
Introduction to Linux

and

Using CSC

Environment Efficiently

October 20 - 21, 2014

CSC, Espoo

Introduction UNIX

A slow-pace course for absolute UNIX

beginners

October 20th, 2014

Lecturers (in alphabetical order):

Urpo Kaila

Tomasz Malkiewicz

Atte Sillanpää

Thomas Zwinger

Program
09:45 – 10:00 Morning coffee + registration

10:00 – 10:15 Introduction to the course (whereabouts, etc.)

10:15 – 10:45 What is UNIX/Linux?: history and basic concepts (multi-user, multi-

tasking, multi-processor)

10:45 – 11:15 Linux on my own computer: native installation, dual-boot, virtual

appliances

11:15 – 12:15 A first glimpse of the shell: simple navigation, listing, creating/removing

files and directories

12:15 – 13:15 lunch

13:15 – 13:30 Text editors: vi and emacs

13:30 – 14:15 File permissions: concepts of users and groups, changing

permissions/groups

14:15 – 14:30 coffee break

14:30 – 14:45 Linux security

14:45 – 15:15 Job management: scripts and executables, suspending/killing jobs,

monitoring, foreground/background

15:15 – 15:45 Setup of your system: environment variables, aliases, rc-files

15:45 – 16:45 A second look at the shell: finding files and contents, remote

operations, text-utils, changing shells

16:45 – 17:00 Troubleshooter: Interactive session to deal with open questions

How we teach

All topics are presented with interactive

demonstrations

– Please, indicate immediately, if pace is too

fast. We want to have everyone with us all the

time

Additionally, exercises to each of the

sections will be provided

The Troubleshooter section is meant for

personal interaction and is (with a time-

limit to 17:00) kept in an open end style

Practicalities

Keep the name tag visible

Lunch is served in the same building

Toilets are in the lobby

Network:
– WIFI: eduroam, HAKA authentication

– Ethernet cables on the tables

– CSC-Guest accounts upon request

Bus stops
– Other side of the street (102,103) -> Kamppi/Center (note, underpass)

– Same side, towards the bridge (194,195,503-6) -> Center/Pasila

– Bus stops to arrive at CSC at the same positions, just on opposite sides

If you came by car: parking is being monitored - ask for a temporary parking permit
from the reception (tell which workshop you’re participating)

Visiting outside: doors by the reception desks are open

Room locked during lunch
– lobby open, use lockers

Username and password for workstations: given on-site

5CSC presentation

Around CSC

CSC presentation 6

B1

B2

CSC

(K4 Salad bar) (THINK restaurant)

Restaurant

Training room

B1 (102,103) Kamppi

B2 (194/5,503/4/…  Pasila,…

Restaurant

What is UNIX/Linux: history and basic concepts

From a technical point of view

UNIX and Linux are:

– Operating systems

– Multi-user systems (esp. servers)

– Multitasking systems

UNIX has a large commercial branch:

– AIX®

– HP-UX ®

– SCO ®, SGI-IRIX ®, Solaris®, Digital-UNIX ®

But also open source:

– E.g., Open-Solaris, Open-BSD

From a technical point of view

Linux is not UNIX

– They share a common interface POSIX (Portable

Operating System Interface) that is standardized by

IEEE

– They diverge in their code-base:

Unix was developed at AT&T in the early 70’s (Thompson,

Ritchie)

Linux started in the 90’s just 6 km from here in Computational

Science Institute (Univ. Helsinki): Linus Torvalds

MINIX is a second open source UNIX-like operating system

(some parallels to Linux)

http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers

A short history

From http://en.wikipedia.org/wiki/File:Unix_history-simple.svg (see license there)

http://en.wikipedia.org/wiki/File:Unix_history-simple.svg

OS shares
Category Source Date Linux based Other Unix In-House Windows Other

Desktop,

laptop,

netbook

Net

Applications[3

4]

Jan-14
1.60%

(Ubuntu)
7.68% (OS X)

90.72% (XP, 7,

Vista, 8)

Smartphone,

tablet

StatCounter

Global

Stats[35]

Jan-14
44.95%

(Android)
33.70% (iOS) 1.79% (WP8, RT)

19.46

%

Server (web)
W3Techs
[36][24] Jan-14

34.62%

(Debian,

CentOS,

RHEL)

32.48%

(BSD, HP-

UX, Aix,

Solaris)

32.90% (W2K3,

W2K8)

Supercomput

er
TOP500 [33] Nov-13

96.4%

(Custom)
2.4% (UNIX) 0.4% 0.8%

Mainframe Gartner[31] Dec-08
28% (SLES,

RHEL)

72%

(z/OS)

Gaming

console

Nintendo,

Sony,

Microsoft,

Ouya [37]

Jun-13

0%

(SteamOS,

Android)

29.6% (PS3) 40.9% (Wii) 29.5% (Xbox)

Embedded

UBM

Electronics
[38]

Mar-12

29.44%

(Android,

Other)

4.29% (QNX) 13.5% 11.65% (WCE 7) 41.1%

Source: http://en.wikipedia.org/wiki/Usage_share_of_operating_systems

http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Windows
http://en.wikipedia.org/wiki/Desktop_computer
http://en.wikipedia.org/wiki/Laptop
http://en.wikipedia.org/wiki/Netbook
http://en.wikipedia.org/wiki/Net_Applications
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems
http://en.wikipedia.org/wiki/Ubuntu_(operating_system)
http://en.wikipedia.org/wiki/OS_X
http://en.wikipedia.org/wiki/Windows_XP
http://en.wikipedia.org/wiki/Windows_7
http://en.wikipedia.org/wiki/Windows_Vista
http://en.wikipedia.org/wiki/Windows_8
http://en.wikipedia.org/wiki/Smartphone
http://en.wikipedia.org/wiki/Tablet_computer
http://en.wikipedia.org/wiki/StatCounter
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/IOS
http://en.wikipedia.org/wiki/Windows_Phone_8
http://en.wikipedia.org/wiki/Windows_RT
http://en.wikipedia.org/wiki/Server_(computing)
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems
http://en.wikipedia.org/wiki/Debian
http://en.wikipedia.org/wiki/CentOS
http://en.wikipedia.org/wiki/RHEL
http://en.wikipedia.org/wiki/BSD
http://en.wikipedia.org/wiki/HP-UX
http://en.wikipedia.org/wiki/IBM_AIX
http://en.wikipedia.org/wiki/Solaris_(operating_system)
http://en.wikipedia.org/wiki/Windows_Server_2003
http://en.wikipedia.org/wiki/Windows_Server_2008
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/TOP500
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems
http://en.wikipedia.org/wiki/Supercomputer_operating_systems
http://en.wikipedia.org/wiki/UNIX
http://en.wikipedia.org/wiki/Mainframe_computer
http://en.wikipedia.org/wiki/Gartner
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems
http://en.wikipedia.org/wiki/SUSE_Linux_Enterprise_Server
http://en.wikipedia.org/wiki/RHEL
http://en.wikipedia.org/wiki/Z/OS
http://en.wikipedia.org/wiki/Gaming_console
http://en.wikipedia.org/wiki/Nintendo
http://en.wikipedia.org/wiki/Sony
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Ouya
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems
http://en.wikipedia.org/wiki/SteamOS
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/PlayStation_3_system_software
http://en.wikipedia.org/wiki/IOS_(firmware)
http://en.wikipedia.org/wiki/Xbox_Dashboard
http://en.wikipedia.org/wiki/Embedded_operating_system
http://en.wikipedia.org/wiki/UBM_plc
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems
http://en.wikipedia.org/wiki/Embedded_Linux
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Linux_for_embedded_systems
http://en.wikipedia.org/wiki/QNX
http://en.wikipedia.org/wiki/Windows_Embedded
http://en.wikipedia.org/wiki/Windows_Embedded_Compact_7
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems

OS shares: TOP500

Source:

http://en.wikipedia.org/wiki/File:Operating_systems_used_on_top_500_supercomputers.svg

http://en.wikipedia.org/wiki/File:Operating_systems_used_on_top_500_supercomputers.svg

Common features

File system:

– Supporting: files, directories, device files

– latter added: sockets (API’s for inter-process

communication) and symbolic links 1)

– Similar layout (see next slide): directory tree

– Mounted (=external) devices appear within the

same tree under mount points, e.g.,

/media/usb1

This is contrary to common default on Windows®,

where different physical disks usually have different

letters (C:, D:, etc.)

1) Comparable to shortcuts in Windows GUI

Directory tree
/ Root-tree

/etc System wide configuration

/boot Boot configuration, kernel image

/dev Device files

/home

/userid
Users’ home directories

/root Root (=system administrator user) home

/usr

/lib

/include

/bin

Distribution application

libraries

library headers

executable

/usr/local Similar than usr with lib, include and bin for additional

applications

/opt Locally installed packages

/media Often default where external disks are mounted (also /mnt)

Linux distributions

Incredibly fast development

Main trees:

– Slackware/ Suse

– RedHat/Fedora

– Debian/ Ubuntu

Countless spin-offs

Graphics on UNIX/Linux

X11 or X-Windows:

– Common window system

– Incompatible with Windows (needs emulator)

– Possible on OS X as additional package (Mac)

– Not efficient, if exported over low-bandwidth

connections (use remote desktop, instead)

Graphical User Interface (GUI):

– X11 itself needs a window manager on top of it

– Versatile GUI’s: Gnome, KDE

Linux is possible to be deployed as a desktop OS

http://xquartz.macosforge.org/landing/

Linux on my own computer

Running your own Linux

Basically, three options:

1. Run native Linux on you computer

– Includes the option of dual boot (two OS’s

side-by-side, but optionally booting into one of

them)

– Not recommended: run as live-system (boot

from USB/CD)

2. Run it inside a Virtual Machine

3. Run it remotely over the network

– Includes remote login and remote desktops

– Depends on network connection

Dual boot

Boot loader in the beginning gives choice

of which OS to load

Pros:

– native Linux works faster and all resources of

computer are dedicated to a single OS

– Windows file-system can be mounted

Cons:

– changing between OS’s needs reboot of

machine

– Mounting of Linux/Unix file-systems on

Windows at least problematic

Dual boot

I have a Windows machine, what do I have to

do to install Linux parallel (as dual boot) to

it?:

1. Provide a separate disk(-partition) on computer

• It is possible (e.g., in Ubuntu) to install into existing

Windows system, but you loose performance

• Some installation medias allow for live-mode (Linux

running from USB/CD) and have a repartitioning

program within (always backup your data!)

2. Download the image of your favorite Linux

distribution (see later)

3. Installation generally guides you also through

boot-loader configuration

Virtual machines

Running an application inside your native OS that

emulates hardware on which you can install

another OS

Pros:

– Seamless integration of Linux (guest) in host system

– Data exchange between guest and host

– Suspend system (no new boot, leave applications open)

– Backup and portability (copy to new computer)

Cons:

– Performance loss of guest system (SW layer between)

– Shared resources between guest and host

Virtual machines

I have a Windows computer. How can I

install Linux running in a Virtual Machine

(VM)?

1. Make sure you have the hardware to support

a VM (CPU, memory > 2GB, disk-space)

2. Download a VM software (see next slide) and

install it

3. Download an image of your favorite Linux

distribution (see later)

4. Mount the medium in your VM and install as if

it would be a normal computer

5. Instead of 3+4: Download a ready made

virtual appliance (~virtual computer system)

Virtual machines

Two main vendors for VM packages:

– VMware™ Player (free-of-charge)

Only max 4 cores supported in VM

– Oracle (former Sun) VirtualBox (open-source)

Supports even Vmware virtual disks

Usually, additional tools (Vmware-tools)

have to be installed

Important to know the hardware, especially

CPU type (32- or 64bit)

– Might need adjustments in BIOS

Virtual Appliances: Google or FUNET

https://my.vmware.com/web/vmware/downloads
https://www.virtualbox.org/
http://www.nic.funet.fi/pub/sci/physics/elmer/bin/Vmware/

Remote connection

From OS X:

– ssh and X available – like from a Linux

machine

From Windows ®:

– Needs a ssh client: e.g. PuTTY

– If graphics, needs a X11-emulator: e.g. Xming

Remote desktops:

– Needs a server running

– Certain software (client + server)

– CSC is maintaining such a service (see

tomorrow): NoMachine, NX

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://sourceforge.net/projects/xming/
https://www.nomachine.com/
https://research.csc.fi/-/nomachine
https://www.nomachine.com/

A first glimpse of the shell

Contents

What is a shell?

What is a

command?

Listing of directories

Contents of a file

Moving around

Directories

Files

What is a shell?

“A shell in computing provides a user

interface for access to an operating

system's kernel services.” (Wikipedia)

Remote login:

– Normally no GUI (Graphical User Interface)

– Text shell: Terminal with a set of commands

Different flavours:

– bash (default), tcsh (old default), zsh, corn-

shell, …

http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Kernel_(computing)

What is a command?

A command is a small program provided

by the shell

The over-all structure of a command is:

command -option [optional input]

Example:

ls –lsh /etc/init.d (we will see later)

Case sensitive? Try: Ls –lsh /etc/init.d

How to find a command? apropos list

How to find all options? man ls

Listing of directories

Prints contents of a directory or information
on a file

Detailed list of directory:

ls –lthr /etc/

-l displays additional information (detailed list in Windows)

-h displays size in human readable format

-t orders by date (use –r to reverse order, i.e., oldest first)

-d keeps from going into sub-directories

Only print directory/filenames matching a
wildcard expression: ls –d /etc/*.d

Only print directory/filenames with a 4 char
suffix: ls –l /etc/*.????

Contents of a file

Prints contents of file to screen:

cat /etc/group

-n to precede lines with line numbers

What if the file doesn’t fit on the screen?:

Open a scrollable view of a file:

less /etc/group

Press q to quit

/ to search forward, ? to search backwards

n to find the next match, N for previous

Moving around in directrories

change directory: cd /etc/

print work directory: pwd →/etc

go to subdirectory: cd ./init.d

pwd → /etc/init.d

Relative path: cd ../

pwd -> /etc

Absolute path: cd /etc/init.d

Combination: cd ../../usr

pwd -> /usr

Where is my home?: cd or cd ~/

Creating and (re-)moving directories

Make a new directory: mkdir test1

Relative to (existing) path:

mkdir test1/anotherone

Recursively: mkdir –p test2/anotherone

Moving a directory: mv test2 test3

Removing a directory: cd test1

rmdir anotherone

cd ..

rmdir test1

rmdir test3

Recursively: rmdir –p test3/anotherone

Creating/copying/(re-)moving files

In UNIX: everything is text

Redirecting output of command/programs

into files:

echo “hello world” > mytest.txt

Important: if file exists, it will be overwritten!

Appending to existing files:

echo “hello again” >> mytest.txt

cat mytest.txt

cat mytest.txt > othertest.txt

Creating/copying/(re-)moving files

Copy a file: cp mytest.txt othertest2.txt

Same with directory:

mkdir –p test/anotherone

cp –r test test2

Move a file (renaming):

mv mytest.txt othertest3.txt

mv othertest3.txt test2/anotherone

Remove file(s): rm –f mytest.txt

Remove recursively: rm –r test2

Further resources

CSC’s online user guide:

http://research.csc.fi/csc-guide

All the man-pages of the commands mentioned in

these slides

The UNIX-wiz sitting by your side

Else:
– http://www.ee.surrey.ac.uk/Teaching/Unix/index.html

– http://en.wikipedia.org/wiki/List_of_Unix_utilities

http://research.csc.fi/csc-guide
http://www.ee.surrey.ac.uk/Teaching/Unix/index.html
http://en.wikipedia.org/wiki/List_of_Unix_utilities

Text editors

Texteditors: vi

Default on each system:

mkdir test

cd test

cp /etc/group lala

vi lala

– Delete char: X

– Delete line: dd

– Insert-mode: i

– New line above (below): O (o)

– Exit insert.mode: ESC

– Undo: u -Search: / and n to continue

– Write and quit: :wq

Texteditors: emacs

Almost on any system

More WYSIWYG

Menu-buttons

emacs lala

– Delete char: DEL

– Delete line: CTRL + K

– Query-replace: ESC + %

then enter expressions

press ! for auto replace

– Search: CTRL + S

– Save: CTRL + X followed by CTRL + S

– Exit: CTRL + X followed by CTRL + C

Texteditors: nano

• ^x (Ctrl-x) to exit (prompts for save)

• ^o to save without exiting

• Depending on

the system, you

may want to use

other editors:

gedit, ed, …

File permissions

File permissions

UNIX distinguishes between users, groups and

others

– Check your groups: groups

Each user belongs to at least one group

ls –l displays the attributes of a file or directory

-rw-r--r-- 1 userid groupid 0 Jan 29 11:04 name

u
s
e
r

g
ro

u
p

o
th

e
rs

r = read, w=write, x=execute

The above configuration means: user can read + write, group and all others only read

ty
p
e

File permissions

Changing permissions with chmod
> ls –l lala

> rw-r--r-- 1 userid groupid 0 Jan 29 11:04 lala

> chmod o-r,g+w,u+x lala

> ls –l lala

> rwxrw---- 1 userid groupid 0 Jan 29 11:04 lala

> chmod u-xrw lala

> less lala

Changing group chgrp and user chown
> chgrp othergrp lala

> chown otherusr lala

> ls –l name

> rwxrw---- 1 otherusr othergrp 0 Jan 29 11:04 lala

File permissions

You can make a simple text file to be

executed – your first script

Open file befriendly.sh and insert

following lines:

Change to executable:

Execute: > chmod u+x befriendly.sh

> ./befriendly.sh

#!/bin/bash

echo "Hello and welcome"

echo "today is:"

date

echo "have a nice day"

Urpo Kaila <urpo.kaila@csc.fi>

Introduction to

Linux Security

Introduction to Linux and

Using CSC Environment

Efficiently course

Oct 20-21, 2014

What is Security actually?

Security is a set of appropriate procedures to

protect your resources (your data, your account,

your services and your reputation) against risks

The main aspects of security are

– Confidentiality (don’t let others access or forward your

confidential data, such as passwords, personal data,

business secrets)

– Integrity (don’t let others change your data without

permission, beware of malware and hackers)

– Availability (keep your data and services available for

yourself and those who should have access to it)

Security Risks and Compliance

Typical risks for Linux users:

– Compromised account (#1!)

– System compromise and spying

– Denial of Service

– Surveillance

– Infrastructure related issues

– Bad user and system administration

– Legal issues

You must comply with laws and Terms of Use

– Do not endanger other users or the Infrastructure

– Protect personal data and other confidential information

– As a User, you are responsible to protect your account

Security related obligations in

CSC General Terms of Use (1/2)
Do not:

– Share your credentials, leave them for

others to see, or neglect any security

responsibilities defined in the service

description.

– Misuse or abuse any CSC or third

party service or property, including

intellectual property. Obviously

breaking the law is considered misuse.

– Misuse or abuse Users Content, credentials or other

confidential information.

– Send or transmit harassing, abusive, libellous, obscene or

unsolicited (spam) communications.

Security related obligations in

CSC General Terms of Use (2/2)

Do not:

– Tamper with or deliberately disrupt system

resources or network traffic to the Services.

– Users agree to notify CSC promptly if their

account has been used without permission

or if their credentials have been lost or stolen.

– Users are liable, even after the user account

has been terminated, for any damage and

costs CSC incurs as a result of violating

these terms.

How to protect yourself?

Compromised account

– Use only good passwords (hard to guess, easy to remember)

– 8 chars min, (large alphabet, no dictionary worlds), use password

managers (such as KeePass)

– Be careful with public systems and services (never recycle passwords)

– User keys instead of passwords (but protect your keys too!)

System compromise

– Patch your own system regularly, keep firewall (iptables, ufw) on, use

only necessary services

Denial of Service

– Offer only the necessary services to others

Surveillance

– Don’t store any confidential information on cloud services

Bad user and system administration

– Beware of forgotten test accounts, patch your system regularly

Patch and secure your own computer!

Install patches regularly:

– Debian: apt-get update && apt-get uppgrade

– RHEL/Centos: yum update

– GUI and scheduled

Do not run any unnecessary services

– Email, WWW, SMB

Anti-virus on windows computers

Enable local firewall

– Iptables, yum

ufw enable

ufw allow ssh, ufw default deny incoming

Do not keep test accounts with bad passwords

– Systems are continuously scanned by intruders

Create and use ssh-keys
cscuser@algol ~]$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/cscuser/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/cscuser/.ssh/id_rsa.

Your public key has been saved in /home/cscuser/.ssh/id_rsa.pub.

The key fingerprint is: 57:2b:b3:c8:f1:3d:46:10:... cscuser@algol.csc.fi

The key's randomart image is:

+--[RSA 2048]----+

| ...oE . . |

...

[cscuser@algol ~]$ scp .ssh/id_rsa.pub user@sisu.csc.fi:.ssh/authorized_keys

Password:

id_rsa.pub

cscuser$ ssh sisu.csc.fi

+-[Welcome]---+

| CSC - Tieteen tietotekniikan keskus - IT Center for Science |

..

Bonus for the smart & lazy user: ssh-agent (if you want to log in many times per day)

Your private key:

Id_rsa (or id_dsa)

Your public key

Id_rsa.pub

On you local and

on your remote host

Encrypt your data

Use native encryption on your workstation

– Available for Windows, Linux and Mac

– Improves basic protection

Encrypt confidential email with PGP/GnuPG

– Can be a little bit difficult to

implement for non-technical

people

– No centralised key-management

– Plug-ins for email clients

Encrypting cloud content

– Some solutions available

CSC is a Reliable Partner

CSC complies to requirements

and best practices on Information

Security

– National requirements (Raised

Information Security Level)

Audited several times

– International Standards

ISO 27001:2005 Certification

for CSC Datacenters in Espoo and in

Kajaani

100+ manadatory controls

Peering with national and

international security partners

In case of security incidents or

other infosec matters, contact

security@csc.fi

Job management (in shell)

Managing jobs

By default commands (jobs) are run in
foreground > emacs newfile

Try to enter something in your shell

– does not respond

– emacs blocks the shell as long as you do not

quit it

Killing a job: in shell press Ctrl + C

– That is not recommended

– Usually only when program hangs

Managing jobs

Launch again into foreground

> emacs newfile

Type something into emacs

Suspending a job: in shell press Ctrl + Z

– Shell reports on stopped job

– type a command into the shell: > ls –ltr

– Try to type something into emacs

– The process of emacs is suspended, hence

does not accept any input

Managing jobs

Sending to background: > bg

– type a command into the shell: > ls –ltr

– type something into emacs

– It works now

Fetching back to foreground:

– Shell is blocked again

– emacs accepts input (but exit)

Launching directly into background:
> xterm –T “no 1” &

> xterm –T “no 2” &

Managing jobs

Listing jobs of shell: > jobs

Explicitly bring to foreground: > fg %2

– Send it back again: Ctrl + Z > bg

Killing job: > kill -9 %2

> jobs

[1] - Running xterm -T "no 1" &

[2]+ Running xterm -T "no 2" &

[1] - Running xterm -T "no 1" &

[2]+ Killed xterm -T "no 2"

Setup of system

Environment variables

Concept of global information, accessible

within the shell

Most of those variables are being set by

the system

How can I show them?

> printenv > myvariables.txt

> less myvariables.txt

search for HOME (using /HOME)

Environment variables

HOME is the environment variable that

contains the path to your home-directory

How to refer to the contents of an

environment variable?

> echo $HOME

> cd $HOME (is the same as cd ~/)

How to set my own variable:

– (ba)sh: export MYVARIABLE=“whatever you like"

– (t)csh1): setenv MYVARIABLE “whatever you like"

1) in tcsh a simple setenv (without further arguments) displays all environment variables that have been set

Environment variables

Important variables 1) :

– HOME contains the path to your home-directory

– USERNAME contains your login ID

– PATH contains all search-paths for executables

– PWD contains current directory (same as pwd

command would display)

– LD_LIBRARY_PATH contains search-paths for

shared objects (runtime libraries)

1) Default settings can vary between distribution and installations

How to change shell

If installed, it usually is enough to just type
the command of the shell: > tcsh

See what shell is running:

– If default shell is used: > echo $SHELL

– If one is loaded upon: > ps

Exit a currently loaded shell: > exit

How to find one’s default shell:

> less /etc/password (search for user-ID)

PID TTY TIME CMD

26111 pts/4 00:00:00 bash

26703 pts/4 00:00:00 tcsh

26778 pts/4 00:00:00 ps

System initialization

Usually done by special files:

– System wide setup files in /etc (don’t touch ‘em)

– Files in your $HOME-directory (they are at your

service)

– So, where are they? > ls –d .*

– The preceding dot hides them from normal ls

(option –a reveals hidden files)

– Exact list depends on Linux distribution

.bashrc .config

.emacs .emacs.d

.local .profile

.ssh

Creating your own command

You can define your own command using

an alias, either directly in the shell:

> alias hello='echo "hello world"'

> hello

Or put the line into .bashrc

– Next time you open a new bash-shell you will

have the new command

– Suggestion for something more useful:

> alias ltr='ls -ltrh'

> ltr

Creating your own command

You can execute scripts and executables

Earlier we created the file befriendly.sh
> mkdir bin

> mv befriendly.sh bin

If you now want to run the script:
> bin/befriendly.sh

That is complicated, hence
> export PATH="$PATH:$HOME/bin"

> echo $PATH

A second look at the shell

Finding stuff (1)

The hard way: cd yourself through the tree

and ls

The elegant way:

> find /etc -name "*.conf" -print

– Finds all config file in the /etc-tree

The alternative:

> locate *.conf

Finding stuff (2)

Finding expressions inside files:

– For instance, we want to know all files in the
directory /etc/init.d that contain keyword

“network”: > grep network /etc/init.d/*

– Or recursively: > grep –r network /etc

– Getting rid of noise:
> grep –r network /etc 2> /dev/null

Piping of output:

– Instead of re-directing into files, output can be

piped in a chain of commands:

> grep –r network /etc 2> /dev/null| grep start| less

Managing space

How much space is left on my filesystem?

> df -h

What are the sub-directories that consume

the most disk-space?

> du -sh ./*

Filesystem Size Used Avail Use% Mounted on

/dev/sda5 22G 20G 903M 96% /

/dev/sda1 447M 27M 396M 7% /boot

.host:/ 12G 8.0G 4.1G 66% /mnt/hgfs

1.4M bin

6.3M core

44K Desktop

696M Documents

1.2G Downloads

…

Login

Only secure connections (no telnet, rlogin)

are recommended

Secure Shell (SSH):

ssh name@target.computer.fi –X

-X tunnels the graphical output

e.g. ssh trgnXX@taito.csc.fi –X

More details in tomorrow’s course

Remote copying

scp is like cp, but used for remote transfer

> scp lala user@taito.csc.fi:'$HOME'

rsync works local as well as remotely and helps

to keep two (remote) directories in sync:
> mv lala test

> rsync –avt test/ test2

This syncs everything in test with test2

Important: Do not drop trailing /

– Remotely:

> rsync –avt test user@taito.csc.fi:'$HOME'

Quotes are

important here

Remote download

scp works also with remote computer as

source:
> scp user@taito.csc.fi:'$HOME/lala' .

If you know a source (=URL) on the

internet1) :

– Usually: Open browser and download

– Not possible/recommended to use a graphical

browser on a remote system

– Elegantly from the shell:
> wget http://ftp.gnu.org/gnu/hello/hello-2.7.tar.gz

1) Be sure you can trust the contents of the source – there is malware also in UNIX!

Here is a space

(De-)compressing files

Storage and copying of large files: make

them smaller

Several formats supported:

– gzip (GNU zip): .gz

– zip: .zip

– bzip2: .bz2, .bz

(De-)compressing files

GNU zip:
Inflate: > ls –l *.gz

> gunzip hello-2.7.tar.gz

> ls –l *.tar

Compress: > gzip hello-2.7.tar

> ls –l *.gz

ZIP:
Compress: > zip myvar.zip myvariables.txt

Directories: > zip -r test.zip test

Listing: > unzip –l myvar.zip

Inflate: > unzip myvar.zip

BZIP: Bzip2: bzip2, bunzip2 (-t for testing)

Archives of files

Most common: tar (tape archive)

– Take whole sub-tree and make a single compressed file

> tar cvzf myfirsttarfile.tar /etc/init.d

c create new archive

v verbosity

z gzip simultaneously

f target file

– Check contents (and simultaneously gzip):

> tar tvzf hello-2.7.tar.gz

– Unpack (and simultaneously gzip):

> tar xvzf hello-2.7.tar.gz

More tools (discussed tomorrow)

head, tail, wc, which,

time, ps, top

sed, sort, uniq, cut,

paste, awk, alias

Troubleshooter: Interactive session to deal with open questions and specific problems

Using CSC Environment Efficiently

October 21st, 2014

Lecturers:

Tapani Kinnunen

Tomasz Malkiewicz

Ari-Matti Saren

Atte Sillanpää

Thomas Zwinger

Program

09:00 - 09:10 Welcome
09:10 - 09:15 CSC at a glance
09:15 – 09:45 How to connect: how to access CSC's computers
09:45 – 10:00 Coffee break
10:00 - 10:30 Installation session: helping with installation of NX client, PuTTy, ...
10:30 - 11:15 Scientist's User Interface (SUI): introduction to web-based access to
CSC's services
11:15 - 12:15 Linux on supercomputers: a basic guide to use the shell
12:15 - 13:15 Lunch
(12:50-13:15 Supercomputer's tour for those who are interested)
13:15 - 13:45 CSC's computing environment: different platforms, module system
13:45 - 14:15 Coffee break
14:15 - 15:00 Running your jobs: resource-management (a.k.a. batch job) systems
15:00 - 15:30 Compiling your program (writing makefile, linking, debugging)
15:30 - 15:45 Science services at CSC: a short introduction
15:45 - 16:15 Troubleshooter: Interactive session to deal with open questions and
specific problems

Practicalities

Keep the name tag visible

Lunch is served in the same buildingToilets are in the lobby

Network:
– WIFI: eduroam, HAKA authentication

– Ethernet cables on the tables

– CSC-Guest accounts upon request

Bus stops
– Other side of the street (102,103) -> Kamppi/Center (note, underpass)

– Same side, towards the bridge (194,195,503-6) -> Center/Pasila

– Bus stops to arrive at CSC at the same positions, just on opposite sides

If you came by car: parking is being monitored - ask for a temporary parking permit
from the reception (tell which workshop you’re participating)

Visiting outside: doors by the reception desks are open

Room locked during lunch
– lobby open, use lockers

Username and password for workstations: given on-site

81CSC presentation

CSC at a Glance

CSC?

Non-profit company owned by
Ministry of education and culture

Services mainly free (as in beer)
for researchers

4250 registered users (2012)

Applications, computational
capacity, user support, FUNET,
information management
services, data services

Participating in 18 EU projects

Internationally competitive research

environments and e-Infrastructures

Collaboration with majority of European computing centers

• International research network organizations:

NORDUnet, TERENA, GÉANT (GN3)

• European research infrastructures and supporting projects:

ELIXIR, CLARIN, ENVRI

• International HPC projects and GRID-organizations:

Nordic e-Infrastructure Collaboration (NeIC), PRACE,

EGI-Inspire, HPC-Europa2

• European e-Infrastructure policy initiatives :

e-Infranet, e-Infrastructure Reflection Group (e-IRG)

EU Projects 2012

Datacenter CSC Kajaani

CSC’s modular Data Center in

Kajaani. Modern and reliable

infrastructure (national power grid,

roads, airline connections, data

networks)

The Funet Network ensures

excellent networking capabilities

around the world

Place for CSC’s next

supercomputers with other CSC

customer systems

Cost-Efficient Solution –

Sustainable and Green Energy

Supply

Software offered by CSC
Large selection (200+) of scientific software and databases

https://research.csc.fi/software

Selection based on researchers’ needs

Majority available for no additional cost – others: consortia

Benefits from centralization (license costs, maintenance, training,

continuity – one access point)

NoMachine remote desktop

Scientist’s User Interface: https://sui.csc.fi

https://research.csc.fi/software
https://sui.csc.fi/

555

207
99

97

78

61

57
57

38
33

181

Users of computing servers by organization 2012
(total 1463 users)

University of Helsinki

Aalto University

University of Jyväskylä

University of Turku

University of Oulu

University of Eastern Finland

Tampere University of
Technology
CSC (PRACE)

University of Tampere

CSC (Projects)

Other

435

251
151

136

136

50
39

36
31 30

168

Users of computing resources by discipline 2012
(total 1463 users)

Biosciences

Physics

Language research

Nanoscience

Chemistry

Grid usage

Computational fluid dynamics

Computational drug design

Earth sciences

Engineering

Other

35 %

30 %

11 %

6 %

5 %
4 %

3 %
2 % 2 % 2 %

Usage of processor time by discipline 2012
(total 96.5 million core hours)

Physics

Nanoscience

Chemistry

Biosciences

Astrophysics

Computational fluid
dynamics
Grid usage

Environmental
sciences
Computational drug
design
Other

Connecting to CSC

Learning targets

Be aware of different ways of accessing

CSC resources

CSC presentation 92

The (almost) Complete Picture

Access via any

of:

Ssh

NoMachine

Browser

(SUI)

Tunneling

ARC (FGI)

HAKA

iRODS

CSC presentation 93

Computing servers

Hippu3,4: HP

ProLiant DL580 G7

servers

2 x 32 Xeon X7560

2,26 GHz = 64 cores

1 TB memory/ node

Interactive and very

long jobs

Vuori: HP CP4000 BL

Proliant supercluster

240 x 2 x 6 AMD 2.6 GHz

= 2880 cores (+ 24 x 2 x 6

Intel X5650 2.6 GHz = 288

cores)

8 GPGPU nodes

96/32/16 GB memory /

node

+ FGI

Taito: HP ProLiant SL 230s

1152 x 16 Intel 2.6 GHz =

9216 cores

4/16/48 GB memory / core

(64/256/1536 GB / node)

FDR Infiniband

Serial and parallel jobs

Very large memory jobs

Sisu: Cray XC30

1688 x 24 Intel 2.6 GHz =

40512 cores

2.7 GB mem / core

Aries interconnect

Massively parallel jobs

Direct ssh connection – Unix/Linux

From UNIX/Linux/OSX command line

Use –X (or –Y) to enable remote graphics*

CSC presentation 95

ssh –X yourid@taito.csc.fi

ssh -l yourid –X taito.csc.fi

login as: asillanp

Last login: Tue Sep 24 13:12:21 2013 from php.csc.fi

┌─ Welcome ───┐

│ CSC - Tieteen tietotekniikan keskus - IT Center for Science │

│ HP Cluster Platform SL230s Gen8 TAITO │

├─ Contact ───┤

...

* In Windows you’d also need a windows emulator, but there is a better way

NoMachine Remote Desktop

Client connection between user and
gateway

Good performance even with slow
network

Ssh from gateway to server (fast if
local)

Connect to right gateway
– nxkajaani.csc.fi

– nxlogin.csc.fi

Persistent connection

Suspendable
– Continue later at another location

Read the instructions…
– ssh-key, keyboard layout, mac

specific workarounds, …

Choose an application or server to
use (right click)

CSC presentation 96

https://research.csc.fi/-/nomachine

Scientist’s User Interface - SUI

Access with browser
– HAKA or CSC password

File manager, Downloads,
Batch job script wizard,
Own projects and batch
jobs, ssh-client, Host-
monitor, My certificates, …
Note: if you don’t have a CSC account
you’ll only see a subset of services. To
make services available with the HAKA
authentication, login with the the CSC
username at least once (and pair the
accounts, will prompt for it).

CSC presentation 97

HAKA federation

HAKA is the identity federation of the

Finnish universities, polytechnics and

research institutions.

280000 users

HAKA authentication gives access with

your university account and password to:

– SUI

– Eduroam

– …

CSC presentation 98

https://www.csc.fi/-/haka-kayttajatunnistusjarjestel-1

Access with scientific software

Some software can be configured to use

CSC servers directly, e.g.

– TMolex, ADF, Maestro

The GUIs can be used to create and

submit jobs directly to the Taito queueing

system

CSC presentation 99

http://www.cosmologic.de/index.php?cosName=tmolex
http://www.scm.com/GUI/
http://research.csc.fi/-/maestro

Finnish Grid Infrastructure - FGI

Distributed computing capacity

9 universities + CSC

Requires a certificate

Lots of preinstalled software

Access with ARC –client

From your own computer or e.g. hippu

FGI guide

CSC presentation 100

arcproxy

arcsub jobscript.xrsl

arcget gsiftp://usva.fgi.csc.fi:2811/jobs/12465133890987654

https://confluence.csc.fi/display/fgi/FGI+User+Pages

Cloud services

For biomedical research (Elixir BMI)
– Extend your capacity with cloud resources

– Aimed for IT administrators

– More information:
BMI: virtualized hosting for biomedical research

Pouta is the CSC main IaaS service
– https://research.csc.fi/pouta-user-guide

– high performance computing

– Available for any CSC user

– Limited assistance with configurating your VM

CSC presentation 101

http://research.csc.fi/bmi-virtualized-hosting-for-biomedical-research
https://research.csc.fi/pouta-user-guide

Summary: How to access resources at CSC

Ssh terminal connection to CSC (+ X-term emulator for win)

Installation at your own computer, license from CSC
– Materials Studio, Discovery Studio, Ansys, …

GUI at your own computer, computation at CSC (ssh pipe)
– Tmolex, ADFgui, Discovery Studio

GUI at your own computer, input files to CSC by hand, jobs
launched from command prompt

Scientist’s User Interface (www based) sui.csc.fi
– File manager, certificates, terminal, software distribution, …

SOMA2: www based workflow manager, available in SUI
– Docking, Gaussian, …

ARC (Nordugrid) middleware to run jobs in FGI

NoMachine Remote desktop (etätyöpöytä)
– Client installed at your own computer, working with graphics at CSC

Cloud services: Elixir BMI or pouta.csc.fi
– Lots of freedom/flexibility and hence administration and configuration work

https://sui.csc.fi/
http://research.csc.fi/-/soma2
http://research.csc.fi/fgi
http://research.csc.fi/cloud-computing

Installation session: installation/configuration of NX client

Scientist's User Interface (SUI)

Scientist’s User Interface (SUI)

WWW-portal for all CSC users – https://sui.csc.fi

Sign up as customer

Manage your account

Access your data

Download material

Watch videos

Submit jobs

Monitor hosts and jobs

Use applications

Personalize your use

Participate

+ more

Easy to use services with rich user experience

CSC’s services integrated under one access point

Improved user experience – more than just a UNIX shell

Look & feel like in desktop applications
– Select, double click, context menus by right click, drag & drop, etc.

Help is always near – click -icon
– Help as a separate portal service

– Help modes of individual applications

Double click Right click

Scientist’s User Interface (SUI)

Use case – run job via SUI-portal

Generate and store suitable job script with Batch Job Script Wizard

Open terminal connection to Taito with SSH Console and submit job

or

Submit job with My Files

Monitor your job on Taito with Host Monitor

Examine and download results with My Files

Monitor your project’s resource usage with My Projects

Scientist’s User Interface (SUI)

Help

Watch SUI portal’s

tutorial videos

Learn how to use

SUI’s services

Scientist’s User Interface (SUI)

Forum

Participate in

discussion on forum

Quick way to find

information of SUI,

ask questions or give

feedback to developers

Share ideas for

new services

Scientist’s User Interface (SUI)

Scientist’s User Interface (SUI)

Contact Us

Another way to

contact or

give feedback

Direct feedback can

be sent privately and

anonymously

Scientist’s User Interface (SUI)

Sign Up

Quick and easy way

to Sign up

as CSC customer

Available for all users

by Haka login

By signing up you can

access all SUI’s

services, applications

and databases,

Hippu application

server + more

Services - Desktop

Personalize your

desktop by selecting

your favorite services

Sort/arrange by using

drag&drop

See messages

Scientist’s User Interface (SUI)

My Account

Maintain your account

information

Change password for

CSC environment

Define your personal

settings

Scientist’s User Interface (SUI)

Batch Job Script Wizard

Create job scripts

with easy to use forms

Save scripts locally or

in CSC $HOME

Instructions of how to

submit and monitor

Scientist’s User Interface (SUI)

Downloads

Access material

provided to you by

CSC

Software installation

packages, manuals,

videos etc.

Scientist’s User Interface (SUI)

Host Monitor

View statuses and

details of CSC’s

computing servers and

batch systems

Visualize history of CPU

usage and job count

Monitor jobs in all hosts

in single view

Control your own jobs

Scientist’s User Interface (SUI)

My Certificates

Process your X509

digital certificates

Format conversions,

export proxies, save

locally or to your CSC

$HOME

Setup grid usage in

CSC’s computers

Scientist’s User Interface (SUI)

My Files

Access your data in

CSC’s storage

services in single view

(computing servers,

Ida and HPC Archive)

Transfer files

Search your data

Submit jobs

Typical folder and file

operations are supported

Scientist’s User Interface (SUI)

My Projects

View information and

resource usage of

your CSC projects

Edit hosts for projects

Apply resources for

your CSC customer

project

Resource usage

presented by different

kind of exportable

graphs and data table

Scientist’s User Interface (SUI)

My Cloud Projects

Apply cloud

resources

for your CSC projects

View information of

cloud resource usage

Resource usage

presented by different

kind of exportable

graphs and data table

Scientist’s User Interface (SUI)

SSH Console

Connect to CSC’s

computing servers

UTF-8 character

translation support

Scientist’s User Interface (SUI)

Terms of Use

Read CSC’s

services’

terms of use

Scientist’s User Interface (SUI)

Science Field Specific Application Environments

Language Bank Rights
- http://www.csc.fi/english/research/sciences/linguistics/index_html

Lemmie – Corpus Query Interface
- http://www.csc.fi/english/research/software/www-lemmie

Digital Morphology Archives – DMA
- http://www.csc.fi/english/research/software/dma

Scientist’s User Interface (SUI)

Science Field Specific Application Environments

SOMA2 – Molecular Modeling Environment
- http://www.csc.fi/soma

PaITuli – Geospatial Data Service
- http://www.csc.fi/paituli

Scientist’s User Interface (SUI)

Linux on supercomputers: a basic guide to use the shell

Contents

Shells on CSC supercomputers

– bash (recommended)

– tcsh

Shell commands

Directories

Files

Programs

Useful tools

What is shell?

A shell is a program which provides the

traditional, text-only user interface for

Linux (and other Unix like systems)

Shell’s primary function is to

read commands that are typed into

a console or terminal window and

then execute them.

What is shell cont., bash on Taito

Text shell: Terminal with a set of commands

Different flavors

– bash (default)

– tcsh (old default)

– zsh,

– corn-shell, …

128

bash and tcsh comparison

bash tcsh invoking bash output tcsh output

Shell

variables
x=2 set x = 2 echo $x 2 2

Env.

variables
export z=3 setenv z 3 echo $z 3 3

PATH
export PATH=/

a:/b

set

path=(/a /b)

echo $path;

echo $PATH;

-

/a:/b

/a /b

/a:/b

Aliases alias ls="ls -l" alias ls "ls -l" ls same as ls -l same as ls –l

Command

prompt
PS1=abc-

set prompt=a

bc-
[ENTER] abc- abc-

Redirection
prog > ofile 2>

efile

(prog > ofile)

>& efile
[ENTER]

stdout -> ofile

stderr -> efile

stdout -> ofile

stderr -> efile

129

Shell commands

A command is an instruction given by a user

telling a computer to do something, e.g.:

– run a single program

– run a group of linked programs

Commands are generally issued by typing

them in at the command line and then

pressing the ENTER key, which passes them

to the shell

Commands cont.

Structure of a command:

command -option [optional input]

Examples

– apropos list

– ls –l

– clear

– finger username (Taito)

finger –m username (Sisu)

131

ls

• Prints names of files in current directory

• Prints contents of a directory, if given as

ls directory

• Only print filenames matching a wildcard expression

– ls *.txt

• Option -l gives more info

• May find useful on Taito and Sisu

– ls –lrt (reverse time ordered)

– ls -d /* --color=tty (list directories, colorize the

output)

mkdir [directory]

• Make a new directory

• -p to not complain about already existing

directory and to make missing parent directories

as needed

cd [directory]

• Change the current working directory

• cd .. to go up a directory

mv [source] [dest]

rm [file]

• Moves files or directories

• Can also rename files

• Removes files (be careful!)

• -r to remove a directory recursively

• -f to force removal (be supercareful!)

• Sometimes, e.g., on Taito, alias: rm = ’rm –i’

find [directory] [options]

• Finds files in a directory and it's

subdirectories that match the criteria given

with the options

• Common use case, find files with certain

names in the current directory:

find . -name '*.c’ -print

grep -e 'searchterm' [files]

• Search for matching lines inside files

• -i for case insensitive

• -n to print line numbers

cat [file]

• Prints contents of file to screen

• cat -n to precede lines with line numbers

pwd

• Print the current working directory

138

less [file]

• Opens a scrollable view of a file

• q to quit

• / to search forward, ? to search backwards

• n to find the next match, N for previous

• Some people prefer more [file], it allows

to scroll down, but not up

man [command]

• Show the manual of command in less

cp [source] [destination]

• Copy a file

• -r to copy recursively a directory and its

contents

• -v for verbose

scp [source] [dest]

• Like cp, but used for remote transfer

• For example: scp my_file

user@taito.csc.fi:’/absolute/path/to/dir’

rsync [source] [dest]

• Fast, versatile tool, remote and local usage

• E.g.: rsync my_file taito.csc.fi:

tar [commands] [file]

• Versatile tool used most in two ways

– tar xvf some_file.tar

• Extracts from file some_file.tar the contents of the archive verbosely

– tar cvf my_files.tar my_dir/

• Creates verbosely a new archive in file my_files.tar from the

directory my_dir/

– tar cvzf my_files.tar.gz my_dir/

• Apply gzip (i.e., compress the tar archive)

wget URL

• Used to download files from the internet

without a graphical browser such as

Firefox or Chrome

• For example: wget

http://ftp.gnu.org/gnu/hello/hello-2.7.tar.gz

to download the gnu program hello

Selected Taito aliases

• Type alias to get the full list

– alias chsh='/usr/alt/uadm2/bin/chsh'

– alias mv='mv -i'

– alias passwd='/usr/alt/uadm2/bin/passwd'

– alias quota='/etc/profile.d/csc/csc-quota.bash'

– alias sj='scontrol show job'

– alias sn='scontrol show node'

– alias vi='vim'

144

What is a program?

A program is a sequence of instructions understandable

by a computer’s central processing unit (CPU) that

indicates which operations the computer should perform

Ready-to-run programs are stored as executable

files

An executable file is a file that has been converted

from source code into machine code, by a

specialized program called a compiler

145

Programming languages at supercomputers

146

gcc [source files] [-o prog]

• Compiles C source files into a program

• -o to give the name of the program, defaults to

a.out

• -c to compile into .o -files

Compiling and installing programs

• For most programs, the three commands

to compile and install in directory

/home/user/programs are:

./configure --prefix=/home/user/programs

make

make install

• make will be discussed in detail later today

• Common destination: $USERAPPL

More useful tools

• head

• tail

• wc

• which

• time

• ps

• top

• touch

• sed

• sort

• uniq

• cut

• paste

• awk

Use case: set command prompt on Taito

1) Edit your profile file, e.g., with

vi or nano

• vi .profile

add:

• export

PS1='\[\033[1;30m\]\u\[\033[0m\]@\[\

033[1;34m\]\h\[\033[0m\]:[\w]# '

2) Apply changes

• source .profile

CSC Computing Environment

Learning target

Know how to choose right server (resource)

Know where to put your files

Know how to setup and use preinstalled

software

CSC presentation 151

hpc_archive

IDA

Taito.csc.fi

FGI$TMPDIR

Hippu.csc.fi

module spider
research.csc.fi

iput

?!

On Clusters and Supercomputers (1/2)

Shared Memory

Parallel (SMP):

– All processors

access (more or

less) the same

memory

– Within node

Distributed

Memory:

– Reserved memory

– Interconnection

network for

exchange

– Between nodes

CSC presentation 152

On Clusters and Supercomputers (2/2)

A cluster is a

connection of

separate units

(nodes) via a fast

network

–All larger CSC

platforms (Sisu,

Taito, FGI) are

clusters in a

general sense

CSC presentation 153

The Complete Picture (apart from PRACE, FGI, Cloud)

CSC presentation 154

Server use profiles

Taito (HP)

Serial and parallel upto

448 cores

Huge memory jobs

Lots of preinstalled

software

Sisu (Cray XE30)

Parallel from 72 up to

thousands of cores

Scaling tests 1008+

CSC presentation 155

Hippu (HP) (to be

decommissioned)

Interactive jobs

Very large long jobs

No queueing system

Pouta (HP) Cloud

Serial and parallel

upto 16 cores

FGI (HP)

Serial and parallel (16)

Main Computing capacity: Sisu,Taito,Vuori, FGI

156CSC presentation

Sisu
(Phase 2)

Taito
(Phase 1)

FGI Taygeta

Availability 2014- 2013- 2012- 2012-

CPU

Intel Haswell and Sandy
Bridge, 2 x 12 and 2 x 8

cores, 2.6 GHz, Xeon E5-
2690v3 and E5-2670

Intel Xeon,
2 x 6 cores,

2.7 GHZ, X5650

Interconnect Aries FDR IB QDR IB

Cores 40512 9344 7308 360

RAM/core 2.67 GB 4/16/48＊) GB
2 / 4 / 8

GB
4 GB

Tflops 1688 180 95 4

GPU nodes - 38 88 -

Disc space 4 PB 4 PB 1+ PB 0.8 TB

＊) 2 nodes a 32 cores with
1,5 TB RAM/node
(hugemem-queue)

Host Monitor in SUI

Load on

servers

Running jobs
(squeue)

sui.csc.fi

CSC presentation 157

FGCI – The Finnish Grid and Cloud

Infrastructure

Consortium of 9 Finnish Universities and

CSC

Infrastructure consists of 7368 cores and

100 GPU cards (+ Vuori)

Accessed via ARC middleware

Submit jobs from hippu/own workstation

Preinstalled software

More information: FGI webpages

CSC presentation 158

https://confluence.csc.fi/display/fgi/FGI+User+Pages

Directories at CSC Environment (1)

Directory or

storage area
Intended use

Default

quota/user
Storage time Backup

$HOME 1

Initialization scripts, source

codes, small data files.

Not for running programs or

research data.

20 GB Permanent Yes

$USERAPPL 1
Users' own application

software.
20 GB Permanent Yes

$WRKDIR 1 Temporary data storage. 5 TB
Until further

notice.
No

$TMPDIR 1 Temporary users' files. - 2 days No

Project 1

Common storage for project

members. A project can

consist of one or more user

accounts.

On request. Permanent No

HPC Archive 2 Long term storage. 2 TB Permanent Yes

IDA 2 Sharing and long term storage several TB At least -2017 Yes

159
1: Lustre parallel file system in Kajaani 2: iRODS storage system in Espoo

Directories at CSC Environment (2)

What can be
seen from where

Use $TMPDIR
for fast/random
file i/o

IDA/hpc_archive
accessed with i-
commands

CSC presentation 160

iRODS client

IDA

Directories at CSC Environment (3)

CSC presentation 161

taito.csc.fi sisu.csc.fi

iRODS interface,

disk cache

compute

nodes

login

nodes

Hpc_archive/IDA

Espoo

Your

workstation

SUIcompute

nodes

login

nodes

$TMPDIR
$TMPDIR

$USERAPPL → $HOME/xyz icp, …

icp, iput, ils, irm

$TMPDIR
$TMPDIR

$TMPDIR

$WRKDIR

$HOME

Your

workstation

Storage: hard disks

4 PB on DDN (Lustre), Sisu and Taito
– $USERAPPL: put your applications here

– /homeappl/home/username/app_taito

– /homeappl/home/username/app_sisu

– /tmp (Taito, ~2 TB) to be used for e.g. compiling codes
on the login nodes

– $TMPDIR on compute nodes: for scratch files (accessed
with $TMPDIR in batch script)

– $HOME for configuration files and misc. smallish storage

– $WRKDIR for large data and during calculations. Avoid
lots of small files.

Lustre for Hippu and Vuori to be decommissioned
in Espoo

CSC presentation 162

Storage: disks and tape

Disk/Tape space through IDA
– Requires an application

– 1 PB for Universities (local contacts at each university)

– 1 PB for Finnish Academy (SA)

– 1 PB for ESFRI and other needs (contact contact@csc.fi
for more information)

– Free of charge at least until 2017

– Access with i-commands, webdav (mapped as network
drive), SUI also from own computer

– Described with metadata

– Flexible sharing with colleagues/collaborators/public

Tape (+ disk cache) as hpc_archive
– Default long term storage

– Access with i-commands from Sisu/Taito

CSC presentation 163

https://www.tdata.fi/ida
mailto:contact@csc.fi

IDA interfaces at CSC

Some iRODS commands

 iput file move file to IDA

 iget file retrieve file from IDA

 ils list the current IDA directory

 icd dir change the IDA directory

 irm file remove file from IDA

 imv file file move file inside IDA

 irsync synchronize the local copy

with the copy in IDA

 imkdir create a directory to IDA

 iinit Initialize your IDA account

IDA in Scientist's User Interface

Tip: map IDA as a

network drive (good

for small files)

http://www.tdata.fi/verkkohakemisto

Moving files, best practices

tar & bzip first (bzip more error tolerant)

rsync, not scp (when lots of/big files)
– rsync -P username@hippu1.csc.fi:/tmp/huge.tar.gz .

Blowfish may be faster than AES (if CPU bottleneck)

Funet FileSender (max 50 GB [don’t try this as an attachment])
– https://filesender.funet.fi

– Files can be downloaded also with wget

iRODS, batch-like process, staging

IDA: http://www.tdata.fi/ida

CSC can help to tune e.g. TCP/IP parameters
– http://www.csc.fi/english/institutions/funet/networkservices/pert

FUNET backbone 10 Gbit/s

More info in CSC computing environment Guide

CSC presentation 165

https://filesender.funet.fi/
http://www.tdata.fi/ida
http://research.csc.fi/csc-guide

The module system

Tool to set up your environment

– Load libraries, adjust path, set environment

variables

– Needed on a server with hundreds of

applications and several compilers etc.

Slightly different on Taito vs. other systems

Used both in interactive and batch jobs

CSC presentation 166

Typical module commands

module avail shows available modules (compatible

modules in taito)

module spider shows all available modules in taito

module list shows currently loaded modules

module load <name> loads module <name> (default version)

module load <name/version>

loads module <name/version>

module switch <name1> <name2>

unloads module name1 and loads module name2

module purge unloads all loaded modules

CSC presentation 167

Taito has ”meta-modules” named e.g. gromacs-env, which will load all

necessary modules needed to run gromacs.

Module example

Show compatible modules on Taito
module avail

Initialize Desmond
module load desmond

Start Desmond via Maestro interface (see:
research.csc.fi/-/maestro)

It’s better to run the GUI (and calculations) on
a compute node (jobs that have used 1h of CPU on the
login node will be killed automatically)

For interactive work, use taito-shell.csc.fi

CSC presentation 168

http://research.csc.fi/-/maestro

Learning targets achieved?

How to choose right server (resource)?

Where to put your files?

How to setup and use preinstalled

software/libraries/compilers?

CSC presentation 169

Running jobs at CSC

Batch jobs learning target

Benefits of batch jobs for compute
intensive jobs
– Difference of login and compute node

How to submit and monitor jobs

Batch script contents i.e. requirements

How to learn requirements of own jobs

Be aware of batch script wizard in SUI

Submit first job(s)

Learn to read the the manual

https://sui.csc.fi/
https://research.csc.fi/csc-guide-batch-jobs

What is a batch system?

Optimizes resource usage by
filling the server with jobs

Cores, memory, disk, length, …

Jobs to run are chosen based on
their priority

Priority increases with queuing
time

Priority decreases with recently
used resources

Short jobs with little memory and
cores queue the least

CSC uses SLURM (Simple Linux
Utility for Resource Management)

http://serverstatus.csc.fi/index.phtml.en
http://serverstatus.csc.fi/index.phtml.en

Compute nodes are used via

queuing system

sbatch job_script.sh

./my_prog &

Batch job overview

 Steps for running a batch job

1. Write a batch job script

• Script details depend on server, check CSC Guide!

• You can use the Batch Job Script Wizard in Scientist’s User
Interface:

https://sui.csc.fi/group/sui/batch-job-script-wizard

2. Make sure all the necessary files are in $WRKDIR

• $HOME has limited space

• Login $TMPDIR is not available on compute nodes

3. Submit your job

sbatch myscript

https://sui.csc.fi/group/sui/batch-job-script-wizard

Batch Job Script wizard in Scientist’s User Interface

Batch Job Script wizard in Scientist’s User Interface

Batch jobs: what and why

 User has to specify necessary resources

 Can be added to the batch job script or given as command line options for
sbatch (or a combination of script and command line options)

 Resources need to be adequate for the job

 Too small memory reservation will cause the job to fail

 When the time reservation ends, the job will be terminated whether finished or
not

 But: Requested resources can affect the time the job spends in the queue

 Especially number of cores and memory reservation

 Don’t request extra ”just in case” (time is less critical than memory wrt this)

 So: Realistic resource requests give best results

 Not always easy to know beforehand

 Usually best to try with smaller tasks first and check the used resources

 You can check what was actually used with the sacct command

SLURM batch script contents

Example serial batch job script on Taito

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

#!/bin/bash -l

 Tells the computer this is a script that should be run

using bash shell

 Everything starting with ”#SBATCH” is passed on to

the batch job system (Slurm)

 Everything (else) starting with ”# ” is considered a

comment

 Everything else is executed as a command

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

#SBATCH -J myjob

 Sets the name of the job

 When listing jobs e.g. with squeue, only 8 first characters of

job name are displayed.

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

 Option –e sets the name of the file where possible error

messages (stderr) are written

 Option –o sets the name of the file where the standard

output (stdout) is written

 When running the program interactively these would be

written to the command promt

 What gets written to stderr and stderr depends on the

program. If you are unfamiliar with the program, it’s always

safest to capture both

 %j is replaced with the job id number in the actual file name

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

 Option --mail-type=END = send email when the job

finishes

 Option --mail-user = your email address.

 If these are selected you get a email message when the job

is done. This message also has a resource usage summary

that can help in setting batch script parameters in the future.

 To see actually used resources try also: sacct –l –j

<jobid> (more on this later)

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

#SBATCH -n 1

 Number of cores to use

 It’s also possible to control on how many nodes you job

is distributed. Normally, this is not needed. By default

use all cores in allocated nodes:

 --ntasks-per-node=16

 Check documentation: http://research.csc.fi/software

 There’s a lot of software that can only be run in

serial

 OpenMP applications can only use cores in one node

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

http://research.csc.fi/software

#SBATCH --mem-per-cpu=4000

 The amount of memory reserved for the job in MB

• 1000 MB = 1 GB

 Memory is reserved on per-core basis even for

shared memory (OpenMP) jobs

 Keep in mind the specifications for the nodes. Jobs with
impossible requests are rejected (try squeue after submit)

 If you reserve too little memory the job will be killed (you will

see a corresponding error in the output)

 If you reserve too much memory your job will spend much

longer in queue and potentially waste resources (idle cores)

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

#SBATCH -t 02:00:00

 Time reserved for the job in hh:mm:ss

 When the time runs out the job will be terminated!

 With longer reservations the job queue longer

 Limit for normal serial jobs is 3d (72 h)

• if you reserve longer time, the job will go to ”longrun” queue (limit 7d)

• In the longrun queue you run at your own risk. If a batch job in that

queue stops prematurely no compensation is given for lost cpu time!

• In longrun you likely queue for a longer time: shorter jobs and restarts

are better (safer, more efficient)

• Default job length is 5 minutes  need to be set by yourself.

TIP: If you’re

unsure of the

syntax, use

Batch job

wizard in SUI
#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

https://sui.csc.fi/group/sui/batch-job-script-wizard

#SBATCH -p serial

 The queue the job should be submitted to

 Queues are called ”partitions” in SLURM

 You can check the available queues with command

sinfo -l

PARTITION AVAIL TIMELIMIT JOB_SIZE ROOT SHARE GROUPS NODES STATE NODELIST

serial* up 3-00:00:00 1 no YES:4 all 514 mixed c[5-274,276-453,455-473, …

serial* up 3-00:00:00 1 no YES:4 all 3 idle c[275,454,474]

parallel up 3-00:00:00 1-28 no NO all 514 mixed c[5-274,276-453,455-473, …

parallel up 3-00:00:00 1-28 no NO all 3 idle c[275,454,474]

longrun up 7-00:00:00 1 no YES:4 all 514 mixed c[5-274,276-453,455-473,…

longrun up 7-00:00:00 1 no YES:4 all 3 idle c[275,454,474]

test up 30:00 1-2 no YES:4 all 1 drained c4

test up 30:00 1-2 no YES:4 all 3 idle c[1-3]

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

module load myprog

srun myprog -option1 -option2

 Your commands

• These define the actual job to performed: these commands

are run on the compute node.

• See application documentation for correct syntax

• Some examples also from batch script wizard in SUI

 Remember to load modules if necessary

 By default the working directory is the directory where you submitted the

job

• If you include a cd command, make sure it points to correct directory

 Remember that input and output files should be in $WRKDIR (or in some

case $TMPDIR)

 srun tells your program which cores to use. There are also exceptions…

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

Most commonly used sbatch options

Slurm option Description

--begin=time defer job until HH:MM MM/DD/YY

-c, --cpus-per-task=ncpus number of cpus required per task

-d, --dependency=type:jobid defer job until condition on jobid is satisfied

-e, --error=err file for batch script's standard error

--ntasks-per-node=n number of tasks per node

-J, --job-name=jobname name of job

--mail-type=type notify on state change: BEGIN, END, FAIL or ALL

--mail-user=user who to send email notification for job state changes

-n, --ntasks=ntasks number of tasks to run

-N, --nodes=N number of nodes on which to run

-o, --output=out file for batch script's standard output

-t, --time=minutes time limit in format hh:mm:ss

--mem-per-cpu=<number in MB> maximum amount of real memory per allocated cpu

required by the job in megabytes

--mem=<number in MB> maximum memory per node

SLURM:

Managing batch jobs in Taito

Submitting and cancelling jobs

 The script file is submitted with command
sbatch batch_job.file

 Optional: sbatch option are usually listed in the batch job script, but

they can also be specified on command line, e.g.

sbatch -J test2 -t 00:05:00 batch_job_file.sh

 Job can be deleted with command
scancel <jobid>

Queues

 The job can be followed with command squeue:
squeue (shows all jobs in all queues)

squeue –p <partition> (shows all jobs in single queue (partition))

squeue –u <username> (shows all jobs for a single user)

squeue –j <jobid> –l (status of a single job in long format)

 To estimate the start time of a job in queue
scontrol show job <jobid>

row "StartTime=..." gives an estimate on the job start-up time, e.g.
StartTime=2014-02-11T19:46:44 EndTime=Unknown

• scontrol will also show where your job is running

• If you add this to the end of your batch script, you’ll get additional info to

stdout about resource usage (works for jobs run with srun)
• used_slurm_resources.bash

Job logs

 Command sacct can be used to study past jobs

 Usefull when deciding proper resource requests

sacct Short format listing of jobs starting

from midnight today

sacct –l long format output

sacct –j <jobid> information on single job

sacct –S YY:MM:DD listing start date

sacct –o list only named data fields, e.g.

sacct –u <username> list only jobs submitted by username

TIP: Check

MaxRSS to see

how much

memory you

need and avoid

overbooking

sacct -o jobid,jobname,maxrss,state,elapsed -j <jobid>

Available nodes/queues

 You can check available nodes in each queue with command:
sjstat -c

Scheduling pool data:

Pool Memory Cpus Total Usable Free Other Traits

serial* 64300Mb 16 501 501 5

serial* 258000Mb 16 16 16 0 bigmem

parallel 64300Mb 16 501 501 5

parallel 258000Mb 16 16 16 0 bigmem

longrun 64300Mb 16 501 501 5

longrun 258000Mb 16 16 16 0 bigmem

test 64300Mb 16 4 3 3

hugemem 1551000Mb 32 2 2 2 bigmem

Most frequently used SLURM

commands

Command Description
srun Run a parallel job.

salloc Allocate resources for interactive use.

sbatch Submit a job script to a queue.

scancel Cancel jobs or job steps.

sinfo View information about SLURM nodes and partitions.

squeue View information about jobs located in the SLURM

scheduling queue
smap Graphically view information about SLURM jobs,

partitions, and set configurations parameters
sjstat display statistics of jobs under control of SLURM

(combines data from sinfo, squeue and scontrol)
scontrol View SLURM configuration and state.

sacct Displays accounting data for batch jobs.

Parallel jobs (1/2)

 Only applicable if your program supports parallel running

 Check application documentation on number of cores to use

• Speed-up is often not linear (communication overhead)

• Maximum number can be limited by the algorithms

• Make sure (test) that using more cores speeds up calculation

 Mainly two types: MPI jobs and shared memory (OpenMP) jobs

• OpenMP jobs can be run only inside one node
• All cores access same memory space

• MPI jobs can span several nodes
• Each core has its own memory space

Parallel jobs (2/2)

 Memory is normally reserved per-core basis

• For OpenMP jobs divide total memory by number of cores

• Take care to only request possible configurations

• If you reserve a complete node, you can also ask for all the memory

 Each server has different configuration so setting up parallel jobs in

optimal way requires some thought

 See server guides for specifics: http://research.csc.fi/guides

 Use Taito for large memory jobs

 Sisu for massively parallel jobs

 Check also the software specific pages for examples and

detailed information: http://research.csc.fi/software

http://research.csc.fi/guides
http://research.csc.fi/software

Array jobs (advanced usage)

 Best suited for running the same analysis for large number of files

 #SBATCH --array=1-100

 Defines to run 100 jobs, where a variable $SLURM_ARRAY_TASK_ID
gets each number (1,2,…100) in turn as its value. This is then used
to launch the actual job (e.g. srun myprog input_

$SLURM_ARRAY_TASK_ID > output_ $SLURM_ARRAY_TASK_ID)

 Thus this would run 100 jobs:

srun myprog input_1 > output_1

srun myprog input_2 > output_2

…

srun myprog input_100 > output_100

 For more information

 http://research.csc.fi/taito-array-jobs

http://research.csc.fi/taito-array-jobs

Compiling your program

Why make?

Program

Module
C

Module
B

Module
A

program separated into
several files

multiple inter-
dependant modules

compilation and linking
becomes easily a
nightmare

– especially when
developing the program!

Why make?

when code has been modified, there are two

approaches to compile the program:

– re-compile everything

– keep records and re-compile only what is needed

make makes life easier by taking care of all the book
keeping

→ too slow

→ too much work

Makefile

defines:

– work-flow(s) for producing target(s)

– dependencies of each target

– library paths, compiler flags etc.

directives for conditional definitions etc.

starts a comment

usually called Makefile

– other choices: makefile, GNUmakefile

Basic syntax

target: dependencies

recipe

...

foo.o: foo.c bar.h # module foo

cc -c foo.c

clean: # remove all

rm *.o

name (usually filename)

list of files / rules

commands to execute

example:

Note: use tabs

instead of

spaces to

indent recipes!

R
U

L
E

Basic syntax

target
– usually the file that is produced by the recipe

– name of an action also commonly used

for example: clean, distclean

dependencies
– a list of (source) files needed by the recipe

– may also be other targets

recipe
– a list of commands to execute to make target

Logic of make

read general macro definitions etc.

call the rule for target

– check when dependencies were changed

– if any of the dependencies have changed, the
target is re-built according to the recipe

dependencies may also be targets for other
rules

– in that case, make calls those rules

Simple example

hello: main.o sub1.o sub2.o sub3.o

f90 -o hello main.o sub1.o sub2.o sub3.o

main.o: main.f90

f90 -c main.f90

sub1.o: sub1.f90

f90 -c sub1.f90

sub2.o: sub2.f90

f90 -c sub2.f90

sub3.o: sub3.f90

f90 -c sub3.f90

clean:

rm hello main.o sub1.o sub2.o sub3.o

Which target?

by default, the first target is called
– ’hello’ in the previous example

target can be also specified when running
make

– make target

– make clean

– make main.o

Variables

contain a string of text
variable = value

substituted in-place when referenced

$(variable)  value

sometimes also called macros

shell variables are also available in the
makefile

– $(HOME), $(USER), …

Two flavors of variables in GNU make

recursive variables
– defined as: foo = bar

– expanded when referenced

simple / constant variables
– defined as: foo := bar

– expanded when defined

foo = $(bar)

bar = $(ugh)

ugh = Huh?

$(foo)  Huh?

x := foo

y := $(x) bar

x = later

$(x)  later

$(y)  foo bar

Variables

by convention variables are name in ALL-CAPS

in the previous example we could have used a
variable to store the names of all objects
– OBJ = main.o sub1.o sub2.o sub3.o

Simple example revisited

OBJ = main.o sub1.o sub2.o sub3.o

hello: $(OBJ)

f90 -o hello $(OBJ)

main.o: main.f90

f90 -c main.f90

sub1.o: sub1.f90

f90 -c sub1.f90

sub2.o: sub2.f90

f90 -c sub2.f90

sub3.o: sub3.f90

f90 -c sub3.f90

clean:

rm hello $(OBJ)

Common variables

some common variables

– CC

– CFLAGS

– FC

– FCFLAGS

– LDFLAGS

– OBJ

– SRC

Special variables

$@

– name of the target

$<

– name of the first dependency

client: client.c

$(CC) client.c -o $@

client: client.c

$(CC) $< -o $@

Special variables

$+

– list of all dependencies

$^

– list of all dependencies (duplicates removed)

$?

– list of dependencies more recent than target

client: client.c

$(CC) $+ -o $@

Special variables

$*

– common prefix shared by the target and the
dependencies

client: client.c

$(CC) -c -o $*.o $*.c

Special characters

/ continues a line

starts a comment

@ executes a command quietly

– by default, make echos all commands executed

– this can be prevented by using @-sign at the
beginning of the command

@echo ”quiet echo”

 quiet echo
echo ”normal echo”

 echo ”normal echo”

normal echo

Special characters

if there is an error executing a command,
make stops

– this can be prevented by using a – sign at the
beginning of a command

clean:

-rm hello

-rm $(OBJ)

Implicit rules

one can use special characters to define an
implicit rule

e.g. quite often target and dependencies share
the name (different extensions)

– define an implicit rule compiling an object file from
a Fortran 90 source code file

%.o: %.f90

$(F90) $(FFLAGS) -c -o $@ $<

Example revisited again

OBJ = main.o sub1.o sub2.o sub3.o

implicit rule for compiling f90 files

%.o: %.f90

f90 -c -o $@ $<

hello: $(OBJ)

f90 -o hello $(OBJ)

clean:

rm hello $(OBJ)

Built-in functions

GNU make has also built-in functions

– for a complete list see:
www.gnu.org/software/make/manual/make.html#Functions

strip, patsubst, sort, …

dir, suffix, basename, wildcard, …

general syntax
– $(function arguments)

Command line options

-j parallel execution

-n dry-run

– shows the command, but does not execute them

-p print defaults

– shows default rules and values for variables before
execution

-s silent-run

– do not print commands as they are executed

Command line options

variables can also be defined from the command
line

– make CC=gcc ”CFLAGS=-O3 –g”

foobar

Complete example

SRC = main.f90 sub1.f90 sub2.f90 sub3.f90

OBJ = $(patsubst %.f90, %.o, $(SRC))

F90 = gfortran

FFLAGS =

DEST = bin

implicit rule for compiling f90 files

%.o: %.f90

$(F90) $(FFLAGS) -c -o $@ $<

hello: $(DEST)/hello

$(DEST)/hello: $(OBJ)

$(F90) $(FFLAGS) -o $@ $(OBJ)

clean:

-rm $(OBJ)

-rm $(DEST)/hello

extra dependencies

sub2.o: modules.o

Science services at CSC: a short introduction

Software and databases at CSC

Software selection at CSC:

● http://research.csc.fi/software

Science discipline specific pages:

● http://research.csc.fi/biosciences

● http://research.csc.fi/chemistry

Chipster data analysis environment:

●http://chipster.csc.fi

http://research.csc.fi/software
http://research.csc.fi/biosciences
http://research.csc.fi/chemistry
http://chipster.csc.fi/

Use: www.reaxys.com

No installations needed

Properties, reactions,

references of molecules

and substances

Consortium based
– Aalto, Helsinki, Jyväskylä

Universities and Technical

Universities of Tampere and

Lappeenranta

– Costs often shared by many

groups/libraries

Current consortium

agreement until end of

2014

http://research.csc.fi/-

/reaxys

http://www.reaxys.com/
http://research.csc.fi/-/reaxys

IDA

Long term

storage

HPC-

archive

CSC

Computing

environment

FUNET

File sender

Your computer

Your colleague

Moving data to and from CSC

SUI

Scp, rsync

WinSCP

Web sites

Browser

SUI

iRODS

SUI

WebDAV

wget

wget Browser

wget

iRODS

iRODS

iRODS

SUI

WebDAV

Browser

wget

HPC Archive and IDA

 IDA

- Storage service for research data

- quotas are grated by the Universities and Academy of Finland

- several different interfaces

- accessible through normal network connections

- part of the Tutkimuksen tietoaineistot (www.tdata.fi)

 HPC Archive

– Intended for CSC users

– 2TB / user

– Replaces the $ARCHIVE

– Only command line interface to the CSC servers

IDA storage service

 iRODS based storage system for storing, archiving and sharing data

 The service was launched 2012

 Usage through personal accounts and projects

 Each project has a shared directory too

 Speed: about 10 GB/min at the servers of CSC

 CSC host's the service

Three interfaces:

 WWW interface in Scientists' User Interface

 network directory interface for Linux, Mac (and Windows XP)

 command line tools (i-commands installed at the servers of CSC)

Troubleshooter: Interactive session to deal with open questions and specific problems

