Cheran Sorin Cristian
EMEA HPC Competency Center

RUNNING LINPACK

The LINPACK Benchmark was introduced by Jack Dongarra.
the LINPACK Benchmark is used to solve a dense system of linear equations.

benchmark that allows the user to scale the size of the problem and to optimize the
software in order to achieve the best performance for a given machine.

The result is given in number of FLOP per second.

Rpeak is the theoretical valued calculated. This shows the maximum number of FLOPS
that the system might achieve.

Rmax is the number of FLOPS returned by the LINPACK benchmark. @

CPUs : Theoretical performance- SERVER

Rounded values

eak Linpack
hi Number of Flops/cycle i i % off
server chip cores GFlops/serv | GFlops/serv 7 eft.
er er

any 25 X5670 (2.93GHz) 12 4 per core 140 125 89%
4S X7650(3.0GHz) 24 4 per core 288 260 89%
85 X7650(3.0GHz) 48 4 per core 576 460 88%
any 25 06174(2.2GHz) 24 4 per core 211 180 85%
any 45 06174(2.2GHz) 48 4 per core 422 360 84%

CPUs : Performance- CLUSTER Rounded values

Calculating the Rpeak for a cluster

Cluster of 12 nodes with BL280 with processors of 2.4 GHz each

Rmax = 12 (servers) x 12 (cores) x 4 (FLOPs) x 2.4 GHz = 1382.4 FLOPs.
Expected Rpeak = DEPENDS ON THE INTERCONNECT.

If INTERCONNECT= 1GB => 40-50% Rmax

If INTERCONNECT= 10GB => 60-65% Rmax

If INTERCONNECT= IB => 75-90% Rmax (depends on the network architecture)

COMPILING LINPACK = What do we need?

Rounded values

Math Library:
1. Goto
2. Acml
3. Mkl

Linpack — Output Example

Rounded values

Server: BL280 G6 — 8 cores at 3.0
Rpeak: 8 (cores) x 4 (Flops) x 3.0 = 96 GFLOPs

Rmax = 82.32 GFLOPs

Efficiency = 85.75%.

Linpack — Simple lets Run ©

Normally one downloads hpl from the web

This time around lets take it from /tmp/test/hpl.tgz
cp /tmp/test/hpl.igz .

tar —zxvf hpl.tgz
cd hpl

Here we have written a script that compiles the linpack using different platforms

Compiling LINPACK

in hpl directory run

. [trng21@tunturi hpl]$./prepbin.csh
if (0 < 3)then

usage: ./ﬁrepbin.csh <gnu | openb4 | pgi| intel>
<impi | hpmpi | pmpi | gmpi | parampi | mpich | mpich2 | mvapich | mvapich2 | openmpi> [amd | intel]

exit 1
[trng21 @tunturi hpl]$

SO YOU WOULD HAVE TO CHOSE
COMPILER - — MPI - ARCHITECTURE

prepbin.csh

It is a series of “cases”

sefenv c $1 < compiler
sefenv | $2 < library
setenv m $3 <- mpi

setenv a ""$4 <- architecture

Switch
Compiler

<

case pgl

case gnu
case
openb64

switch
library

switch
orchl’rec’ru re

Running LINPACK

We use the script run.csh which has as a parameter just the number of cores on
which | want to run.

The Linpack is called at the end of the file:

(/usr/bin/time srun -n $np -N 1 $0/bin/mine/xhpl)| & tee myoutput.$np
ATTENTION: we also need to set in the SCRIPT the —-N 1
Use —nodelist=n[30X]

Where X is the team number

Output tiles

Everything will be saved in a directory of the form :
work. ${np}P.${nt}T. Cdate +"%m%d%H%M"*.$$

Example:
work.2P.1T. 11290228.26479

Interesting file to look at is myoutput. ${np}

lets Run ©

cd /home/<YOUR_USER_NAME>/hpl

Jrun.csh 1 &
./run.csh 8 &

It might fail ©

Go back to run.csh and add on the srun line the following:
~-mem-per-cpu=307/2

(/usr/bin/time srun -n $np -N 1 —nodelist=n[30X] - -mem-per-cpu=3072
$o/bin/mine/xhpl) | & tee myoutput.$np

