

Intel® MPI Benchmarks

Users Guide and Methodology Description

Intel GmbH

Hermülheimer Str. 8a

D-50321 Brühl, Germany

 Intel ® MPI Benchmarks

1 INTRODUCTION ...5
1.1 Changes vs. IMB_2.3... 5

2 INSTALLATION AND QUICK START OF IMB...................6
2.1 Installing and running... 6

3 IMB-MPI1 ..6
3.1 General ... 6
3.2 The benchmarks.. 7
3.3 IMB-MPI1 benchmark definitions... 8

3.3.1 Benchmark classification ... 8
3.3.1.1 Single Transfer benchmarks... 9
3.3.1.2 Parallel Transfer benchmarks... 9
3.3.1.3 Collective benchmarks.. 10

3.3.2 Definition of Single Transfer benchmarks.................................. 10
3.3.2.1 PingPong .. 10
3.3.2.2 PingPing................................ Error! Bookmark not defined.

3.3.3 Definition of Parallel Transfer benchmarks................................ 12
3.3.3.1 Sendrecv... 12
3.3.3.2 Exchange .. 13

3.3.4 Definition of Collective benchmarks... 14
3.3.4.1 Reduce.. 14
3.3.4.2 Reduce_scatter... 15
3.3.4.3 Allreduce ... 15
3.3.4.4 Allgather .. 15
3.3.4.5 Allgatherv .. 15
3.3.4.6 Alltoall.. 16
3.3.4.7 Alltoallv.. 16
3.3.4.8 Bcast ... 16
3.3.4.9 Barrier ... 16

4 MPI-2 PART OF IMB...17
4.1 The benchmarks.. 17
4.2 IMB-MPI2 benchmark definitions... 18

4.2.1 Benchmark classification ... 18
4.2.1.1 Single Transfer benchmarks... 19
4.2.1.2 Parallel Transfer benchmarks... 19
4.2.1.3 Collective benchmarks.. 19

4.2.2 Benchmark modes ... 20
4.2.2.1 Blocking / non-blocking mode (only IMB-IO) 20
4.2.2.2 Aggregate / Non Aggregate mode...................................... 20

4.2.3 Definition of the IMB-EXT benchmarks...................................... 21
4.2.3.1 Unidir_Put ... 21
4.2.3.2 Unidir_Get... 22
4.2.3.3 Bidir_Put.. 23
4.2.3.4 Bidir_Get ... 24
4.2.3.5 Accumulate ... 25
4.2.3.6 Window ... 25

4.2.4 Definition of the IMB-IO benchmarks (blocking case)................ 27
4.2.4.1 S_[ACTION]_indv ... 28
4.2.4.2 S_[ACTION]_expl ... 29

 1 of 52

 Intel ® MPI Benchmarks

4.2.4.3 P_[ACTION]_indv ... 30
4.2.4.4 P_[ACTION]_expl ... 31
4.2.4.5 P_[ACTION]_shared... 32
4.2.4.6 P_[ACTION]_priv .. 33
4.2.4.7 C_[ACTION]_indv ... 34
4.2.4.8 C_[ACTION]_expl ... 34
4.2.4.9 C_[ACTION]_shared... 34
4.2.4.10 Open_Close .. 35

4.2.5 Non-blocking I/O Benchmarks ... 35
4.2.5.1 Exploiting CPU.. 36
4.2.5.2 Displaying results.. 36

4.2.6 Multi - versions ... 37

5 BENCHMARK METHODOLOGY......................................37
5.1 Running IMB, command line control... 38

5.1.1 Default case ... 38
5.1.2 Command line control .. 38

5.1.2.1 Benchmark selection arguments .. 38
5.1.2.2 -npmin selection.. 39
5.1.2.3 -multi <outflag> selection.. 39
5.1.2.4 -input <File> selection... 39
5.1.2.5 –msglen <File> selection ... 39
5.1.2.6 –map PxQ selection ... 40

5.2 IMB parameters and hard-coded settings 40
5.2.1 Parameters controlling IMB.. 40
5.2.2 Communicators, active processes ... 42
5.2.3 Other preparations ... 42

5.2.3.1 Window (IMB_EXT) .. 42
5.2.3.2 File (IMB-IO) ... 42
5.2.3.3 Info .. 42
5.2.3.4 View (IMB-IO) ... 43

5.2.4 Message / I-O buffer lengths.. 43
5.2.4.1 IMB-MPI1, IMB-EXT ... 43
5.2.4.2 IMB-IO... 43

5.2.5 Buffer initialization .. 43
5.2.6 Warm-up phase (MPI1, EXT)... 44
5.2.7 Synchronization.. 44
5.2.8 The actual benchmark.. 44

5.2.8.1 MPI1 case ... 45
5.2.8.2 EXT and blocking I/O case ... 45
5.2.8.3 Non-blocking I/O case .. 45

6 OUTPUT..46
6.1 Sample 1... 48
6.2 Sample 2... 49
6.3 Sample 3... 50

7 FURTHER DETAILS ...52
7.1 Memory requirements... 52
7.2 Results checking... 52

8 REVISION HISTORY...52

 2 of 52

 Intel ® MPI Benchmarks

Disclaimer and Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION
WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR
USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel prod-
ucts are not intended for use in medical, life saving, life sustaining, critical
control or safety systems, or in nuclear facility applications. Intel may make
changes to specifications and product descriptions at any time, without no-
tice.
Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incom-
patibilities arising from future changes to them.
MPEG is an international standard for video compression/decompression
promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled
platforms may require licenses from various entities, including Intel Corpo-
ration.
The software described in this document may contain software defects
which may cause the product to deviate from published specifications. Cur-
rent characterized software defects are available on request.
This document as well as the software described in it is furnished under
license and may only be used or copied in accordance with the terms of the
license. The information in this manual is furnished for informational use
only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibil-
ity or liability for any errors or inaccuracies that may appear in this docu-
ment or any software that may be provided in association with this docu-
ment.
Except as permitted by such license, no part of this document may be re-
produced, stored in a retrieval system, or transmitted in any form or by any
means without the express written consent of Intel Corporation.
Developers must not rely on the absence or characteristics of any features
or instructions marked "reserved" or "undefined." Improper use of reserved
or undefined features or instructions may cause unpredictable behavior or
failure in developer’s software code when running on an Intel processor.
Intel reserves these features or instructions for future definition and shall
have no responsibility whatsoever for conflicts or incompatibilities arising
from their unauthorized use.
BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Chips,
Core Inside, Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, i960,
iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap
ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel Net-
Structure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv,
Intel vPro, Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX, MMX
logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium II
Xeon, Pentium III Xeon, Performance at Your Command, Pentium Inside,
skoool, Sound Mark, The Computer Inside., The Journey Inside, VTune,
Xeon, Xeon Inside and Xircom are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries.

 3 of 52

 Intel ® MPI Benchmarks

* Other names and brands may be claimed as the property of others. All
trademarks and registered trademarks referenced in this Intel® MPI
Benchmarks Users Guide and Methodology Description document are the
property of their respective holders.

Copyright © Intel Corporation 1996 - 2006.

 4 of 52

 Intel ® MPI Benchmarks

1 Introduction

This document presents the Intel® MPI Benchmarks (IMB) suite. Its objec-
tives are:

• provide a concise set of benchmarks targeted at measuring the most
important MPI functions.

• set forth a precise benchmark methodology.

• don’t impose much of an interpretation on the measured results: re-
port bare timings instead. Show throughput values, if and only if these
are well defined.

The package is the successor of the quite well known package PMB (Ver-
sion 2.2) from Pallas GmbH and the Intel MPI Benchmarks (IMB) 2.3.

This document accompanies version 3.0 of IMB. The code is written in ANSI
C plus standard MPI (about 10,000 lines of code, 108 functions in 37 source
files).

The IMB 3.0 package consists of 3 parts:

• IMB-MPI1

• 2 MPI-2 functionality parts
IMB-EXT (One-sided Communications benchmarks),
IMB-IO (I/O benchmarks).

For each part, a separate executable can be built. Users, who do not have
the MPI-2 extensions available, can install and use just IMB-MPI1. Only
standard MPI-1 functions are used, no dummy library is needed.

Section 2 is a brief installation guide.

Section 3 is dedicated to IMB-MPI1. Section 3.3 defines the single bench-
marks in detail. IMB introduces a classification of its benchmarks. Single
Transfer, Parallel Transfer, and Collective are the classes. Roughly speak-
ing, single transfers run dedicated, without obstructions from other transfers,
undisturbed results are to be expected (PingPong being the most well
known example). Parallel transfers test the system under global load, with
concurrent actions going on. Finally, collective is a proper MPI classification,
where these benchmarks test the quality of the implementation for the higher
level collective functions.

Chapter 4 is dedicated to the MPI-2 functionality of IMB.

Section 5 defines the methodology and rules of IMB, section 6 shows tem-
plates of output tables. In section 7, further important details are explained,
in particular a results checking mode for IMB.

1.1 Changes vs. IMB_2.3

The changes vs. the previous version, 2.3, are:

• added a call to the function “MPI_Init_thread” to determine the MPI
threading environment. The MPI threading environment is reported to
the user each time an Intel MPI Benchmark application is executed.

• added a call to the function “MPI_Get_version” to report the version of
the MPI library implementation that the three benchmark applications
are linking to.

• added the “Alltoallv” benchmark.
• added a command-line flag “-h[elp]“ to display the calling sequence for

each benchmark application.

 5 of 52

 Intel ® MPI Benchmarks

• removed outdated Makefile templates. Now there are three complete
makefiles called Makefile, make_ict, and make_mpich.

• better user argument checking, clean message and break on most inva-
lid user arguments.

2 Installation and Quick Start of IMB

In order to run IMB-MPI1, one needs:

• cpp, ANSI C compiler, make.

• MPI installation, including startup mechanism for parallel MPI pro-
grams.

See 7.1 for the memory requirements of IMB.

2.1 Installing and running

After unpacking, the directory contains

File ReadMe_first

and 5 subdirectories

./doc (ReadMe_IMB.txt; IMB_ug-3.0.pdf, this file)

./src (program source- and Make-files)

./license (license agreements text)

./versions_news (version history and news)

Please read the license agreements first:

• license.txt specifies the source code license granted to you

• use-of-trademark-license.txt specifies the license for using the name
and/or trademark "Intel® MPI Benchmarks"

To get a quick start, see ./doc/ReadMe_IMB.txt.

3 IMB-MPI1

This section is dedicated to the part of IMB measuring the ‘classical’ mes-
sage passing functionality of MPI-1.

3.1 General

The idea of IMB is to provide a concise set of elementary MPI benchmark
kernels. With one executable, all of the supported benchmarks, or a subset
specified by the command line, can be run. The rules, such as time meas-
urement (including a repetitive call of the kernels for better clock synchroni-
zation), message lengths, selection of communicators to run a particular
benchmark (inside the group of all started processes) are program parame-
ters.

IMB has a standard and an optional configuration (see 5.2.1). In the stan-
dard case, all parameters mentioned above are fixed and must not be
changed.

 6 of 52

 Intel ® MPI Benchmarks

In standard mode, message lengths are varied from 0,1,2,4,8,16 … to
4194304 bytes. Through a command line flag, an arbitrary set of message
lengths can be input by a file (flag –msglen, see 5.1.2.5).

The minimum P_min and maximum number P of processes can be selected
by the user via command line, the benchmarks run on P_min, 2P_min,
4P_min, ... 2 P_min<Px and P processes. See chapter 5.1.2.2 for the de-
tails.

The user has some choice for the mapping of processes. E.g., when running
on a clustered system, a benchmark such as PingPong, can be run intra
node and inter node, without changing a mapping file (-map flag, see 5.1.2.6)

3.2 The benchmarks

The current version of IMB-MPI1 contains the benchmarks
• PingPong

• PingPing

• Sendrecv

• Exchange

• Bcast

• Allgather

• Allgatherv

• Alltoall

• Alltoallv

• Reduce

• Reduce_scatter

• Allreduce

• Barrier

The exact definitions will be given in section 3.3. Section 5 describes the
benchmark methodology.

IMB-MPI1 allows for running all benchmarks in more than one process
group. E.g., when running PingPong on N≥4 processes, on user request
(see 5.1.2.3) N/2 disjoint groups of 2 processes each will be formed, all and
simultaneously running PingPong.

Note that these multiple versions have to be carefully distinguished from
their standard equivalents. They will be called

 7 of 52

 Intel ® MPI Benchmarks

• Multi-PingPong

• Multi-PingPing

• Multi-Sendrecv

• Multi-Exchange

• Multi-Bcast

• Multi-Allgather

• Multi-Allgatherv

• Multi-Alltoall

• Multi-Alltoallv

• Multi-Reduce

• Multi-Reduce_scatter

• Multi-Allreduce

• Multi-Barrier

For a distinction, sometimes we will refer to the standard (non Multi)
benchmarks as primary benchmarks.

The way of interpreting the timings of the Multi-benchmarks is quite easy,
given a definition for the primary cases: per group, this is as in the standard
case. Finally, the max timing (min throughput) over all groups is displayed.
On request, all per group information can be reported, see 5.1.2.3.

3.3 IMB-MPI1 benchmark definitions

In this chapter, the single benchmarks are described. Here we focus on the
elementary patterns of the benchmarks. The methodology of measuring
these patterns (message lengths, sample repetition counts, timer, synchro-
nization, number of processes and communicator management, display of
results) are defined in chapters 5 and 6.

3.3.1 Benchmark classification
For a clear structuring of the set of benchmarks, IMB introduces classes of
benchmarks: Single Transfer, Parallel Transfer, and Collective. This classifi-
cation refers to different ways of interpreting results, and to a structuring of
the code itself. It does not actually influence the way of using IMB. Also
holds this classification hold for IMB-MPI2 (see 4.2.1).

 8 of 52

 Intel ® MPI Benchmarks

IMB-MPI1

Single Transfer Parallel Transfer Collective

PingPong Sendrecv Bcast

PingPing Exchange Allgather

 Allgatherv

 Multi-PingPong Alltoall

 Multi-PingPing Alltoallv

 Multi-Sendrecv Reduce

 Multi-Exchange Reduce_scatter

 Allreduce

 Barrier

 Multi-versions of these

3.3.1.1 Single Transfer benchmarks
The benchmarks in this class are to focus on a single message transferred
between two processes. As to PingPong, this is the usual way of looking at.
In IMB interpretation, PingPing measures the same as PingPong, under
the particular circumstance that a message is obstructed by an oncoming
one (sent simultaneously by the same process that receives the own one).

Single transfer benchmarks only run with 2 active processes (see 5.2.2 for
the definition of active).

For PingPing, pure timings will be reported, and the throughput is related
to a single message. Expected numbers, very likely, are between half and
full PingPong throughput. With this, PingPing determines the throughput
of messages under non optimal conditions (namely, oncoming traffic).

See 3.3.2.1 and 0 for exact definitions.

3.3.1.2 Parallel Transfer benchmarks
Benchmarks focusing on global mode, say, patterns. The activity at a certain
process is in concurrency with other processes, the benchmark measures
message passing efficiency under global load.

For the interpretation of Sendrecv and Exchange, more than 1 message
(per sample) counts. As to the throughput numbers, the total turnover (the
number of sent plus the number of received bytes) at a certain process is
taken into account. E.g., for the case of 2 processes, Sendrecv becomes
the bi-directional test: perfectly bi-directional systems are rewarded by a
double PingPong throughput here.

Thus, the throughputs are scaled by certain factors. See 3.3.3.1 and 3.3.3.2
for exact definitions. As to the timings, raw results without scaling will be
reported.

The Multi mode secondarily introduces into this class

• Multi-PingPong

• Multi-PingPing

• Multi-Sendrecv

• Multi-Exchange

 9 of 52

 Intel ® MPI Benchmarks

3.3.1.3 Collective benchmarks
This class contains all benchmarks that are collective in proper MPI conven-
tion. Not only is the message passing power of the system relevant here, but
also the quality of the implementation.

For simplicity, we also include the Multi versions of these benchmarks into
this class.

Raw timings and no throughput are reported.

Note that certain collective benchmarks (namely the reductions) play a par-
ticular role as they are not pure message passing tests, but also depend on
an efficient implementation of certain numerical operations.

3.3.2 Definition of Single Transfer benchmarks
This section describes the single transfer benchmarks in detail. Each bench-
mark is run with varying message lengths X bytes, and timings are averaged
over multiple samples. See 5.2.4 for the description of the methodology.
Here we describe the view of one single sample, with a fixed message
length X bytes. Basic MPI data-type for all messages is MPI_BYTE.

Throughput values are defined in MBytes / sec = 2 bytes / sec scale20
(i.e. throughput = X / 2 * 10 / time = X / 1.048576 / time20 6 ,
when time is in μsec).

3.3.2.1 PingPong
PingPong is the classical pattern used for measuring startup and through-
put of a single message sent between two processes.

Measured pattern As symbolized between in Figure 1; two active
processes only (Q=2, see 5.2.2)

based on MPI_Send, MPI_Recv

MPI_Datatype MPI_BYTE

reported timings time = Δt/2 (in μsec) as indicated in Figure 1

reported throughput X/1.048576/time

 10 of 52

 Intel ® MPI Benchmarks

Figure 1:PingPong pattern

3.3.2.2 PingPing
As PingPong, PingPing measures startup and throughput of single mes-
sages, with the crucial difference that messages are obstructed by oncoming
messages. For this, two processes communicate
(MPI_Isend/MPI_Recv/MPI_Wait) with each other, with the
MPI_Isend’s issued simultaneously.

Measured pattern

PROCESS 2 PROCESS 1

MPI_Send

As symbolized between in

Figure 2; two active processes only (Q=2, 5.2.2)

based on MPI_Isend/MPI_Wait, MPI_Recv

MPI_Datatype MPI_BYTE

reported timings time = Δt (in μsec) as indicated in Figure 2

reported throughput X/1.048576/time

MPI_Recv

MPI_Recv
MPI_Send

Δt

X bytestime=Δt/2

X bytes

 11 of 52

 Intel ® MPI Benchmarks

Figure 2: PingPing pattern

3.3.3 Definition of Parallel Transfer benchmarks
This section describes the parallel transfer benchmarks in detail. Each
benchmark is run with varying message lengths X bytes, and timings are
averaged over multiple samples. See 5 for the description of the methodol-
ogy. Here we describe the view of one single sample, with a fixed message
length X bytes. Basic MPI data-type for all messages is MPI_BYTE.

The throughput calculations of the benchmarks described here take into
account the (per sample) multiplicity nmsg of messages outgoing from or
incoming at a particular process. In the Sendrecv benchmark, a particular
process sends and receives X bytes, the turnover is 2X bytes, nmsg=2. In
the Exchange case, we have 4X bytes turnover, nmsg=4.

Throughput values are defined in MBytes/sec = 2 bytes / sec20 scale
(i.e.
throughput = nmsg*X/2 * 10 /time = nmsg*X / 1.048576 / time20 6 ,
when time is in μsec).

3.3.3.1 Sendrecv
Based on MPI_Sendrecv, the processes form a periodic communication
chain. Each process sends to the right and receives from the left neighbor in
the chain.

The turnover count is 2 messages per sample (1 in, 1 out) for each process.

Sendrecv is equivalent with the Cshift benchmark and, in case of 2 proc-
esses, the PingPing benchmark of IMB1.x. For 2 processes, it will report
the bi-directional bandwidth of the system, as obtained by the (optimized)
MPI_Sendrecv function.

PROCESS 2

MPI_Isend(request=R)

MPI_Recv
MPI_Wait(R)

PROCESS 1

MPI_Isend(request=R)

MPI_Recv
MPI_Wait(R)

X bytes X bytes
Δt

 12 of 52

 Intel ® MPI Benchmarks

Measured pattern As symbolized between in Figure 3

MPI_Sendrecvbased on

MPI_Datatype MPI_BYTE

reported timings time = Δt (in μsec) as indicated in Figure 3

reported throughput

2X/1.048576/time

 Periodic chain

....... PR. I+1 PR. I

MPI_
Sendrecv

PR. I-1

MPI_
Sendrecv

MPI_
Sendrecv

Figure 3: Sendrecv pattern

3.3.3.2 Exchange
Exchange is a communications pattern that often occurs in grid splitting
algorithms (boundary exchanges). The group of processes is seen as a pe-
riodic chain, and each process exchanges data with both left and right
neighbor in the chain.

The turnover count is 4 messages per sample (2 in, 2 out) for each process.

Measured pattern As symbolized between in Figure 4

based on MPI_Isend/MPI_Waitall, MPI_Recv

MPI_Datatype MPI_BYTE

reported timings time = Δt (in μsec) as indicated in Figure 4

reported throughput 4X/1.048576/time

X bytes X bytesΔt

 13 of 52

 Intel ® MPI Benchmarks

Figure 4: Exchange pattern

3.3.4 Definition of Collective benchmarks
This section describes the Collective benchmarks in detail. Each benchmark
is run with varying message lengths X bytes, and timings are averaged over
multiple samples. See 5 for the description of the methodology. Here we
describe the view of one single sample, with a fixed message length X bytes.
Basic MPI data-type for all messages is MPI_BYTE for the pure data move-
ment functions, and MPI_FLOAT for the reductions.

For all Collective benchmarks, only bare timings and no throughput data is
displayed.

3.3.4.1 Reduce

Benchmark for the MPI_Reduce function. Reduces a vector of length
L = X/sizeof(float) float items. The MPI data-type is MPI_FLOAT, the
MPI operation is MPI_SUM.

The root of the operation is changed cyclically.

PR. I+1

MPI_Isend
MPI_Isend
MPI_Recv
MPI_Recv
MPI_Waitall

PR. I-1

MPI_Isend
MPI_Isend
MPI_Recv
MPI_Recv
MPI_Waitall

PR. I

..............

Periodic chain

MPI_Isend
MPI_Isend
MPI_Recv
MPI_Recv
MPI_Waitall

Δt

Each carries X bytes

See also the remark in the end of 3.3.1.3.

measured pattern MPI_Reduce

MPI_Datatype MPI_FLOAT

MPI_Op MPI_SUM

root changing

reported timings bare time

reported throughput none

 14 of 52

 Intel ® MPI Benchmarks

3.3.4.2 Reduce_scatter
Benchmark for the MPI_Reduce_scatter function. Reduces a vector of
length
L = X/sizeof(float)float items. The MPI data-type is MPI_FLOAT, the
MPI operation is MPI_SUM. In the scatter phase, the L items are split as
evenly as possible. Exactly, when
np = #processes, L = r*np+s (s = L mod np),

then process with rank i gets r+1 items when i<s, and r items when i≥s.

See also the remark in the end of 3.3.1.3.

measured pattern MPI_Reduce_scatter

MPI_Datatype MPI_FLOAT

MPI_Op MPI_SUM

reported timings bare time

reported throughput none

3.3.4.3 Allreduce
Benchmark for the MPI_Allreduce function. Reduces a vector of length
L = X/sizeof(float) float items. The MPI data-type is MPI_FLOAT, the
MPI operation is MPI_SUM.

See also the remark in the end of 3.3.1.3.

measured pattern MPI_Allreduce

MPI_Datatype MPI_FLOAT

MPI_Op MPI_SUM

reported timings bare time

reported throughput none

3.3.4.4 Allgather

Measured pattern MPI_Allgather

MPI_Datatype MPI_BYTE

reported timings bare time

Benchmark for the MPI_Allgather function. Every process inputs X bytes
and receives the gathered X*(#processes) bytes.

reported throughput none

3.3.4.5 Allgatherv
Functionally is the same as Allgather. However, with the
MPI_Allgatherv function it shows whether MPI produces overhead due to
the more complicated situation as compared to MPI_Allgather.

 15 of 52

 Intel ® MPI Benchmarks

MPI_AllgathervMeasured pattern

MPI_Datatype MPI_BYTE

reported timings bare time

reported throughput none

3.3.4.6 Alltoall

3.3.4.7 Alltoallv

Benchmark for the MPI_Alltoall function. Every process inputs
X*(#processes) bytes (X for each process) and receives X*(#processes)
bytes (X from each process).

Measured pattern MPI_Alltoall

MPI_Datatype MPI_BYTE

reported timings bare time

reported throughput none

Benchmark for the MPI_Alltoall function. Every process inputs
X*(#processes) bytes (X for each process) and receives X*(#processes)
bytes (X from each process).

MPI_AlltoallvMeasured pattern

MPI_Datatype MPI_BYTE

reported timings bare time

reported throughput none

3.3.4.8 Bcast
Benchmark for MPI_Bcast. A root process broadcasts X bytes to all.

The root of the operation is changed cyclically.

MPI_Bcastmeasured pattern

MPI_BYTEMPI_Datatype

root Changing

reported timings bare time

reported throughput None

3.3.4.9 Barrier

measured pattern MPI_Barrier

reported timings bare time

reported throughput none

 16 of 52

 Intel ® MPI Benchmarks

4 MPI-2 part of IMB

This section the MPI-2 sections of IMB, IMB-EXT and IMB-IO, are handled.

4.1 The benchmarks

Table 1 below contains a list of all IMB-MPI2 benchmarks. The exact defini-
tions are given in section 4.2, in particular refer to 4.2.2.2 for an explanation
of the Aggregate Mode, 4.2.5 for the Non-blocking Mode column. Section 5
describes the benchmark methodology.

The non-blocking modes of IMB-IO read / write benchmarks are de-
fined as different benchmarks, with Read / Write replaced by IRead /
IWrite in the benchmark names.

Benchmark Aggregate Mode Non-blocking Mode

IMB-EXT
Window
Unidir_Put ×
Unidir_Get ×
Bidir_Get ×
Bidir_Put ×
Accumulate ×

Multi- versions of the
above

×

Benchmark Aggregate Mode Nonblocking Mode

IMB-IO

Open_Close

S_Write_indv × S_IWrite_indv

S_Read_indv S_IRead_indv

S_Write_expl × S_IWrite_expl

S_Read_expl S_IRead_expl

P_Write_indv × P_IWrite_indv

P_Read_indv P_IRead_indv

P_Write_expl × P_IWrite_expl

P_Read_expl P_IRead_expl

P_Write_shared × P_IWrite_shared

P_Read_shared P_IRead_shared

P_Write_priv × P_IWrite_priv

P_Read_priv P_IRead_priv

C_Write_indv × C_IWrite_indv

C_Read_indv C_IRead_indv

C_Write_expl C_IWrite_expl×
C_Read_expl C_IRead_expl
C_Write_shared C_IWrite_shared×
C_Read_shared C_IRead_shared

Multi-versions of the
above

(×) Multi-versions of the
above

Table 1: IMB-MPI-2 benchmarks

 17 of 52

 Intel ® MPI Benchmarks

The naming conventions for the benchmarks are as follows:

• Unidir/Bidir stand for unidirectional/bidirectional one-sided com-
munications. These are the one-sided equivalents of PingPong and
PingPing.

• the Multi- prefix is defined as in 3.2. It is to be interpreted as multi-
group version of the benchmark.

• prefixes S_/P_/C_ mean Single/Parallel/Collective. The classifica-
tion is the same as in the MPI1 case. In the I/O case, a Single transfer
is defined as a data transfer between one MPI process and one indi-
vidual window or file. Parallel means that eventually more than 1
process participates in the overall pattern, whereas Collective is
meant in proper MPI sense. See 3.3.1.

• the postfixes mean: expl: I/O with explicit offset; indv: I/O with an
individual file pointer; shared: I/O with a shared file pointer; priv:
I/O with an individual file pointer to one private file for each process
(opened for MPI_COMM_SELF on each process).

4.2 IMB-MPI2 benchmark definitions

In this section, all IMB-MPI2 benchmarks are described. The definitions fo-
cus on the elementary patterns of the benchmarks. The methodology of
measuring these patterns (transfer sizes, sample repetition counts, timer,
synchronization, number of processes and communicator management,
display of results) is defined in sections 5 and 6.

4.2.1 Benchmark classification
To clearly structure the set of benchmarks, IMB introduces three classes of
benchmarks: Single Transfer, Parallel Transfer, and Collective. This classifi-
cation refers to different ways of interpreting results, and to a structuring of
the benchmark codes. It does not actually influence the way of using IMB.
Note that this is the classification already introduced for IMB-MPI1 (3.3.1).
Two special benchmarks, measuring accompanying overheads of one sided
communications (MPI_Win_create / MPI_Win_free) and of I/O
(MPI_File_open / MPI_File_close), have not been assigned a class.

 18 of 52

 Intel ® MPI Benchmarks

Single Transfer Parallel Transfer Collective Other

Unidir_Get Multi-Unidir_Get Accumulate Window

Unidir_Put Multi-Unidir_Put Multi-Accumulate (also Multi)

Bidir_Get Multi-Bidir_Get

Bidir_Put Multi-Bidir_Put

S_[I]Write_indv P_[I]Write_indv C_[I]Write_indv Open_close

S_[I]Read_indv P_[I]Read_indv C_[I]Read_indv (also Multi)

S_[I]Write_expl P_[I]Write_expl C_[I]Write_expl

S_[I]Read_expl P_[I]Read_expl C_[I]Read_expl

 P_[I]Write_shared C_[I]Write_shared

 P_[I]Read_shared C_[I]Read_shared

 P_[I]Write_priv Multi- versions

 P_[I]Read_priv

Table 2: IMB-MPI2 benchmark classification

4.2.1.1 Single Transfer benchmarks
The benchmarks in this class focus on a single data transferred between
one source and one target. In IMB-MPI2, the source of the data transfer can
be an MPI process or, in case of Read benchmarks, an MPI file. Analo-
gously, the target can be an MPI process or an MPI file. Note that with this
definition,

• single transfer IMB-EXT benchmarks only run with 2 active processes

• single transfer IMB-IO benchmarks only run with 1 active process (see
5.2.2 for the definition of “active“).

Single transfer benchmarks, roughly speaking, are local mode. The particu-
lar pattern is purely local to the participating processes. There is no concur-
rency with other activities. Best case results are to be expected.

Raw timings will be reported, and the well-defined throughput.

4.2.1.2 Parallel Transfer benchmarks
These benchmarks focus on global mode, say, patterns. The activity at a
certain process is in concurrency with other processes, the benchmark tim-
ings are produced under global load. The number of participating processes
is arbitrary.

Time is measured as maximum over all single processes’ timings, through-
put is related to that time and the overall, additive amount of transferred data
(sum over all processes).

This definition is applied per group in the Multi - cases, see 5.1.2.3, and
the results of the worst group are displayed.

4.2.1.3 Collective benchmarks
This class contains benchmarks of functions that are collective in the proper
MPI sense. Not only is the power of the system relevant here, but also the
quality of the implementation for the corresponding higher level functions.

Time is measured as maximum over all single processes’ timings, no
throughput is calculated.

 19 of 52

 Intel ® MPI Benchmarks

4.2.2 Benchmark modes
Certain benchmarks have different modes to run.

4.2.2.1 Blocking / non-blocking mode (only IMB-IO)
This distinction is in the proper MPI-IO sense. Blocking and non-blocking
mode of a benchmark are separated in two single benchmarks, see Table 1.
See 4.2.5 for the methodology.

4.2.2.2 Aggregate / Non Aggregate mode
For certain benchmarks, IMB defines a distinction between aggregate and
non aggregate mode:

• all one sided communications benchmarks

• all blocking (!) IMB-IO Write benchmarks, using some flavor of MPI-
IO file writing.

The basic pattern of these benchmarks is shown in Figure 5. Here,

• M is some repetition count

• a transfer is issued by the corresponding one sided communication
call (for IMB-EXT) and by an MPI-IO write call (IMB-IO)

• disjoint means: the multiple transfers (if M>1) are to/from disjoint sec-
tions of the window or file. This is to circumvent misleading optimiza-
tions when using the same locations for multiple transfers.

• assure completion means
MPI_Win_fence (IMB-EXT),
MPI_File_sync (IMB-IO Write).

IMB runs the corresponding benchmarks with two settings:

• M = 1 (non aggregate mode)

• M = n_sample (aggregate mode), with n_sample as defined later, re-
fer to 5.2.8.

 Select some repetition count M

 time = MPI_Wtime();

 issue M disjoint transfers

 assure completion of all transfers

 time = (MPI_Wtime() - time) / M

Figure 5: Aggregation of M transfers (IMB-EXT and blocking Write
 benchmarks)

The variation of M should provide important information about the system
and the implementation, crucial for application code optimizations. E.g., the
following possible internal strategies of an implementation could highly influ-
ence the timing outcome of the above pattern.

 20 of 52

 Intel ® MPI Benchmarks

• accumulative strategy. Several successive transfers (up to M in Figure
5) are accumulated (e.g., by a caching mechanism), without an im-
mediate completion. At certain stages (system and runtime depend-
ent), at best only in the assure completion part, the accumulated
transfers are completed as a whole. This approach may save expen-
sive synchronizations. The expectation is that this strategy would pro-
vide for (much) better results in the aggregate case as compared to
the non aggregate one.

• non-accumulative strategy. Every single transfer is automatically com-
pleted before the return from the corresponding function. Expensive
synchronizations are taken into account eventually. The expectation is
that this strategy would produce (about) equal results for aggregate
and non aggregate case.

4.2.3 Definition of the IMB-EXT benchmarks
This section describes the benchmarks in detail. They will run with varying
transfer sizes X (in bytes), and timings will be averaged over multiple sam-
ples. See 5 for the description of the methodology. Here we describe the
view of one single sample, with a fixed transfer size X.

Note that the Unidir (Bidir) benchmarks are exact equivalents of the
message passing PingPong (PingPing, respectively). Their interpretation
and output is analogous to their message passing equivalents.

4.2.3.1 Unidir_Put
Benchmark for the MPI_Put function. Table 3 below shows the basic defini-
tions. Figure 6 is a schematic view of the pattern.

measured pattern as symbolized between in Figure 6;
2 active processes only

MPI_Putbased on

MPI_Datatype MPI_BYTE (origin and target)

reported timings t=t(M) (in μsec) as indicated in Figure 6, non aggregate
(M=1) and aggregate (cf. 4.2.2.2; M=n_sample, see 5.2.8)

X/t, aggregate and non aggregate reported throughput

Table 3 : Unidir_Put definition

 21 of 52

 Intel ® MPI Benchmarks

Figure 6: Unidir_Put pattern

4.2.3.2 Unidir_Get
Benchmark for the MPI_Get function.

Table 4 below shows the basic definitions. Figure 7 is a schematic view of
the pattern.

measured pattern as symbolized between in Figure 7;
2 active processes only

based on MPI_Get

MPI_Datatype MPI_BYTE (origin and target)

reported timings t=t(M) (in μsec) as indicated in Figure 7, non aggregate
(M=1) and aggregate (cf. 4.2.2.2; M=n_sample, see 5.2.8)

reported throughput X/t, aggregate and non aggregate

Table 4: Unidir_Get definition

t = t(M) = Δ t(M)/M

PROCESS 2

MPI_Win_fence

PROCESS 2

MPI_Win_fence

PROCESS 1

M fold MPI_Put
(disjoint)

MPI_Win_fence

PROCESS 1

M fold MPI_Get
(disjoint)

MPI_Win_fence

X bytes

X bytes

Δ t(M)

Δ t(M)

t = t(M) = Δ t(M)/M

Figure 7: Unidir_Get pattern

 22 of 52

 Intel ® MPI Benchmarks

4.2.3.3 Bidir_Put
Benchmark for MPI_Put, with bi-directional transfers.

Table 5 below shows the basic definitions. Figure 8 is a schematic view of
the pattern.

measured pattern as symbolized between in Figure 8;
2 active processes only

MPI_Putbased on

MPI_Datatype MPI_BYTE (origin and target)

reported timings t=t(M) (in μsec) as indicated in Figure 8, non aggregate
(M=1) and aggregate (cf. 4.2.2.2; M=n_sample, see 5.2.8)

X/t, aggregate and non aggregate reported throughput

Table 5: Bidir_Put definition

t = t(M) = Δ t(M)/M

PROCESS 2

M fold MPI_Put
(disjoint)
MPI_Win_fence

PROCESS 1

M fold MPI_Put
(disjoint)
MPI_Win_fence

Δ t(M)
X bytes

Figure 8: Bidir_Put pattern

 23 of 52

 Intel ® MPI Benchmarks

4.2.3.4 Bidir_Get
Benchmark for the MPI_Get function, with bi-directional transfers.

Table 6 below shows the basic definitions. Figure 9 is a schematic view of
the pattern.

measured pattern as symbolized between in Figure 9;
2 active processes only

based on MPI_Get

MPI_Datatype MPI_BYTE (origin and target)

reported timings t=t(M) (in μsec) as indicated in Figure 9, non aggregate
(M=1) and aggregate (cf. 4.2.2.2; M=n_sample, see 5.2.8)

reported throughput X/t, aggregate and non aggregate

Table 6: Bidir_Get definition

t = t(M) = Δ t(M)/M

PROCESS 1 PROCESS 2

M fold MPI_Get
(disjoint)

MPI_Win_fence

M fold MPI_Get
(disjoint)

MPI_Win_fence

Δ t(M)
X bytes

Figure 9: Bidir_Get pattern

 24 of 52

 Intel ® MPI Benchmarks

4.2.3.5 Accumulate
Benchmark for the MPI_Accumulate function. Reduces a vector of length L
= X/sizeof(float) float items. The MPI data-type is MPI_FLOAT, the MPI
operation is MPI_SUM.

Table 7 below shows the basic definitions. Figure 10 is a schematic view of
the pattern.

measured pattern as symbolized between in Figure 10

MPI_Accumulatebased on

MPI_Datatype MPI_FLOAT

MPI_Op MPI_SUM

Root 0

reported timings t=t(M) (in μsec) as indicated in Figure 10, non aggregate
(M=1) and aggregate (cf. 4.2.2.2; M=n_sample, see 5.2.8)

reported throughput

Table 7: Accumulate definition

none

all active processes

M fold MPI_Accumulate (X bytes rank 0)
(disjoint)

MPI_Win_fence

Δ t(M)

t = t(M) = Δ t(M)/M

Figure 10: Accumulate pattern

4.2.3.6 Window
Benchmark measuring the overhead of an MPI_Win_create /
MPI_Win_fence / MPI_Win_free combination. In order to prevent the
implementation from optimizations in case of an unused window, a negligible
non trivial action is performed inside the window. The MPI_Win_fence is to
properly initialize an access epoch (this is a correction in version 2.2 as
compared to earlier releases).

Table 8 below shows the basic definitions.

Figure 11 is a schematic view of the pattern.

 25 of 52

 Intel ® MPI Benchmarks

MPI_Win_create / MPI_Win_fence /
MPI_Win_free

measured pattern

reported timings t=Δt (in μsec) as indicated in

Figure 11

reported throughput none

Table 8: Window definition

all active processes

MPI_Win_create (size = X)
MPI_Win_fence
MPI_Put (1 byte Window)
MPI_Win_free

Δ t

Figure 11: Window pattern

 26 of 52

 Intel ® MPI Benchmarks

4.2.4 Definition of the IMB-IO benchmarks (blocking case)
This section describes the blocking I/O benchmarks in detail (see 4.2.5 for
the non-blocking case). The benchmarks will run with varying transfer sizes
X (in bytes), and timings are averaged over multiple samples. See section 5
for the description of the methodology. Here we describe the view of one
single sample with a fixed I/O size of X. Basic MPI data-type for all data buff-
ers is MPI_BYTE.

All benchmark flavors have a Write and a Read component. In the sequel,
a symbol [ACTION] will be used to denote Read or Write alternatively.

Every benchmark contains an elementary I/O action, denoting the pure
read/write. Moreover, in the Write cases, a file synchronization is included,
with different placements for aggregate and non aggregate mode.

Figure 12: I/O benchmarks, aggregation for output

t = Δ t(M = n_sample) / M

(choice of M = n_sample: see 5.2.8)

 single elementary I/O action (input)t = Δ t

Input: No aggregation

t = Δ t(M = 1)

aggregate mode:

non-aggregate mode:

Output: M fold aggregation

M fold elementary I/O action (output),
disjoint file sections

MPI_File_sync

Δ t(M)

 27 of 52

 Intel ® MPI Benchmarks

4.2.4.1 S_[ACTION]_indv
File I/O performed by a single process. This pattern mimics the typical case
that one particular (master) process performs all of the I/O.

Table 9 below shows the basic definitions. Figure 13 is a schematic view of
the pattern.

measured pattern as symbolized in Figure 12

elementary I/O action as symbolized in Figure 1

MPI_File_write / MPI_File_read
MPI_File_iwrite / MPI_File_iread

based on
resp. for nonblocking mode

MPI_BYTEetype

MPI_BYTEfiletype

MPI_Datatype MPI_BYTE

reported timings t (in μsec) as indicated in Figure 12, aggregate and
non aggregate for Write case

X/t, aggregate and non aggregate for Write case reported throughput

Table 9: S_[ACTION]_indv definition

Figure 13: S_[ACTION]_indv pattern

PROCESS 1 PROCESS 2 .. N

MPI_File_[ACTION] No I/O action

 FILE

X bytes

 28 of 52

 Intel ® MPI Benchmarks

4.2.4.2 S_[ACTION]_expl
Mimics the same situation as S_[ACTION]_indv, with a different strategy
to access files, however.

Table 10 below shows the basic definitions. Figure 14 is a schematic view of
the pattern.

measured pattern as symbolized in Figure 12

elementary I/O action as symbolized in Figure 14

MPI_File_write_at / MPI_File_read_at
MPI_File_iwrite_at /
MPI_File_iread_at

based on
resp. for nonblocking mode

MPI_BYTEetype

MPI_BYTEfiletype

MPI_Datatype MPI_BYTE

reported timings t (in μsec) as indicated in Figure 12, aggregate and
non aggregate for Write case

reported throughput X/t, aggregate and non aggregate for Write case

Table 10: S_[ACTION]_expl definition

Figure 14: S_[ACTION]_expl pattern

 PROCESS 1 PROCESS 2 .. N

MPI_File_[ACTION]_at No I/O action

 FILE

 X bytes

 29 of 52

 Intel ® MPI Benchmarks

4.2.4.3 P_[ACTION]_indv
This pattern accesses the file in a concurrent manner. All participating proc-
esses access a common file.

Table 11 below shows the basic definitions. Figure 15 is a schematic view of
the pattern.

measured pattern as symbolized in Figure 12

elementary I/O action as symbolized in Figure 15 (Nproc = number of
processes)

MPI_File_write / MPI_File_read
MPI_File_iwrite / MPI_File_iread

based on
resp. for nonblocking mode

MPI_BYTEetype

filetype tiled view, disjoint contiguous blocks

MPI_Datatype MPI_BYTE

reported timings t (in μsec) as indicated in Figure 12, aggregate and
non aggregate for Write case

reported throughput

Table 11: P_[ACTION]_indv definition

X/t, aggregate and non aggregate for Write case

common tiled file (disjoint contiguous blocks)

PR. I+1 PR. I-1 PR. I

X / Nproc bytes

MPI_File_[ACTION]

.......

Figure 15: P_[ACTION]_indv pattern

 30 of 52

 Intel ® MPI Benchmarks

4.2.4.4 P_[ACTION]_expl
P_[ACTION]_expl follows the same access pattern as
P_[ACTION]_indv, with an explicit file pointer type, however.

Table 12 below shows the basic definitions. Figure 16 is a schematic view of
the pattern.

measured pattern as symbolized in Figure 12

as symbolized in Figure 16 (Nproc = number of
processes)

elementary I/O action

MPI_File_write_at / MPI_File_read_at
MPI_File_iwrite_at /
MPI_File_iread_at

based on
resp. for nonblocking mode

MPI_BYTEetype

MPI_BYTEfiletype

MPI_Datatype MPI_BYTE

reported timings t (in μsec) as indicated in Figure 12, aggregate and
non aggregate for Write case

reported throughput X/t, aggregate and non aggregate for Write case

Table 12: P_[ACTION]_expl definition

Figure 16: P_[ACTION]_expl pattern

common file (disjoint contiguous blocks)

PR. I+1

PR. I-1

 PR. I

MPI_File_[ACTION]_at

X / Nproc bytes

.......

 31 of 52

 Intel ® MPI Benchmarks

4.2.4.5 P_[ACTION]_shared
Concurrent access to a common file by all participating processes, with a
shared file pointer.

Table 13 below shows the basic definitions. Figure 17 is a schematic view of
the pattern.

measured pattern as symbolized in Figure 12

elementary I/O action as symbolized in Figure 17
(Nproc = number of processes)

MPI_File_write_shared /
MPI_File_read_shared
MPI_File_iwrite_shared /
MPI_File_iread_shared

based on

resp. for nonblocking mode

MPI_BYTEetype

MPI_BYTEfiletype

MPI_Datatype MPI_BYTE

reported timings t (in μsec) as indicated in Figure 12, aggregate and
non aggregate for Write case

X/t, aggregate and non aggregate for Write case reported throughput

Table 13: P_[ACTION]_shared definition

some order of blocks (random)

shared file (disjoint contiguous blocks)

.......

PR. I+1

.......PR. I -1 PR. I

MPI_File_[ACTION]_shared

X / Nproc bytes

Figure 17: P_[ACTION]_shared pattern

 32 of 52

 Intel ® MPI Benchmarks

4.2.4.6 P_[ACTION]_priv
This pattern tests the (very important) case that all participating processes
perform concurrent I/O, however to different (private) files. It is of particular
interest for systems allowing completely independent I/O from different proc-
esses. In this case, this pattern should show parallel scaling and optimum
results.

Table 14 below shows the basic definitions. Figure 18 is a schematic view of
the pattern.

measured pattern as symbolized in Figure 12

elementary I/O action as symbolized in Figure 18
(Nproc = number of processes)

based on
resp. for nonblocking mode

MPI_File_write / MPI_File_read
MPI_File_iwrite / MPI_File_iread

MPI_BYTEetype

MPI_BYTEfiletype

MPI_Datatype MPI_BYTE

Δ t (in μsec) as indicated in Figure 12, aggregate
and non aggregate for Write case

reported timings

reported throughput X/Δt, aggregate and non aggregate for Write case

Table 14: P_[ACTION]_priv definition

Figure 18: P_[ACTION]_priv pattern

PR. I+1

PR. I-1

 PR. I

MPI_File_[ACTION]

..............

private file for each process

X / Nproc bytes

File I+1File I File I-1

 33 of 52

 Intel ® MPI Benchmarks

4.2.4.7 C_[ACTION]_indv
C_[ACTION]_indv tests collective access from all processes to a common
file, with an individual file pointer.

Table 15 below shows the basic definitions, and a schematic view of the
pattern is shown in Figure 15.

MPI_File_read_all /
MPI_File_write_all
MPI_File_.._all_begin -
MPI_File_.._all_end

based on

resp. for nonblocking mode

all other parameters,
measuring method

see 4.2.4.3

Table 15: C_[ACTION]_indv definition

4.2.4.8 C_[ACTION]_expl
This pattern performs collective access from all processes to a common file,
with an explicit file pointer

Table 16 below shows the basic definitions, and a schematic view of the
pattern is shown in Figure 16.

based on

resp. for nonblocking mode

MPI_File_read_at_all /
MPI_File_write_at_all
MPI_File_.._at_all_begin -
MPI_File_.._at_all_end

all other parameters,
measuring method

see 4.2.4.4

Table 16: C_[ACTION]_expl definition

4.2.4.9 C_[ACTION]_shared
Finally, here a collective access from all processes to a common file, with a
shared file pointer is benchmarked.

Table 17 below shows the basic definitions, and a schematic view of the
pattern is shown in Figure 17, with the crucial difference that here the order
of blocks is preserved.

MPI_File_read_ordered /
MPI_File_write_ordered
MPI_File_.._ordered_begin-
MPI_File_.._ordered_end

based on

resp. for nonblocking
mode

all other parameters,
measuring method

see 4.2.4.5

Table 17: C_[ACTION]_shared definition

 34 of 52

 Intel ® MPI Benchmarks

4.2.4.10 Open_Close
Benchmark of an MPI_File_open / MPI_File_close pair. All proc-
esses open the same file. In order to prevent the implementation from op-
timizations in case of an unused file, a negligible non trivial action is per-
formed with the file, see Figure 19. Table 18 below shows the basic defini-
tions.

MPI_File_open / MPI_File_closemeasured pattern

MPI_BYTEetype

MPI_BYTEfiletype

reported timings t=Δt (in μsec) as indicated in Figure 19

reported throughput none

Table 18: Open_Close definition

Figure 19: Open_Close pattern

4.2.5 Non-blocking I/O Benchmarks
Each of the non-blocking benchmarks, see Table 1, has a blocking equiva-
lent explained in section 4.2.4. All the definitions can be transferred identical,
except their behavior with respect to

• aggregation (the non-blocking versions only run in aggregate mode)

• synchronism

As to synchronism, only the meaning of an elementary transfer differs from
the equivalent blocking benchmark. Basically, an elementary transfer looks
as follows.

all active processes

MPI_File open
MPI_File_write (1 byte File)
MPI_File_close

Δ t

 35 of 52

 Intel ® MPI Benchmarks

time = MPI_Wtime()

for (i=0; i<n_sample; i++)

{

Initiate transfer

Exploit CPU

Wait for end of transfer

}

time = (MPI_Wtime()-time)/n_sample

The “Exploit CPU“ section is arbitrary. A benchmark such as IMB can only
decide for one particular way of exploiting the CPU, and will answer certain
questions in that special case. There is no way to cover generality, only hints
can be expected.

4.2.5.1 Exploiting CPU
IMB uses the following method to exploit CPU. A kernel loop is executed
repeatedly. The kernel is a fully vectorizable multiply of a 100 × 100 matrix
with a vector. The function is scaleable in the following way:
CPU_Exploit(float desired_time, int initialize);

The input value of desired_time determines the time for the function to
execute the kernel loop (with a slight variance, of course). In the very begin-
ning, the function has to be called with initialize=1 and an input value for
desired_time. It will determine an Mflop/s rate and a timing t_CPU (as close
as possible to desired_time), obtained by running without any obstruction.
Then, during the proper benchmark, it will be called (concurrent with the
particular I/O action), with initialize=0 and always performing the same
type and number of operations as in the initialization step.

4.2.5.2 Displaying results
Three timings are crucial to interpret the behavior of non-blocking I/O, over-
lapped with CPU exploitation:

• t_pure = time for the corresponding pure blocking I/O action, non
overlapping with CPU activity

• t_CPU = time the CPU_Exploit periods (running concurrently with
nonblocking I/O) would use when running dedicated

• t_ovrl = time for the analogous non-blocking I/O action, concurrent
with CPU activity (exploiting t_CPU when running dedicated)

A perfect overlap would mean: t_ovrl = max(t_pure,t_CPU).
No overlap would mean: t_ovrl = t_pure+t_CPU.
The actual amount of overlap is
overlap = (t_pure + t_CPU - t_ovrl)/min(t_pure,t_CPU) (*)

IMB results tables will report the timings t_ovrl,t_pure,t_CPU and the
estimated overlap obtained by (*) above. In the beginning of a run the
Mflop/s rate corresponding to t_CPU is displayed.

 36 of 52

 Intel ® MPI Benchmarks

4.2.6 Multi - versions
The definition and interpretation of the Multi- prefix is analogous to the
definition in the MPI1 section (see 3.2).

5 Benchmark Methodology

Some control mechanisms are hard coded (like the selection of process
numbers to run the benchmarks on), some are set by preprocessor parame-
ters in a central include file. There is a standard and an optional mode to
control IMB. In standard mode, all configurable sizes are predefined and
should not be changed. This assures comparability for a result tables in
standard mode. In optional mode, the user can set those parameters at own
choice. For instance, this mode can be used to extend the results tables as
to larger transfer sizes.

The following graph shows the flow of control inside IMB. All emphasized
items will be explained in more detail.

For (all_selected_benchmarks)

 For (all_selected_process_numbers)

Select MPI communicator MY_COMM to run the benchmark, (see 5.2.2)

Figure 20: Control flow of IMB

The control parameters obviously necessary are either command line argu-
ments (see 5.1.2) or parameter selections inside the IMB include files
settings.h / settting_io.h (see 5.2).

 For (all_selected_transfer(message)_sizes X) (see 5.2.4)

 Initialize message resp. I/O buffers (see 5.2.5)

Other preparations (see 5.2.3)

MY_COMM != MPI_COMM_NULL

 Yes No

Synchronize processes of MY_COMM

(see 5.2.7)
Execute benchmark (transfer size = X)
(see 3.3.1, 4.2.5)

MPI_Barrier (MPI_COMM_WORLD)

 Output results (see 6)

 37 of 52

 Intel ® MPI Benchmarks

5.1 Running IMB, command line control

After installation, the executables IMB-MPI1, IMB-EXT and/or IMB-IO
should exist.

Given P, the (normally user selected) number of MPI processes to run IMB,
a startup procedure has to load parallel IMB. Lets assume, for sake of sim-
plicity, that this done by
mpirun -np P IMB-<..> [arguments]

P=1 is allowed and sensible for all IO and (if one likes) also for all message
passing benchmarks except the Single Transfer ones. Control arguments (in
addition to P) can be passed to IMB via (argc,argv). Command line argu-
ments are only read by process 0 in MPI_COMM_WORLD. However, the com-
mand line options are broadcast to all other processes.

5.1.1 Default case
Just invoke
mpirun -np P IMB-<..>

All benchmarks will run on Q=[1,] 2, 4, 8, ..., largest 2 <P, Px proc-
esses (Q=1 as discussed above IMB-IO). E.g. P=11, then Q=[1,]2,4,8,11
processes will be selected. Single Transfer IMB-IO benchmarks will run only
with Q=1, Single Transfer IMB-EXT benchmarks only with Q=2.

The Q processes driving the benchmark are called the active processes.

5.1.2 Command line control
The general syntax is
mpirun -np P IMB-<..>

 [-h[elp]]

 [Benchmark1 [Benchmark2 [...]]]

 [-npmin P_min]

 [-multi Outflag]

 [-input <Input_file>]

 [-msglen <File>]

 [-map <P>x<Q>]

(where the 6 major [] may appear in any order).

− Examples:
mpirun -np 8 IMB-IO

mpirun –np 10 IMB-MPI1 PingPing Reduce

mpirun -np 11 IMB-EXT -npmin 5

mpirun -np 14 IMB-IO P_Read_shared -npmin 7

mpirun -np 3 IMB-EXT -input IMB_SELECT_EXT

mpirun –np 14 IMB-MPI1 –multi 0 PingPong Barrier
 -map 2x7

5.1.2.1 Benchmark selection arguments
A sequence of blank-separated strings, each being the name of one IMB-
<..> benchmark (in exact spelling, case insensitive). The benchmark names
are listed in Table 1.

 38 of 52

 Intel ® MPI Benchmarks

Default (no benchmark selection): select all benchmarks.

5.1.2.2 -npmin selection
The argument after -npmin has to be an integer P_min, specifying the mini-
mum number of processes to run all selected benchmarks.

• P_min may be 1

• P_min > P is handled as P_min = P

• Default (no -npmin selection): see 5.1.1.

Given P_min, the selected process numbers are P_min, 2P_min, 4P_min,
..., largest 2 P_min <P, Px .

5.1.2.3 -multi <outflag> selection
For selecting Multi/non-Multi mode. The argument after –multi is the
meta-symbol <outflag> and this meta-symbol represents an integer value
of either 0 or 1. This flag just controls the way of displaying results.

• Outflag = 0: only display max timings (min throughputs) over all ac-
tive groups

• Outflag = 1: report on all groups separately (may become longish)

• Default (no –multi selection): run primary (non Multi) versions.

5.1.2.4 -input <File> selection
An ASCII input file is used to select the benchmarks to run, e.g. a file
IMB_SELECT_EXT looking as follows:

IMB benchmark selection file

every line must be a comment (beginning with #), or it
must contain exactly 1 IMB benchmark name

#Window
Unidir_Get
#Unidir_Put
#Bidir_Get

#Bidir_Put
Accumulate

By aid of this file,
mpirun IMB-EXT -input IMB_SELECT_EXT

would run IMB-EXT benchmarks Unidir_Get and Accumulate.

5.1.2.5 –msglen <File> selection
Enter any set of nonnegative message lengths to an ASCII file, line by line.
Call it, e.g., “Lengths” and call IMB with arguments

-msglen Lengths

This lengths value then overrides the default message lengths (see 5.2.4).
For IMB-IO, the file defines the I/O portion lengths.

 39 of 52

 Intel ® MPI Benchmarks

5.1.2.6 –map PxQ selection
Numbers processes along rows of the matrix

0 P .. (Q-2)P (Q-1)P
1
…
P-1 2P-1 (Q-1)P-1 QP-1

E.g., in order to run Multi-PingPong between two nodes of size P, with
each process on one node communicating with its counterpart on the other,
call

mpirun –np <2P> IMB-MPI1 –map <P>x2 PingPong

5.2 IMB parameters and hard-coded settings

5.2.1 Parameters controlling IMB
There are 9 parameters (set by preprocessor definition) controlling IMB. The
definition is in the files

settings.h (IMB-MPI1, IMB-EXT) and settings_io.h (IMB-IO).

A complete list and explanation of settings.h is in Table 19 below.

Both include files are almost identical in structure, but differ in the standard
settings. Note that some names in settings_io.h contain MSG (for “mes-
sage“), in consistency with settings.h.

 40 of 52

 Intel ® MPI Benchmarks

Parameter
(standard mode value)

Meaning

IMB_OPTIONAL
(not set)

has to be set when user optional settings are to be acti-
vated

MINMSGLOG
(0)

second smallest data transfer size is max(unit,2MINMSGLOG)
(the smallest always being 0), where
unit = sizeof(float) for reductions, unit = 1 else

MAXMSGLOG
(22)

largest message size is 2MAXMSGLOG

Sizes 0, 2 (i=MINMSGLOG,..,MAXMSGLOG)i are used

MSGSPERSAMPLE
(1000)

max. repetition count for all IMB-MPI1 benchmarks

MSGS_NONAGGR
(100)

max. repetition count for non aggregate benchmarks (rele-
vant only for IMB-EXT)

OVERALL_VOL
(40 MBytes)

for all sizes < OVERALL_VOL, the repetition count is
eventually reduced so that not more than OVERALL_VOL
bytes overall are processed. This avoids unnecessary repe-
titions for large message sizes. Finally, the real repetition
count for message size X is

MSGSPERSAMPLE (X=0),

min(MSGSPERSAMPLE,max(1,OVERALL_VOL/X))
(X>0)

NOTE: OVERALL_VOL does not restrict the size of the
max. data transfer. 2 MAXMSGLOG is the largest size, independ-
ent of OVERALL_VOL

N_WARMUP
(2)

Number of Warmup sweeps (see5.2.6)

N_BARR
(2)

Number of MPI_Barrier for synchronization (5.2.7)

TARGET_CPU_SECS
(0.01)

CPU seconds (as float) to run concurrent with non-blocking
benchmarks (currently irrelevant for IMB-MPI1)

Table 19: IMB (MPI1/EXT) parameters (settings.h)

IMB allows for two sets of parameters: standard and optional.

Below a sample of file settings_io.h is shown. Here, IMB_OPTIONAL is
set, so that user defined parameters are used. I/O sizes 32 and 64 Mbytes
(and a smaller repetition count) are selected, extending the standard mode
tables.

If IMB_OPTIONAL is deactivated, the obvious standard mode values are
taken.

Note:
IMB has to be re-compiled after a change of
settings.h/settings_io.h.

 41 of 52

 Intel ® MPI Benchmarks

#define FILENAME "IMB_out"
#define IMB_OPTIONAL
#ifdef IMB_OPTIONAL
#define MINMSGLOG 25
#define MAXMSGLOG 26
#define MSGSPERSAMPLE 10
#define MSGS_NONAGGR 10
#define OVERALL_VOL 16*1048576
#define TARGET_CPU_SECS 0.1 /* unit seconds */
#define N_BARR 2
#else
/*DON'T change anything below here !!*/
#define MINMSGLOG 0
#define MAXMSGLOG 24
#define MSGSPERSAMPLE 50
#define MSGS_NONAGGR 10
#define OVERALL_VOL 16*1048576
#define TARGET_CPU_SECS 0.1 /* unit seconds */
#define N_BARR 2
#endif

5.2.2 Communicators, active processes
Communicator management is repeated in every “select MY_COMM“ step in
Figure 20. If exists, the previous communicator is freed. When running
Q<=P processes, the first Q ranks of MPI_COMM_WORLD are put into one
group, the remaining P-Q get MPI_COMM_NULL in Figure 20.

The group of MY_COMM is called active processes group.

5.2.3 Other preparations

5.2.3.1 Window (IMB_EXT)
An Info is set (see section 5.2.3.3) and MPI_Win_create is called, creat-
ing a window of size X for MY_COMM. Then, MPI_Win_fence is called to
start an access epoch.

5.2.3.2 File (IMB-IO)
The file initialization consists of

• selecting a file name:
Parameter in include file settings_io.h. In a Multi case, a suffix
_g<groupid> is appended to the name. If the file name is per proc-
ess, a (second evt.) suffix _<rank> will be appended

• deleting the file if exists:
open it with MPI_MODE_DELETE_ON_CLOSE
close it

• selecting a communicator to open the file, which will be:
MPI_COMM_SELF for S_ benchmarks and P_[ACTION]_priv,
MY_COMM as selected in 5.2.2 above else.

• selecting amode = MPI_MODE_CREATE | MPI_MODE_RDWR

• selecting an info, see 5.2.3.3

5.2.3.3 Info
IMB uses an external function User_Set_Info which the user is allowed to
implement at best for the current machine. The default version is:

 42 of 52

 Intel ® MPI Benchmarks

#include ″mpi.h″

void User_Set_Info (MPI_Info* opt_info)

#ifdef MPIIO

{/* Set info for all MPI_File_open calls */

*opt_info = MPI_INFO_NULL;

}

#endif

#ifdef EXT

{/* Set info for all MPI_Win_create calls */

*opt_info = MPI_INFO_NULL;

}

#endif

IMB uses no assumptions and imposes no restrictions on how this routine
will be implemented.

5.2.3.4 View (IMB-IO)
The file view is the determined by the settings

• disp = 0
• datarep = native

• etype, filetype as defined in the single definitions in section 0

• info as defined in 5.2.3.3

5.2.4 Message / I-O buffer lengths

5.2.4.1 IMB-MPI1, IMB-EXT
Set in settings.h (see 5.2.1), used unless –msglen flag is selected (ref.
5.1.2.5).

5.2.4.2 IMB-IO
Set in settings_io.h (see 5.2.1) , used unless –msglen flag is selected
(ref. 5.1.2.5).

5.2.5 Buffer initialization
Communication and I/O buffers are dynamically allocated as void* and
used as MPI_BYTE buffers for all benchmarks except Accumulate. See 7.1
for the memory requirements. To assign the buffer contents, a cast to an
assignment type is performed. On the one hand, a sensible data-type is
mandatory for Accumulate. On the other hand, this facilitates results
checking which may become necessary eventually (see 7.2).

IMB sets the buffer assignment type by typedef assign_type in

settings.h/settings_io.h

Currently, int is used for IMB-IO, float for IMB-EXT (as this is sensible for
Accumulate). The values are set by a CPP macro, currently

#define BUF_VALUE(rank,i) (0.1*((rank)+1)+(float)(i)

(IMB-EXT), and

 43 of 52

 Intel ® MPI Benchmarks

#define BUF_VALUE(rank,i) 10000000*(1+rank)+i%10000000

(IMB-IO).

In every initialization, communication buffers are seen as typed arrays and
initialized as to
((assign_type*)buffer)[i] = BUF_VALUE(rank,i);

where rank is the MPI rank of the calling process.

5.2.6 Warm-up phase (MPI1, EXT)
Before starting the actual benchmark measurement for IMB-MPI1 and IMB-
EXT, the selected benchmark is executed N_WARMUP (defined in set-
tings.h, see 5.2.1) times with the maximum message length. This is to
hide eventual initialization overheads of the message passing system.

5.2.7 Synchronization
Before the actual benchmark, N_BARR (constant defined in settings.h
and settings_io.h, current value 2) many

MPI_Barrier(MY_COMM)

(ref. Figure 20) assure that all processes are synchronized.

5.2.8 The actual benchmark
In order to reduce measurement errors caused by to insufficient clock reso-
lution, every benchmark is run repeatedly. The repetition count for MPI1- or
aggregate EXT / IO benchmarks is MSGSPERSAMPLE (constant defined in
settings.h/settings_io.h, current values 1000 / 50). In order to avoid
excessive runtimes for large transfer sizes X, an upper bound is set to
OVERALL_VOL/X (OVERALL_VOL constant defined in settings.h /
settings_io.h, current values 4 / 16 Mbytes). Finally,

n_sample = MSGSPERSAMPLE (X=0)

n_sample = max(1,min(MSGSPERSAMPLE,OVERALL_VOL/X)) (X>0)

is the repetition count for all aggregate benchmarks, given transfer size X.

The repetition count for non aggregate benchmarks is defined completely
analogously, with MSGSPERSAMPLE replaced by MSGS_NONAGGR (a re-
duced count is sensible as non aggregate runtimes are normally much
longer).

In the following, elementary transfer means the pure function
(MPI_[Send,…], MPI_Put, MPI_Get, MPI_Accumulate,
MPI_File_write_XX, MPI_File_read_XX), without any further function
call. Recall that assure transfer completion means MPI_Win_fence (one
sided communications), MPI_File_sync (I/O Write benchmarks), and is
empty for all other benchmarks.

 44 of 52

 Intel ® MPI Benchmarks

5.2.8.1 MPI1 case
for (i=0; i<N_BARR; i++) MPI_Barrier(MY_COMM)

time = MPI_Wtime()

for (i=0; i<n_sample; i++)

 execute MPI pattern

time = (MPI_Wtime()-time)/n_sample

5.2.8.2 EXT and blocking I/O case

For the aggregate case, the kernel loop looks like:
for (i=0; i<N_BARR; i++)MPI_Barrier(MY_COMM)

/* Negligible integer (offset) calculations ... */

time = MPI_Wtime()

for (i=0; i<n_sample; i++)

 execute elementary transfer

assure completion of all transfers

time = (MPI_Wtime()-time)/n_sample

In the non aggregate case, every single transfer is safely completed:
for (i=0; i<N_BARR; i++)MPI_Barrier(MY_COMM)

/* Negligible integer (offset) calculations ... */

time = MPI_Wtime()

for (i=0; i<n_sample; i++)

 {

 execute elementary transfer

 assure completion of transfer

 }

time = (MPI_Wtime()-time)/n_sample

5.2.8.3 Non-blocking I/O case
As explained in 4.2.5, a non-blocking benchmark has to provide three tim-
ings (blocking pure I/O time t_pure, non-blocking I/O time t_ovrl (concur-
rent with CPU activity), pure CPU activity time t_CPU). Thus, the actual
benchmark consists of

• Calling the equivalent blocking benchmark as defined in 5.2.8 and tak-
ing benchmark time as t_pure

• Closing and re-opening the particular file(s)

• Once again synchronizing the processes

• Running the non blocking case, concurrent with CPU activity (exploit-
ing t_CPU when running undisturbed), taking the effective time as
t_ovrl.

The desired CPU time to be matched (approximately) by t_CPU is set in
settings_io.h:

#define TARGET_CPU_SECS 0.1 /* unit seconds */

 45 of 52

 Intel ® MPI Benchmarks

6 Output

Output is most easily explained by sample outputs, and therefore one should
examine the tables below. What one sees is the following.

• General information
Machine, System, Release, Version are obtained by the code
IMB_g_info.c:

 #include <sys/utsname.h>

 void IMB_make_sys_info()

{

 int dont_care, mpi_subversion, mpi_version;

 struct utsname info;

 uname(&info);

 dont_care = MPI_Get_version(&mpi_version,&mpi_subversion);

 fprintf(unit,"# Machine : %s\n",info.machine);

 fprintf(unit,"# System : %s\n",info.sysname);

 fprintf(unit,"# Release : %s\n",info.release);

 fprintf(unit,"# Version : %s\n",info.version);

 fprintf(unit,"# MPI Version : %-d.%-d\n",mpi_version,mpi_subversion);

 fprintf(unit,"# MPI Thread Environment: ");

 switch (mpi_thread_environment) {

 case MPI_THREAD_SINGLE :

 fprintf(unit,"MPI_THREAD_SINGLE\n");

 break;

 case MPI_THREAD_FUNNELED :

 fprintf(unit,"MPI_THREAD_FUNNELED\n");

 break;

 case MPI_THREAD_SERIALIZED :

 fprintf(unit,"MPI_THREAD_SERIALIZED\n");}

 break;

 default :

 fprintf(unit,"MPI_THREAD_MULTIPLE\n");

 break;

 }

}

• Non multi case numbers
After a benchmark completes, 3 time values are available: Tmax,
Tmin, Tavg, the maximum, minimum and average time, respec-
tively, extended over the group of active processes. The time unit is
μsec.

 46 of 52

 Intel ® MPI Benchmarks

Single Transfer Benchmarks:
Display X = message size [bytes], T=Tmax[μsec],
bandwidth = X / 1.048576 / T
Parallel Transfer Benchmarks:
Display X = message size, Tmax, Tmin and Tavg, bandwidth
based on time = Tmax
Collective Benchmarks:
Display X = message size (except for Barrier), Tmax, Tmin and
Tavg

• Multi case numbers
–multi 0: the same as above, with max, min, avg over all
groups.
–multi 1: the same for all groups, max, min, avg over single
groups.

 47 of 52

 Intel ® MPI Benchmarks

6.1 Sample 1

<..> np 2 IMB-MPI1 PingPong Allreduce

#---
Intel (R) MPI Benchmark Suite V3.0, MPI-1 part
#---
Date : Tue Jul 11 16:23:46 2006
Machine : x86_64
System : Linux
Release : 2.6.9-34.ELsmp
Version : #1 SMP Fri Feb 24 16:56:28 EST 2006
MPI Version : 2.0
MPI Thread Environment: MPI_THREAD_SINGLE

Minimum message length in bytes: 0
Maximum message length in bytes: 4194304

MPI_Datatype : MPI_BYTE
MPI_Datatype for reductions : MPI_FLOAT
MPI_Op : MPI_SUM

List of Benchmarks to run:

PingPong
Allreduce

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 1000
 1 1000
 2 1000
 4 1000
 8 1000
 16 1000
 32 1000
 64 1000
 128 1000
 256 1000
 512 1000
 1024 1000
 2048 1000
 4096 1000
 8192 1000
 16384 1000
 32768 1000
 65536 640
 131072 320
 262144 160
 524288 80
1048576 40
2097152 20
4194304 10
#---
Benchmarking Allreduce
(#processes = 2)
#---
 #bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]
 0 1000
 4 1000
 8 1000
 16 1000
 32 1000
 64 1000
 128 1000
 256 1000

 48 of 52

 Intel ® MPI Benchmarks

 512 1000
 1024 1000
 2048 1000
 4096 1000
 8192 1000
 16384 1000
 32768 1000
 65536 640
 131072 320
 262144 160
 524288 80
1048576 40
2097152 20
4194304 10

6.2 Sample 2

<..> –np 6 IMB-MPI1
 pingping allreduce -map 2x3 -msglen Lengths -multi 0

Lengths file:
0
100
1000
10000
100000
1000000

#---
Intel (R) MPI Benchmark Suite V3.0, MPI-1 part
#---
Date : Tue Jul 11 16:54:11 2006
Machine : x86_64
System : Linux
Release : 2.6.9-34.ELsmp
Version : #1 SMP Fri Feb 24 16:56:28 EST 2006
MPI Version : 2.0
MPI Thread Environment: MPI_THREAD_SINGLE

Minimum message length in bytes: 0
Maximum message length in bytes: 4194304

MPI_Datatype : MPI_BYTE
MPI_Datatype for reductions : MPI_FLOAT
MPI_Op : MPI_SUM

List of Benchmarks to run:

(Multi-)PingPing
(Multi-)Allreduce

#--
Benchmarking Multi-PingPing
(2 groups of 2 processes each running simultaneous)
Group 0: 0 2

Group 1: 1 3

#--

 #bytes #rep.s t_min[usec] t_max[usec] t_avg[usec] Mbytes/sec
 0 1000
 100 1000
 1000 1000
 10000 1000
 100000 419
1000000 41

 49 of 52

 Intel ® MPI Benchmarks

#--
Benchmarking Multi-Allreduce
(2 groups of 2 processes each running simultaneous)
Group 0: 0 2

Group 1: 1 3

#--
 #bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]
 0 1000
 100 1000
 1000 1000
 10000 1000
 100000 419
1000000 41

#--
Benchmarking Allreduce
#processes = 4; rank order (rowwise):
0 2

1 3

#--
 #bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]
 0 1000
 100 1000
 1000 1000
 10000 1000
 100000 419
1000000 41

6.3 Sample 3

<..> IMB-IO –np 2 p_write_indv -npmin 2
#---
Intel (R) MPI Benchmark Suite V3.0, MPI-IO part
#---
Date : Tue Jul 11 17:21:34 2006
Machine : x86_64
System : Linux
Release : 2.6.9-34.ELsmp
Version : #1 SMP Fri Feb 24 16:56:28 EST 2006
MPI Version : 2.0
MPI Thread Environment: MPI_THREAD_SINGLE

Minimum io portion in bytes: 0
Maximum io portion in bytes: 16777216

List of Benchmarks to run:

P_Write_Indv

#--
Benchmarking P_Write_Indv
#processes = 2
#--

MODE: AGGREGATE

 #bytes #rep.s t_min[usec] t_max t_avg Mb/sec
 0 50
 1 50
 2 50
 4 50
 8 50
 16 50
 32 50

 50 of 52

 Intel ® MPI Benchmarks

 64 50
 128 50
 256 50
 512 50
 1024 50
 2048 50
 4096 50
 8192 50
 16384 50
 32768 50
 65536 50
 131072 50
 262144 50
 524288 32
 1048576 16
 2097152 8
 4194304 4
 8388608 2
16777216 1

#--
Benchmarking P_Write_Indv
#processes = 2
#--

MODE: NON-AGGREGATE

 #bytes #rep.s t_min[usec] t_max t_avg Mb/sec
 0 10
 1 10
 2 10
 4 10
 8 10
 16 10
 32 10
 64 10
 128 10
 256 10
 512 10
 1024 10
 2048 10
 4096 10
 8192 10
 16384 10
 32768 10
 65536 10
 131072 10
 262144 10
 524288 10
 1048576 10
 2097152 8
 4194304 4
 8388608 2
16777216 1

 51 of 52

 Intel ® MPI Benchmarks

7 Further details

7.1 Memory requirements

Benchmarks Standard mode memory Optional mode memory demand
demand per process per process
 (Q active processes) MAXMSGLOGX = 2()

Alltoall Q × 8 MBytes Q × 2X bytes

Allgather,
Allgatherv

(Q+1) × 4 MBytes (Q+1) × X bytes

All other MPI1
benchmarks

8 MBytes 2X bytes

IMB-EXT 80 Mbytes 2 max(X,OVERALL_VOL)
bytes

IMB-IO 32 Mbytes 2X bytes

 disk space overall disk space overall

IMB-IO 16 Mbytes max(X,OVERALL_VOL) bytes

Table 20 : Memory requirements with standard settings

7.2 Results checking

By activating the cpp –DCHECK CPPFLAGS flag through the variable (see
2.1), and recompiling, at IMB runtime every message passing result will be
checked against the expected outcome (note that the contents of each
buffer is well defined, see 5.2.5). Output tables will contain an additional
column displaying the diffs as floats (named). defects

: -DCHECK Attention results are not valid as real benchmark data! Don’t
forget to deactivate DCHECK and recompile in order to get proper results.

8 Revision History

Release No. Date

2.3 Nov. 2004

3.0 June 2006

 52 of 52

	1 Introduction
	1.1 Changes vs. IMB_2.3

	2 Installation and Quick Start of IMB
	2.1 Installing and running

	3 IMB-MPI1
	3.1 General
	3.2 The benchmarks
	3.3 IMB-MPI1 benchmark definitions
	3.3.1 Benchmark classification
	3.3.1.1 Single Transfer benchmarks
	3.3.1.2 Parallel Transfer benchmarks
	3.3.1.3 Collective benchmarks

	3.3.2 Definition of Single Transfer benchmarks
	3.3.2.1 PingPong
	3.3.2.2 PingPing

	3.3.3 Definition of Parallel Transfer benchmarks
	3.3.3.1 Sendrecv
	3.3.3.2 Exchange

	3.3.4 Definition of Collective benchmarks
	3.3.4.1 Reduce
	3.3.4.2 Reduce_scatter
	3.3.4.3 Allreduce
	3.3.4.4 Allgather
	3.3.4.5 Allgatherv
	3.3.4.6 Alltoall
	3.3.4.7 Alltoallv
	3.3.4.8 Bcast
	3.3.4.9 Barrier

	4 MPI-2 part of IMB
	4.1 The benchmarks
	4.2 IMB-MPI2 benchmark definitions
	4.2.1 Benchmark classification
	4.2.1.1 Single Transfer benchmarks
	4.2.1.2 Parallel Transfer benchmarks
	4.2.1.3 Collective benchmarks

	4.2.2 Benchmark modes
	4.2.2.1 Blocking / non-blocking mode (only IMB-IO)
	4.2.2.2 Aggregate / Non Aggregate mode

	4.2.3 Definition of the IMB-EXT benchmarks
	4.2.3.1 Unidir_Put
	4.2.3.2 Unidir_Get
	4.2.3.3 Bidir_Put
	4.2.3.4 Bidir_Get
	4.2.3.5 Accumulate
	4.2.3.6 Window

	4.2.4 Definition of the IMB-IO benchmarks (blocking case)
	4.2.4.1 S_[ACTION]_indv
	4.2.4.2 S_[ACTION]_expl
	4.2.4.3 P_[ACTION]_indv
	4.2.4.4 P_[ACTION]_expl
	4.2.4.5 P_[ACTION]_shared
	4.2.4.6 P_[ACTION]_priv
	4.2.4.7 C_[ACTION]_indv
	4.2.4.8 C_[ACTION]_expl
	4.2.4.9 C_[ACTION]_shared
	4.2.4.10 Open_Close

	4.2.5 Non-blocking I/O Benchmarks
	4.2.5.1 Exploiting CPU
	4.2.5.2 Displaying results

	4.2.6 Multi - versions

	5 Benchmark Methodology
	5.1 Running IMB, command line control
	5.1.1 Default case
	5.1.2 Command line control
	5.1.2.1 Benchmark selection arguments
	5.1.2.2 -npmin selection
	5.1.2.3 -multi <outflag> selection
	5.1.2.4 -input <File> selection
	5.1.2.5 –msglen <File> selection
	5.1.2.6 –map PxQ selection

	5.2 IMB parameters and hard-coded settings
	5.2.1 Parameters controlling IMB
	5.2.2 Communicators, active processes
	5.2.3 Other preparations
	5.2.3.1 Window (IMB_EXT)
	5.2.3.2 File (IMB-IO)
	5.2.3.3 Info
	5.2.3.4 View (IMB-IO)

	5.2.4 Message / I-O buffer lengths
	5.2.4.1 IMB-MPI1, IMB-EXT
	5.2.4.2 IMB-IO

	5.2.5 Buffer initialization
	5.2.6 Warm-up phase (MPI1, EXT)
	5.2.7 Synchronization
	5.2.8 The actual benchmark
	5.2.8.1 MPI1 case
	5.2.8.2 EXT and blocking I/O case
	5.2.8.3 Non-blocking I/O case

	6 Output
	6.1 Sample 1
	6.2 Sample 2
	6.3 Sample 3

	7 Further details
	7.1 Memory requirements
	7.2 Results checking

	8 Revision History

