APPLICATION IMPROVEMENT
AND OPTIMIZATION

PAST EXPERIENCES

Agenda

- Compiler issues
 - elsA :repeatability problem when using intel compiler
 - Actipole: convergence and performance issues on different mathematical libraries

How to improve your application: "The Actran Usecase"

elsA – Problem Description

- When compiling with the Intel Compiler elsA would:
- P1. Deliver different results (repeatability issue): 2 consecutive runs with the same options and on the same testcase would produce different results.
- P2. Optimization differences: Compiling with "-O2" option would produce different results than when compiling with the "-O1" option on the same testcase.

elsA – People Involved and time frame

People involved:

Time Frame

- Problem signaled: May 2010
- Workaround proposed and issue closed: August 2010 (delayed due to holidays of different people involved).

elsA – Resolution approaches.

- Two approaches have been followed in parallel
- 1. Intel with HP Intel Compiler team was looking for bugs/issue in their mkl library by running the testcases that could not produce repeatable results.

• 2. HP – has been working in decomposing the elsA code and identifying the module that was responsible for the repeatability issue and for the sensitivity to optimization flags.

elsA Solution

- ...10.000 tests later we have a Solution
- BUG: implementation of pow() and cbrt() in Intel libraries
- Proposed Workaround:
 - -Changes to source code
 - Modifying files like: ./Def/Global/DefFortranGlobal.h, Tur/Trp/TurCompEARSMgdmaeF, ./Geo/Grid/GeoCompCellDimF to prevent the compiler to use CBRT() call instead of POW(). The CBRT() call in Intel's math library seems to have a severe precision problem
 - -Changes to Make intellA32em.mk
 - add "fp-model precise" option
 - include the libm.a in the library path before Intel libs.

elsA – Lessons Learnt

- 1. Problem gets solved faster if singled to the right people.
- 2. Always involve the users
- 3. Ask for as many brainstorming sessions as needed to try to find as many paths possible.
- 4. Always escalate to the ISV
- 5. Patience ©
- 6. Follow later with the ISV to check updates of BUGS in new releases.

Actipole: Problem Description

P1. Convergence problems when using the Intel compiler and the MKL library (not on all the usecases)

Alternative 1: Use Intel Compiler plus blas/lapack library

P2. Performance problems when Intel Compiler and Blas/Lapack.

The code is much slower when running with miniblas and lapack compared the results provided by the MKL binary when it works.

Actipole – People Involved and time frame

People involved:

Time Frame

- Problem signaled: May 2010
- Workaround proposed and issue closed: August 2010 (delayed due to holidays of different people involved).

Actipole-Resolution approaches.

Two approaches have been followed in parallel

P1. Intel with HP – Philippe ran tests using MKL to tackle the convergence issue.

Environment

- Intel Compiler 11.1.059
- FULL MKL.
- MUMPS Support
- vectorization workground
- Flags: -O3 -axSSE4.2, SSE4.1,SSSE3, SSE3,SSE2

Tests with Platform MPI 7.1 and Intel MPI

2. HP - Eric ran tests to tackle the performance issue when using blas/lapack.

Environment

- Intel Compiler 11.1.059
- Blas/lapack
- MUMPS Support
- vectorization workground
- Flags: -O3 -axSSE4.2, SSE4.1, SSSE3, SSE3, SSE2

Tests with HPMPI 2.3, PLatform MPI 7.1, 8.0

Actipole - Solution

- HP (Eric) managed to find the correct configuration (Compiler/libraries/flags/MPI) to solve the performance issue when using blas/lapack.
- We discovered that changing the MPI flavour solves the convergence(MKL) /performance issue (blas/lapack). See sample below.

Binary\cores	100	104	128	256	400	512
HP_IntelMPI	N/R	N/R	4206	4194	N/R	6031
HP_IntelMPI_S						
eq	N/R	N/R	4010	5796	4481	6157
HP_PMPI_8.0						
(India)	N/R	5567	N/R	5667	N/R	N/R
HP_PMPI_8.0						
∨ (Hamburg)	5010	4567	4127	3707	3567	3172
HP_PMPI_8.0_						
Seq	N/R	N/R	N/R	3662	4668	3230
HP_PMPI_7.1_						
Seq	10078	N/R	3832	3595	3614	6788

Actipole – Lessons Learnt

- 1. Problem gets solved faster if singled to the right people
- 2. Always involve the users from different groups
- 3. Ask for as many brainstorming sessions as needed to try to find as many paths possible.
- 4. Always escalate to the ISV
- 5. Patience ©

BINDING AND THREADING THE ACTRAN USECASE

Actran

People Involved

- Usecase
 - Actran 11.2 / TM_3D/ USECASE running on 50/25 nodes each processes requesting 35000MB
- Decision
 - Test using different amount of threads per process
 - Test using different binding techniques.

Actran - Threads

- Tests were done on POD2 and POD3
- Two types of options submitted using openMPI mpirun
 - Conventional
 - -display-map --mca mpi_warn_on_fork 0 --mca btl_openib_want_fork_support 0 --mca btl openib,sm,self
 - Extended
 - -display-map -mca mpi_warn_on_fork 0 -mca btl_openib_want_fork_support 0 -mca btl openib,sm,self -mca btl_openib_receive_queues P,32768,128,96,64 -mca btl_openib_max_send_size 32768 -mca btl_openib_eager_limit 32768 -mca btl_openib_rndv_eager_limit 32768
 - btl_openib_receive_queues P,32768,128,96,64 Amount and size of PER-PEER Receive queues
 - -btl_openib_max_send_size 32768 Maximum size of a send fragment of an mpi message
 - -btl_openib_eager_limit and rndv_eager_limit 32768 Eager limits, size of short/small messages.

Actran – Threads POD3

Each jobs was launched with 50 mpi processes.

Test	MPI OPTIONS	Nodes used	:	1 1	# THREADS/M PI Process	USED CORES/no de	Total Threads (=Total Used Cores)	RESULTS (seconds)
POD3/1	Conventional	50	600	1	1	1	50	1683
POD3/2	Conventional	50	600	1	3	3	150	1185
POD3/3	Conventional	50	600	1	6	6	300	1067
POD3/4	Conventional	50	600	1	12	12	600	1047
POD3/5	Conventional	25	300	2	1	2	50	FAILED
POD3/5bis	Extended	25	300	2	1	2	50	1379
POD3/6	Conventional	25	300	2	3	6	150	FAILED
POD3/6	Extended	25	300	2	3	6	150	1192
POD3/7	Conventional	25	300	2	6	12	300	FAILED
POD3/7	Extended	25	300	2	6	12	300	1106

Actran – Threads POD2 vs POD3

POD3 - 50 nodes

POD3 - 25 nodes

Cores used (MPI Processes - Threads per Process)

Cores used (MPI Processes - Threads per Process)

Actran - Binding

Open MPI 1.4/1.6 supports the following binding switches to mpirun:

- -bind-to-none: Do not bind processes. (Default)
- -bind-to-core: Bind each MPI process to a core.
- -bind-to-socket: Bind each MPI process to a processor socket.
- -rankfile /path/to/rankfile the user specifies a host node and slot list binding for each MPI process in your job

Actran – Binding

Test	Nodes used	MPI PROCESSE S/node	Threads/MP I process	USED CORES/nod e	RESULTS (seconds)	Comments
POD3/7	25	2	6	12	1054	NoBindings
POD3/7	25	2	6	12	1064	NoBindings
POD3/7binding1	25	2	6	12	1072	bind-to-socket
POD3/7binding1	25	2	6	12	1072	bind-to-socket
POD3/7binding2	25	2	6	12	1053	cpus-per-proc 6 bind-to-socket
POD3/7binding2	25	2	6	12	1073	cpus-per-proc 6 bind-to-socket
POD4/7rankfiles	25	2	6	12	901	rankfiles
POD4/7rankfiles	25	2	6	12	918	rankfiles

Using Rankfiles drops the computations with about 15%. But further tests on other usecases are needed

Actran - Conclusions

The tests that we have run for Actran led to the following conclusions:

- 1. Some of the Openmpi 1.4 and 1.5 options are not fully qualified (by OPENMPI) therefore not stable. Are in 1.6
- 2. Using rankfiles on POD4 proved to provide a speed up 14-15% in the solving time. But further tests are needed and the "HP build_rankfile" script has to be correctly inserted in the LSF submit script.

THANK YOU

