environments

# Using grid



- The jobs are submitted using the ARC middleware (http://www.nordugrid.org/arc/)
  - Using ARC resembles submitting batch jobs in Taito or Sisu
- ARC is installed in Hippu and Taito, but you can install it to your local machine too.
  - Setup command in Hippu:
    - module load nordugrid-arc
  - Basic ARC commands:

arcproxy (Set up grid proxy certificate for 12 h)

arcsub job.xrsl (Submit job described in file job.xrsl)

arcstat -a (Show the status of all grid jobs)

arcget job\_id (Retrieve the results of a finished grid job)

arckill job\_id (kill the given grid job)

arcclean -a (remove job related data from the grid)

# Sample ARC job description file



```
&
(executable=runbwa.sh)
(jobname=bwa_1)
(stdout=std.out)
(stderr=std.err)
(gmlog=gridlog_1)
(walltime=24h)
(memory=8000)
(disk=4000)
(runtimeenvironment>="APPS/BIO/BWA_0.6.1")
(inputfiles=
( "query.fastq" "query.fastq" )
( "genome.fa" "genome.fa" )
(outputfiles=
 ("output.sam" "output.sam")
```

## **Getting started with FGI-Grid**



- Apply for a grid certificate from TERENA ( a kind of grid passport)
- 2. Join the FGI VO (Access to the resources)
- Install the certificate to Scientists' User Interface and Hippu.
- 4. Install ARC client to your local Mac or Linux machine for local use)
- 5. Instructions: http://research.csc.fi/fgi-preparatory-steps

Please ask help to get started: helpdesk@csc.fi

FGI user guide: <a href="http://research.csc.fi/fgi-user-guide">http://research.csc.fi/fgi-user-guide</a>

#### Courses

- Sisu Phase 2 workshop
  - *4.-6.11.2014*
- Taito Phase 2 workshop
  - Spring 2015



- CSC courses: <a href="http://www.csc.fi/courses">http://www.csc.fi/courses</a>
  - Introduction to Linux and Using CSC Environment
     Efficiently + Pouta training 20.-22.10.2014
  - CSC HPC Summer School
  - Spring, Autumn, Winter Schools
  - Parallel Programming

## **Grand Challenges**



- Normal GC (call in half a year / year intervals)
  - New CSC resources available for a year
  - No limit for number of cores
  - Next call beginning of 2015
- Remember also PRACE/DECI calls
  - CSC supports the technical aspects of the applications



## CSC Phase2 resources' summary

- Sisu supercomputer
  - General availability planned for 9.9.2014
- Taito supercluster
  - Installation planned in Q4 2014
  - Part of Taito used for Pouta Cloud
- Bull system
  - General availability planned for 1.10.2014
  - 45 nodes with 2 Intel Xeon Phi coprocessors each
  - 38 nodes with 2 NVIDIA Tesla K40 accelerators each
- DDN HPC storage system
  - Adding 1.9 PB on 6.10.2014, totaling 4 PB of fast parallel storage







#### Feedback form

- http://bit.ly/GUT14\_HY\_sept
  - <u>Direct link:</u>
     <u>https://www.webropolsurveys.com/S/B8235DFD6E515C75.par</u>

(link also on the seminar home page www.csc.fi →)

#### **Round robin**



- What are your needs for your research?
  - How CSC can help?
  - Special libraries/tools?
- How much data you produce that needs processing?
- Courses/training?
- Queue length: 3 (Sisu) / 7 (Taito) days enough?
  - Codes that can't checkpoint?
- Is memory an issue for you?
  - 1.5 TB/nodes usage policy?
- Do you need to move a lot of files? (from where?)
- Interested in GPGPU/MICs? Which code?

- Theo Kurten
- Mihkel Veske
- Henning Henschel
- Dage Sundholm
- Michael Patzschke
- Olli Lehtonen
- Eelis Solala
- Wen-Hua Xu
- Elias Toivanen
- Stefan Taubert

- Kari Ruotsalainen
- John Regan
- Putian Zhou
- Om Prakash Dwivedi
- Sofia Khan
- Matti Savelainen
- Javad Hashemi
- Antti Rantala
- Rishi Das Roy
- Roope Halonen