
CSC Autumn

School in

Computational

Physics 2014

All material (C) 2014 by CSC – IT Center for Science Ltd. and the authors.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License, http://creativecommons.org/licenses/by-nc-sa/3.0/

2

CSC Autumn School in Computational Physics 2014

Monday December 8 Tuesday December 9

9.00-10.15
Intro, Physics@CSC

Round robin (T. Malkiewicz)

Unix for physicists

(J. Lento)

10.15-10.45 Coffee break Coffee break

10.45-12.00
Parallel computations

(T. Malkiewicz)

Advanced unix for physicists

(J. Lento)

12.00-13.00 Lunch Lunch

13.00-14.30
Applications for physicists

(J. Enkovaara)

Computational physics with Xeon Phi and

GPU (F. Robertsén)

14.30-14.45 Coffee break Coffee break

14.45-15.45 Coding (J. Åström)
Massively parallel computations

(J. Åström)

15.45-16.30
Debugging and code optimization

(T. Malkiewicz)
Scientific visualization (J. Hokkanen)

+ supercomputers’ guided tour on Tuesday at 12:40
3

Learning targets

Know what CSC has to offer for physicists and

which servers (resources) to use

– Applications

– Data processing and visualization

Be able to use/run efficiently on Taito and Sisu

Be able to use Bull (taito-gpu and taito-mic)

hpc_archive

IDA

taito.csc.fi

FGI

applications
taito-gpu.csc.fi

sisu.csc.fi

research.csc.fi

?!

taito-mic.csc.fi

Pouta CloudSUI

4

Practicalities

Keep the name tag visible

If you came by car: parking is being monitored - ask for a
temporary parking permit from the reception (tell which school
you’re participating)

Lunch is served in the same building

Toilets are in the lobby

Visiting outside: doors by the reception desks are open

Room locked during lunch
– lobby open, use lockers

Network:
– WIFI: eduroam, HAKA authentication

– Ethernet cables on the tables

– CSC-Guest accounts upon request

Username and password for workstations: given on-site
5

How we run this school

Rather lecture than conference-oriented

presentations

– Try to make potentially difficult things look

relatively easy to learn and understand

– Skip items that have less significance in

everyday work of physicists

Demos

A hands-on sessions included in most

lecture session

– practice the just learned subjects

6

Physics at CSC

Content

Physics at CSC’s supercomputers

Resources available for physicists

– What’s new

– Future

Why and when to use supercomputers

Courses of interest for physicists

Physics’ people at CSC

8

Founded in 1971

Owned by Ministry of

Education and Culture

Operates on a non-profit

principle

Staff ~265 people

Facilities in Espoo and

Kajaani

Free of charge services for

higher education

institutions in Finland

CSC at glance

9

Physics at supercomputers

Physics is a branch of science concerned with the nature,

structure and properties of matter, ranging from the

smallest scale of atoms and sub-atomic particles, to the

Universe as a whole.

Physics includes experiment and theory and involves both

fundamental research driven by curiosity, as well as

applied research linked to technology.

Supercomputer is a computer at the frontline of

contemporary processing capacity – particularly speed of

calculation.

Fastest supercomputer: China Tianhe-2 with 33.86

petaFLOP/s (quadrillions of calculations per second) on

the LINPACK benchmark

EPS report, 2013

10

Currently available computing resources

Sisu
– 40 512 cores, 64 TB memory

Taito

– Small and medium-sized tasks

Application server Hippu

– Going to be decommissioned by the end of 2014

– Replaced by Taito-shell

FGI

Cloud

Bull system
11

CSC Computing Capacity 1989–2014

12

Datacenter CSC Kajaani

13

14

Taito

15

Users

About 700 active computing projects

– 3000 researchers use CSC’s computing capacity

– 4250 registered customers

Haka-identity federation covers all universities

and higher education institutes (287 000 users)

Funet - Finnish research and education network

– Total of 370 000 end users

16

Users of computing resources by organization

1H2014

17

Computing usage by organization 1H2014

18

Computing usage by discipline 1H2014

19

- For large parallel jobs

- Intel Haswell processor E5-2690 v3

product family; 2,6 GHz (phase 1

Sandy Bridges replaced)

- Cray Aries Interconnect

- 40 512 cores

- 24 cores per node

- 64 GB memory per node

Sisu: Cray XC40 Supercomputer

Cray Dragonfly Topology

2 dimensional

all-to-all network

in a group

All-to-all network

between groups

Source:

Robert Alverson, Cray

Hot Interconnects 2012 keynote

Optical uplinks to

inter-group net

21

Running on Sisu Phase 2

Sisu guide

– https://research.csc.fi/sisu-user-guide

– Phase 1 binaries (static) may or may not run,

CSC strongly advises to recompile your

code (and compare performance)

– Login nodes are still based on Sandy Bridge

(as they were in Phase 1)

Cross compiling is required

Haswell optimized code will not run in login nodes

Scalability tests required for more than

1008 cores

– https://research.csc.fi/sisu-scalability-tests

– Large test queue available 22

https://research.csc.fi/sisu-user-guide
https://research.csc.fi/sisu-scalability-tests

Sisu Phase 2 features

AVX-2

– May need to optimize for wider vectors’ size

– Max 16 flop/cycle

DDR4

– Higher bandwidth, lower power consumption

Max job size increased

– 400 nodes = 9600 cores

Native SLURM on the way

– We might be moving to it at some point

23

- For serial and small parallel jobs

- Heterogeneous: Intel Sandy Bridge

(phase 1) & Intel Haswell (phase 2, not

yet installed) processors

- FDR InfiniBand interconnect

- ~18 000 cores

- Different memory configurations: 64,

128, 256 GB and 1.5 TB per node

Taito: HP Supercluster

Taito is a heterogeneous cluster

Different jobs need different resources

– Bulk Haswell compute nodes

– Bulk Sandy Bridge compute nodes

– Largemem Sandy Bridge compute nodes

– Hugemem Sandy Bridge compute nodes

Local /tmp disk 2 TB on each compute node

 reserve only what you need

25

One SLURM to serve them all…

Do old applications run on new CPUs?

– May run, CSC recommends re-compiling

– Build your software for both (old and new) architecture

– Gain depends on architecture

Batch job scripts need to be updated

– Number of cores per node: Phase 1: 16, Phase 2: 24

– Memory changes

– Instructions will be available through user guides

– Partition CPU architecture can be specified

26

SLURM configuration: Fair usage

SLURM uses fair share: the highest priority jobs go into execution next

– Priority is decreased by the total amount of resources used in last 2 weeks per user

– Priority is increased by time spent queueing

– Backfiller will try to put small jobs into gaps due to current available resources and

highest priority job

– Jobs labeled ”Association limit” are not eligible to run (due to too many jobs in queue by

the user)

Due to abuse, a maximum limit of jobs in queue now enforced

Chain jobs (--dependency –flag for SLURM) if you need long running time

Don’t overallocate memory (add this command to your batch script
used_slurm_resources.bash will print requests vs. used at stdout)

– If you request a full node (-N 1), use –mem=55000 instead of –mem-per-

core=something)

– If you see abuse or think that the setup is unfair, contact helpdesk@csc.fi

SUI has a monitoring tool for your jobs and used resources (Services ->

eServices -> My Project)

27

How to prepare for Taito Phase 2?

Porting strategy

– Getting started document and a User Guide for

Sisu prepared

– Compilers, libraries, flags, …

– Preliminary performance data

– Add AVX-2 flag when compiling your code

– CSC ports and optimizes a number of

applications for the new architectures

– Consider testing your code on Sisu, which has

Haswell CPUs

28

Official opening on 1.10.2014

Direct liquid cooled, very energy-efficient

Accelerators and co-processors

– 38 NVIDIA K40 nodes = 76 GPUs
12 GB memory per card

– 45 Intel Xeon Phi (MIC) nodes = 90
Xeon Phis

16 GB memory per card

– Energy efficient (slow …) CPU’s

Bull

29

How to access Bull

Logically part of Taito

Accessing the resources

– Intel Xeon Phi: ssh taito-mic (from taito.csc.fi)

Still in beta phase

– NVIDIA K40: ssh taito-gpu.csc.fi

See Taito user guide

– taito-gpu

– taito-mic

30

Fast and large storage: DDN Phase 3

HPC storage used by Sisu and Taito

Lustre parallel file system

System size increased to ~4 PB

– About 1.9 PB added to the current configuration

in early October 2014

– Aggregate bandwidth > 80 GB/s (previously ~48

GB/s)

Available together with Phase2

supercomputers

31

Disks in total

4.0 PB on DDN
– $HOME directory (on Lustre)

– $WRKDIR (not backed up), soft quota 5 TB / user

– Up to 100 TB / project

HPC Archive
– 2 TB / user, common between Sisu and Taito

– Up to 100 TB / project

3 PB disk space through TTA/IDA
– 1 PB for Universities

– 1 PB for Finnish Academy (SA)

– 1 PB to be shared between SA and ESFRI

– more could be requested

/tmp on Sisu and Taito (around 1.8 TB) to be used for
compiling codes on login nodes

32

Software and database offered

by CSC
Large selection (over 200) of software and database

packages for research https://research.csc.fi/software

Mainly for academic research in Finland

Centralized national offering: software consortia, better

licence prices, continuity, maintenance, training and support

33

https://research.csc.fi/software

Applying for account/resources

Apply for CSC account:_

https://research.csc.fi/accounts-and-projects

 Most of CSC services are free for academic researchers,

but usually a CSC user account is required.

 Basic usage: register as CSC customer via SUI

 Larger computing resources via an application form

 Benefits

 A wide selection of scientific programs and databases

available at CSC servers.

 ICT resources and science-aware support (helpdesk@csc.fi)

 Courses and events covering many areas are organized

regularly.

 Guide books and magazines in PDF.

 CSC’s research and development to improve services.

 Networks bring together people with similar interests in

science and technology. 34

https://research.csc.fi/accounts-and-projects
https://research.csc.fi/accounts-and-projects
mailto:helpdesk@csc.fi

Taito-shell replaces Hippu

Interactive session on a Taito compute node
– E.g. run a GUI, run long non-intensive jobs, etc.

Two 256GB nodes allocated, easy to expand
– Maximum of 4 cores/128GB per user, no time limit

Access: ssh –X taito-shell.csc.fi
– Also via drop down menu in nxkajaani

– Technically a slurm job without dedicated resources

– Processes killed when logged out

– Can be left running via screen (on Taito) or via nxkajaani
(exit with suspend)

Feedback welcome!

https://research.csc.fi/taito-shell-user-guide

35

https://research.csc.fi/taito-shell-user-guide

How to get access to CSC

supercomputers?

sui.csc.fi (HAKA authentication)

– Sing up

36

Host Monitor in SUI

Load on

servers

Running jobs
(squeue)

sui.csc.fi

37

IDA

storage

HPC-

archive

CSC

Computing

environment

FUNET

File sender

Your computer

Your colleague

Moving data to and from CSC

SUI

Scp, rsync

WinSCP

Web sites

Browser

SUI

iRODS

SUI

WebDAV

AVAA

wget

wget
Browser

wget

iRODS

iRODS

iRODS

SUI

WebDAV

Browser

wget

38

IDA

storage

HPC-

archive

CSC

Computing

environment

FUNET

File sender

Your computer

Your colleague

IDA storage service

Web sites

iRODS

SUI

WebDAV

iRODS
iRODS

SUI

WebDAV

(AVAA/browser)

39

IDA HPC-archive

 Part of ATT

 Quotas granted by
universities and
Academy of Finland

 Several interfaces
(WWW/SUI, network
disk, i-commands)

 Internet accessible

 Project based structure

 Flexible sharing

 Data can be made
public through AVAA

 Part of CSC computing
environment

 2 TB default quotas for
CSC users

 Usage with i-commands

 Visible only to CSC
environment

 Personal storage area

 Replaced the old
$ARCHIVE service

40

iCommands
IDA in Scientist's
User Interface

 iput file move file to IDA

 iget file retrieve file from IDA

 ils list the current IDA directory

 icd dir change the IDA directory

 irm file remove file from IDA

 imv file file move file inside IDA

 imeta command view and edit metadata

 irsync synchronize the local copy

with the copy in IDA

 imkdir create a directory to IDA

 iinit Initialize your IDA account

41

SaaS

PaaS

IaaS

Computers and
networks

Operating systems

Software

Cloud computing:
three service models

42

cPouta on Taito

Taito cluster:

two types of nodes, HPC and cloud

HPC
node

HPC
node

Cloud
node

Cloud node

Host OS: RHEL

Virtual machine

• Guest OS:
Ubuntu

Virtual machine

• Guest OS:
Windows

43

Web interface

Command line tools

https://pouta.csc.fi:8777/v2/csc/servers/0532b4d0-9ac6-4e8a-8637-4192f1039039

https://pouta.csc.fi:8777/v2/csc/flavors/1a0f1143-47b5-4e8a-abda-eba52ae3c5b9

https://pouta.csc.fi:8777/v2/csc/images/

REST API
44

cPouta’s use cases

Enhanced security – isolated virtual machines

Advanced users – able to manage servers

Difficult workflows – can’t run on Taito

Complex software stacks

Ready made virtual machine images

Deploying tools with web interfaces

”We need root access”

Pouta user guide: https://research.csc.fi/pouta-user-guide

If you can run on Taito – run on Taito

If not – Pouta might be for you

45

https://research.csc.fi/pouta-user-guide

ePouta

Renewing the cloud cluster

equipment in Espoo in 2015

Changes to OpenStack cloud

middleware (autumn 2014)

Focus on secure computing and service

for organisations

Idea: seamless scaling of local

resources using a trusted compute

center (in Finland)

Requires local IT admin contact

Funding model and resource allocation

policy is still under debate, supported by

ELIXIR Finland

46

CSC – Meilahti genomics IaaS

data traffic 2013

5.8 PB in

1.4 PB out

Avg. 221 MB/s 24

hours a day all year

round

47

Grid computing with Finnish Grid
Infrastructure (FGI)

48

In grid computing you can use several computing clusters to run
your jobs

Grids suits well for array job like tasks where you need to run a large
amount of independent sub-jobs

You can also use FGI to bring cluster computing to your local
desktop

FGI: 12 computing clusters, about 10 000 computing
cores

Software: Run Time Environment include applications
from all fields, e.g., bioinformatics, chemistry, physics:

– https://confluence.csc.fi/display/fgi/Runtime+Environments

FGI

49

https://confluence.csc.fi/display/fgi/Runtime+Environments

The jobs are submitted using the ARC middleware
(http://www.nordugrid.org/arc/)

– Using ARC resembles submitting batch jobs in Taito or Sisu

ARC is installed in Hippu and Taito, but you can install it
to your local machine too.

– Setup command in Hippu:
module load nordugrid-arc

– Basic ARC commands:
arcproxy (Set up grid proxy certificate for 12 h)

arcsub job.xrsl (Submit job described in file job.xrsl)

arcstat -a (Show the status of all grid jobs)

arcget job_id (Retrieve the results of a finished grid job)

arckill job_id (kill the given grid job)

arcclean -a (remove job related data from the grid)

Using grid

50

&
(executable=runbwa.sh)
(jobname=bwa_1)
(stdout=std.out)
(stderr=std.err)
(gmlog=gridlog_1)
(walltime=24h)
(memory=8000)
(disk=4000)
(runtimeenvironment>="APPS/BIO/BWA_0.6.1")
(inputfiles=
("query.fastq" "query.fastq")
("genome.fa" "genome.fa")
)
(outputfiles=
("output.sam" "output.sam")

)

Sample ARC job description file

51

Getting started with FGI-Grid

1. Apply for a grid certificate from TERENA (a kind of grid
passport)

2. Join the FGI VO (Access to the resources)

3. Install the certificate to Scientists' User Interface and
Hippu.

4. Install ARC client to your local Mac or Linux machine for
local use)

5. Instructions: http://research.csc.fi/fgi-preparatory-steps

Please ask help to get started: helpdesk@csc.fi

FGI user guide: http://research.csc.fi/fgi-user-guide

52

http://research.csc.fi/fgi-user-guide

Courses

CSC courses: http://www.csc.fi/courses
– Introduction to Linux and Using CSC Environment

Efficiently10.-11.2.2015

– Pouta training 23.3.2015

– CSC HPC Summer School

– Spring, Autumn, Winter Schools

– Parallel Programming

– Some courses have possibility for remote participation

– Course materials often available from event website for
self study

Taito Phase 2 workshop
– Spring 2015

53

http://www.csc.fi/courses

Grand Challenges

Normal GC (call in half a year / year intervals)

– New CSC resources available for a year

– No limit for number of cores

– Next call beginning of 2015

Remember also PRACE/DECI calls
– CSC supports the

technical aspects of

the applications

54

Sisu supercomputer
– General availability since 9.9.2014

Taito supercluster
– Installation ongoing

– Part of Taito used for Pouta Cloud

– taito-shell replacing Hippu service

Bull system
– General availability since 1.10.2014

– 45 nodes with 2 Intel Xeon Phi coprocessors each

– 38 nodes with 2 NVIDIA Tesla K40 accelerators each

DDN HPC storage system
– Totaling 4 PB of fast parallel storage

CSC Phase2 resources’ summary

55

Physics people at CSC

Particle based methods: Jan Åström

Materials physics: Jussi Enkovaara

Geophysics/glaciology: Thomas Zwinger

Nanoscience/semiconductors: Jura Tarus

Nuclear/particle physics: Tomasz Malkiewicz

Partial differential equations/ELMER: Peter Råback

A few with background in DFT e.g. Juha Lento

Quantum chemistry: Nino Runeberg

A few with numerical mathematics background

Several with advanced code optimisation skills

Everything related to HPC in general 56

Q/A: Need disk space

4 PB on DDN

– $HOME, $USERAPPL: 50 GB

– $WRKDIR (not backed up), soft quota: 5 TB

HPC ARCHIVE: 2 TB / user, common between Cray

and HP, up to 100 TB upon request

/tmp (around 1.8 TB) to be used for compiling codes

Disk space through IDA

57

iRODS client

Disks at Kajaani

taito.csc.fi sisu.csc.fi

iRODS interface

disk cache

compute

nodes

login

nodes

New tape

$ARCHIVE in

Espoo

Your

workstation

SUIcompute

nodes

login

nodes

$TMPDIR
$TMPDIR

$USERAPPL → $HOME/xyz icp

icp, iput, ils, irm

$TMPDIR
$TMPDIR

$TMPDIR

$WRKDIR

$HOME

58

Q/A: Need large capacity

-> Grand Challenges

Normal GC (in half a year / year)

– new CSC resources available for a year

– no bottom limit for number of cores, up to 50%

Special GC call (mainly for Cray) (when needed)

– possibility for short (day or less) runs with the

whole Cray

Remember also PRACE/DECI

– http://www.csc.fi/english/csc/news/news/pracecalls

59

Q/A: Is Cloud something for me?

->example: Taito

Taito cluster:

two types of nodes, HPC and cloud

HPC
node

HPC
node

Cloud
node

Cloud node

Host OS: RHEL

Virtual machine

• Guest OS:
Ubuntu

Virtual machine

• Guest OS:
Windows

60

Q/A: How fast is the I/O?

I/O speed

• Infiniband interconnect 56 Gbit/s, tested to give

20 GB/s (peak, on DDN)

• i-commands 100 MB/s = 1 Gbit/s (10-16 thread,

if > 32 MB then spreads, Kernel schedules)

• SUI: 11 MB/s, 1 GB = 1 min

• Fastest laptop:120 MB/s, disc speed 40 MB/s

write

•10 Gbit/s ethernet = 1.2 GB/s

• Metadata operations for Lustre take long,

therefore not good to have many small files

61

Q/A: Fastest way to connect?

NoMachine NX server for remote access

62

Q/A: Is there a single place to look

for info regarding supercomputers?

User manuals

– http://research.csc.fi/guides

Support

– helpdesk@csc.fi

63

Round robin

Round robin

What are your research interest?

What are your needs in terms of computing?

Which applications/codes are you using?

How CSC can help?

65

Parallel computations

Computing in parallel

Serial computing
– single processing unit (“core”) is used for solving a

problem

Input Process task Result

67

Computing in parallel

Parallel computing
– A problem is split into smaller subtasks

– multiple subtasks are processed simultaneously using

multiple cores

Input

Process
subtask

#1

Result

Process
subtask

#N

...

68

Exposing parallelism

Data parallelism

– Data is distributed to processor

cores

– Each core performs

simultaneouosly (nearly)

identical operations with different data

Task parallelism

– Different cores perform different operations

with (the

same or) different data

These can be combined

task 1
task 2
task 3
task 4

69

Parallel scaling

Strong parallel scaling

– constant problem size

– execution time decreases in

proportion to the increase in the

number of cores

Weak parallel scaling

– increasing problem size

– execution time remains constant when number of cores

increases in proportion to the problem size

70

Amdahl’s law

Parallel programs

contain often

sequential parts

Amdahl's law gives

the maximum speed-

up in the presence of

non-parallelizable

parts

Maximum speed-up:

F: parallel fraction

N: number of cores

71

Parallel computing concepts

Load balance

– distribution of workload to different cores

Parallel overhead

– additional operations which are not present in

serial calculation

– synchronization, redundant computations,

communications

72

Why and when to use HPC?

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600

n
s/

d
ay

cores

Lipid MD, 120katoms, PME, Gromacs

louhi

vuori

taito

sisu

0

5

10

15

0 16 32

73

Warm-up: quick hands-on on Taito

74

Live demo/hands-on (Taito)

ssh trng01 - trng20 @taito.csc.fi

module avail

75

Live demo/hands-on cont.

#!/bin/bash -l

#SBATCH -J print_hostname

#SBATCH -o output.txt

#SBATCH -e errors.t

#SBATCH -t 00:01:00

#SBATCH -p test

echo "This job runs on the host:"; hostname

nano test_hostname.sh

sbatch test_hostname.sh

CTRL+O; CTRL+X to exit

76

Live demo/hands-on cont.

Check out the output:

– less output.txt (type q to quit)

– less errors.t (type q to quit)

77

Modules

Some software installations are conflicting with

each other

– For example different versions of programs and libraries

Modules facilitate the installation of conflicting

packages to a single system

– User can select the desired environment and tools

using module commands

– Can also be done "on-the-fly"

78

module avail shows only those modules

that can be loaded to current setup (no

conflicts or extra dependencies)

– Use module spider to list all installed

modules and solve the conflicts/dependencies

No PrgEnv- modules (on Taito)

– Changing the compiler module switches also

MPI and other compiler specific modules

Taito module system

79

Typical module commands

module avail shows available modules (compatible

modules in taito)

module spider shows all available modules in taito

module list shows currently loaded modules

module load <name> loads module <name> (default version)

module load <name/version>

loads module <name/version>

module switch <name1> <name2>

unloads module name1 and loads module name2

module purge unloads all loaded modules

Taito has ”meta-modules” named e.g. gromacs-env, which will load all

necessary modules needed to run gromacs.

80

Example serial batch job script on Taito

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

81

#!/bin/bash -l

 Tells the computer this is a script that should be run

using bash shell

 Everything starting with ”#SBATCH” is passed on to

the batch job system (Slurm)

 Everything (else) starting with ”# ” is considered a

comment

 Everything else is executed as a command

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2 82

#SBATCH -J myjob

 Sets the name of the job

 When listing jobs e.g. with squeue, only 8 first characters of

job name are displayed.

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2 83

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

 Option –e sets the name of the file where possible error

messages (stderr) are written

 Option –o sets the name of the file where the standard

output (stdout) is written

 When running the program interactively these would be

written to the command promt

 What gets written to stderr and stderr depends on the

program. If you are unfamiliar with the program, it’s always

safest to capture both

 %j is replaced with the job id number in the actual file name

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

84

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

 Option --mail-type=END = send email when the job

finishes

 Option --mail-user = your email address.

 If these are selected you get a email message when the job

is done. This message also has a resource usage summary

that can help in setting batch script parameters in the future.

 To see actually used resources try also: sacct –l –j

<jobid> (more on this later)

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

85

#SBATCH -n 1

 Number of cores to use

 It’s also possible to control on how many nodes you job

is distributed. Normally, this is not needed. By default

use all cores in allocated nodes:

 --ntasks-per-node=16

 Check documentation: http://research.csc.fi/software

 There’s a lot of software that can only be run in

serial

 OpenMP applications can only use cores in one node

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

86

http://research.csc.fi/software

#SBATCH --mem-per-cpu=4000

 The amount of memory reserved for the job in MB

• 1000 MB = 1 GB

 Memory is reserved on per-core basis even for

shared memory (OpenMP) jobs

 Keep in mind the specifications for the nodes. Jobs with
impossible requests are rejected (try squeue after submit)

 If you reserve too little memory the job will be killed (you will

see a corresponding error in the output)

 If you reserve too much memory your job will spend much

longer in queue and potentially waste resources (idle cores)

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

87

#SBATCH -t 02:00:00

 Time reserved for the job in hh:mm:ss

 When the time runs out the job will be terminated!

 With longer reservations the job queue longer

 Limit for normal serial jobs is 3d (72 h)

• if you reserve longer time, the job will go to ”longrun” queue (limit 7d)

• In the longrun queue you run at your own risk. If a batch job in that

queue stops prematurely no compensation is given for lost cpu time!

• In longrun you likely queue for a longer time: shorter jobs and restarts

are better (safer, more efficient)

• Default job length is 5 minutes  need to be set by yourself.

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

88

#SBATCH -p serial

 The queue the job should be submitted to

 Queues are called ”partitions” in SLURM

 You can check the available queues with command

sinfo -l

PARTITION AVAIL TIMELIMIT JOB_SIZE ROOT SHARE GROUPS NODES STATE NODELIST

serial* up 3-00:00:00 1 no YES:4 all 514 mixed c[5-274,276-453,455-473, …

serial* up 3-00:00:00 1 no YES:4 all 3 idle c[275,454,474]

parallel up 3-00:00:00 1-28 no NO all 514 mixed c[5-274,276-453,455-473, …

parallel up 3-00:00:00 1-28 no NO all 3 idle c[275,454,474]

longrun up 7-00:00:00 1 no YES:4 all 514 mixed c[5-274,276-453,455-473,…

longrun up 7-00:00:00 1 no YES:4 all 3 idle c[275,454,474]

test up 30:00 1-2 no YES:4 all 1 drained c4

test up 30:00 1-2 no YES:4 all 3 idle c[1-3]

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

89

module load myprog

srun myprog -option1 -option2

 Your commands

• These define the actual job to performed: these commands

are run on the compute node.

• See application documentation for correct syntax

• Some examples also from batch script wizard in SUI

 Remember to load modules if necessary

 By default the working directory is the directory where you submitted the

job

• If you include a cd command, make sure it points to correct directory

 Remember that input and output files should be in $WRKDIR (or in some

case $TMPDIR)

 srun tells your program which cores to use. There are also exceptions…

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

90

Most commonly used sbatch options

Slurm option Description

--begin=time defer job until HH:MM MM/DD/YY

-c, --cpus-per-task=ncpus number of cpus required per task

-d, --dependency=type:jobid defer job until condition on jobid is satisfied

-e, --error=err file for batch script's standard error

--ntasks-per-node=n number of tasks per node

-J, --job-name=jobname name of job

--mail-type=type notify on state change: BEGIN, END, FAIL or ALL

--mail-user=user who to send email notification for job state changes

-n, --ntasks=ntasks number of tasks to run

-N, --nodes=N number of nodes on which to run

-o, --output=out file for batch script's standard output

-t, --time=minutes time limit in format hh:mm:ss

--mem-per-cpu=<number in MB> maximum amount of real memory per allocated cpu

required by the job in megabytes

--mem=<number in MB> maximum memory per node 91

Submitting and cancelling jobs

 The script file is submitted with command
sbatch batch_job.file

 Optional: sbatch option are usually listed in the batch job script, but

they can also be specified on command line, e.g.

sbatch -J test2 -t 00:05:00 batch_job_file.sh

 Job can be deleted with command
scancel <jobid>

92

Queues

 The job can be followed with command squeue:
squeue (shows all jobs in all queues)

squeue –p <partition> (shows all jobs in single queue (partition))

squeue –u <username> (shows all jobs for a single user)

squeue –j <jobid> –l (status of a single job in long format)

 To estimate the start time of a job in queue
scontrol show job <jobid>

row "StartTime=..." gives an estimate on the job start-up time, e.g.
StartTime=2014-02-11T19:46:44 EndTime=Unknown

• scontrol will also show where your job is running

• If you add this to the end of your batch script, you’ll get additional info to

stdout about resource usage (works for jobs run with srun)
• used_slurm_resources.bash

93

Job logs

 Command sacct can be used to study past jobs

 Usefull when deciding proper resource requests

sacct Short format listing of jobs starting

from midnight today

sacct –l long format output

sacct –j <jobid> information on single job

sacct –S YY:MM:DD listing start date

sacct –o list only named data fields, e.g.

sacct –u <username> list only jobs submitted by username

TIP: Check

MaxRSS to see

how much

memory you

need and avoid

overbooking

sacct -o jobid,jobname,maxrss,state,elapsed -j <jobid>

94

Available nodes/queues

 You can check available nodes in each queue with command:
sjstat -c

Scheduling pool data:

Pool Memory Cpus Total Usable Free Other Traits

serial* 64300Mb 16 501 501 5

serial* 258000Mb 16 16 16 0 bigmem

parallel 64300Mb 16 501 501 5

parallel 258000Mb 16 16 16 0 bigmem

longrun 64300Mb 16 501 501 5

longrun 258000Mb 16 16 16 0 bigmem

test 64300Mb 16 4 3 3

hugemem 1551000Mb 32 2 2 2 bigmem

95

Most frequently used SLURM

commands

Command Description
srun Run a parallel job.

salloc Allocate resources for interactive use.

sbatch Submit a job script to a queue.

scancel Cancel jobs or job steps.

sinfo View information about SLURM nodes and partitions.

squeue View information about jobs located in the SLURM

scheduling queue
smap Graphically view information about SLURM jobs,

partitions, and set configurations parameters
sjstat display statistics of jobs under control of SLURM

(combines data from sinfo, squeue and scontrol)
scontrol View SLURM configuration and state.

sacct Displays accounting data for batch jobs.

96

Parallel jobs (1/2)

 Only applicable if your program supports parallel running

 Check application documentation on number of cores to use

• Speed-up is often not linear (communication overhead)

• Maximum number can be limited by the algorithms

• Make sure (test) that using more cores speeds up calculation

 Mainly two types: MPI jobs and shared memory (OpenMP) jobs

• OpenMP jobs can be run only inside one node
• All cores access same memory space

• MPI jobs can span several nodes
• Each core has its own memory space

97

Parallel jobs (2/2)

 Memory is normally reserved per-core basis

• For OpenMP jobs divide total memory by number of cores

• Take care to only request possible configurations

• If you reserve a complete node, you can also ask for all the memory

 Each server has different configuration so setting up parallel jobs in

optimal way requires some thought

 See server guides for specifics: http://research.csc.fi/guides

 Use Taito for large memory jobs

 Sisu for massively parallel jobs

 Check also the software specific pages for examples and

detailed information: http://research.csc.fi/software
98

http://research.csc.fi/guides
http://research.csc.fi/software

Array jobs (advanced usage)

 Best suited for running the same analysis for large number of files

 #SBATCH --array=1-100

 Defines to run 100 jobs, where a variable $SLURM_ARRAY_TASK_ID
gets each number (1,2,…100) in turn as its value. This is then used
to launch the actual job (e.g. srun myprog input_

$SLURM_ARRAY_TASK_ID > output_ $SLURM_ARRAY_TASK_ID)

 Thus this would run 100 jobs:

srun myprog input_1 > output_1

srun myprog input_2 > output_2

…

srun myprog input_100 > output_100

 For more information

 http://research.csc.fi/taito-array-jobs 99

http://research.csc.fi/taito-array-jobs

OPENMP AND MPI

100

Threads and processes

Process

Independent

execution units

Have their own state

information and use

their own address

spaces

Thread

A single process may

contain multiple

threads

All threads within a

process share the

same state and same

address space

Parallel processes Parallel region Parallel region

Serial
region

Serial
region

Serial
region

101

Threads and processes

Process

Spawned when

starting the parallel

program and killed

when its finished

Typically

communicate using

MPI in

supercomputers

Thread

Short-lived: threads

are created by forking

and destroyed by

joining them

Communicate directly

through the shared

memory

Parallel processes Parallel region Parallel region

Serial
region

Serial
region

Serial
region

102

Three components of OpenMP

Compiler directives and constructs

– Expresses shared memory parallelization

– Preceded by sentinel, can compile serial

version

Runtime library routines

– Small number of library functions

– Can be discarded in serial version via

conditional compiling

Environment variables

– Specify the number of threads, etc.

103

OpenMP directives

Sentinels precede each OpenMP directive

– C/C++: #pragma omp

– Fortran free form: !$omp

Compilers that support OpenMP usually

require an option (flag) that enables the

feature

– Without an enabling flag the OpenMP sentinels

are treated as comments and a serial version

will be compiled

104

Parallel construct

Defines a parallel region

– Prior to it only one thread,

master

– Creates a team of threads:

master+slave threads

– At end of the block is a

barrier and all shared data is

synchronized

!$omp parallel

!$omp end parallel

105

Example: Helloworld with OpenMP

program hello
use omp_lib
integer :: omp_rank

!$omp parallel private(omp_rank)
omp_rank = omp_get_thread_num()
print *, 'Hello world! by &

thread ', omp_rank
!$omp end parallel
end program hello

> ftn omp_hello.f90 -o omp
> setenv OMP_NUM_THREADS 4
> aprun -n 1 -d 4 ./omp
Hello world! by thread 0
Hello world! by thread 2
Hello world! by thread 3
Hello world! by thread 1

#include <stdio.h>
#include <omp.h>
int main(int argc, char argv[]){

int omp_rank;
#pragma omp parallel private(omp_rank)
{
omp_rank = omp_get_thread_num();
printf("Hello world! by

thread %d", omp_rank);
}

}

> cc omp_hello.c -o omp
> setenv OMP_NUM_THREADS 4
> aprun -n 1 -d 4 ./omp
Hello world! by thread 2
Hello world! by thread 3
Hello world! by thread 0
Hello world! by thread 1

106

How do the threads interact?

Because of the shared address space

threads can “communicate” using shared

variables

Threads often need some private work

space together with shared variables

– For example the index variable of a loop

Visibility of different variables is defined

using data-sharing clauses in the parallel

region definition

– private, firstprivate, lastprivate, shared, default
107

Work sharing

Parallel region creates an "Single Program

Multiple Data" instance where each thread

executes the same code

How can one split the work between the

threads of a parallel region?

– Loop construct

– Single/Master construct

– Sections

– Task construct (in OpenMP 3.0 and above)

108

Loop constructs

Directive instructing compiler to share the

work of a loop

– Fortran: $OMP DO

– C/C++: #pragma omp for

– Directive must be inside a parallel region

– Can also be combined with parallel:
$OMP PARALLEL DO / #pragma omp
parallel for

Loop index is private by default

Work sharing can be controlled using

schedule clause

– static, dynamic, guided, or runtime
109

Reduction clause

reduction(operator:var_list)

– Performs reduction on the (scalar) variables in

list

– Private reduction variable is created for each

thread’s partial result

– Private reduction variable is initialized to

operator’s initial value

– After parallel region the reduction operation is

applied to private variables and result is

aggregated to the shared variable

110

Execution controls

Sometimes a part of parallel region should

be executed only by the master thread or

by a single thread at time

– I/O, initializations, updating global values, etc.

– Remember the synchronization!

OpenMP provides clauses for controlling

the execution of code blocks

– barrier

– master & single

– critical
111

Execution model in MPI

Parallel program is launched as set of

independent, identical processes

– The same program code and instructions

MPI runtime assigns each process a rank

– identification of the processes

– Processes can perform different tasks and

handle different data basing on their rank

– Can reside in different nodes

The way to launch parallel program is

implementation dependent
112

Communication

Data is local to the MPI

processes

– they need to communicate to

coordinate work

Point-to-point communication

– Messages are sent between two

processes

Collective communication

– Involving a number of processes

at the same time

0

2

1

4

0

2

1

4

113

MPI point-to-point operations

One process sends a message to another

process that receives it with MPI_Send and

MPI_Recv routines

Sends and receives in a program should

match – one receive per send

Each message (envelope) contains

– The actual data that is to be sent

– The datatype of each element of data

– The number of elements the data consists of

– An identification number for the message (tag)

– The ranks of the source and destination

process

114

Non-blocking communication

Non-blocking communication is usually the

smarter way to do point-to-point

communication in MPI

– Enables some computing concurrently with

communication

– Avoids many common dead-lock situations

Non-blocking communication realization

– MPI_Isend

– MPI_Irecv

– MPI_Wait / MPI_Waitall
115

Collective operations examples

A A

A

A

A

MPI_Bcast

A B C D A

B

C

D

MPI_Scatter

MPI_Gather

P
ro

ce
ss

e
s

Local memory

B C D

E F G H

I J K L

M N O P

A E I M

B F J N

C G K O

D H L P

MPI_
Alltoall

A

Send buffer Recv buffer Recv bufferSend buffer

A

B

C

D

A B C D

A B C D

A B C D

A B C D

MPI_
Allgather

Send buffer Recv buffer

116

MPI datatypes

MPI has a number of predefined datatypes

to represent data

Each C or Fortran datatype has a

corresponding MPI datatype

– C examples: MPI_INT for int and

MPI_DOUBLE for double

– Fortran example: MPI_INTEGER for integer

One can also define custom datatypes

117

Communicators

0
2

1

3 5
4

7

6

MPI_COMM_WORLD

0
2

1

3

Comm 1

0

1

Comm 2

0

1

Comm 3

118

Basic MPI summary

Point-to-point
communication Collective

communication

Communication
One-to-all
collectives

All-to-one
collectives

All-to-all
collectives

User-defined
communicators

Send &
Recv

Sendrecv

119

First five MPI commands

C & Fortran bindings
int MPI_Init(int *argc, char **argv)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Barrier(MPI_Comm comm)

MPI_Finalize()

MPI_INIT(ierror)

MPI_COMM_SIZE(comm, size, ierror)

MPI_COMM_RANK(comm, rank, ierror)

MPI_BARRIER(comm, ierror)

MPI_FINALIZE(ierror)

integer comm, size, rank, ierror

120

Send operation

C/C++ binding
int MPI_Send(void *buffer, int count, MPI_Datatype

datatype,int dest, int tag, MPI_Comm comm)

The return value of the function is the error value

Fortran binding
MPI_SEND(buffer, count, datatype,

dest,tag, comm, ierror)

<type>, dimension(*) :: buf

integer :: count, datatype, dest, tag, comm, ierror

ierror: the error value

121

Receive operation

C/C++ binding
int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Status *status)

Fortran binding
mpi_recv(buf, count, datatype, source, tag, comm, status,

ierror)

<type>, dimension(*) :: buf

integer :: count, datatype, source, tag, comm, ierror
integer, dimension(MPI_STATUS_SIZE) :: status

122

MPI type C type

MPI_CHAR signed char

MPI_SHORT short int

MPI_INT int

MPI_LONG long int

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED_INT unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI datatypes

123

MPI type Fortran type
MPI_CHARACTER CHARACTER

MPI_INTEGER INTEGER

MPI_REAL REAL
MPI_REAL8 REAL*8 (nonstandard)

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX
MPI_DOUBLE_COMPLEX DOUBLE COMPLEX
MPI_LOGICAL LOGICAL
MPI_BYTE

MPI datatypes

124

Combined send & receive

C/C++ binding
int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype

sendtype, int dest, int sendtag, void *recvbuf, int
recvcount, MPI_Datatype recvtype, int source, int
recvtag, MPI_Comm comm, MPI_Status *status)

Fortran binding
mpi_sendrecv(sendbuf, sendcount, sendtype, dest, sendtag,

recvbuf, recvcount, recvtype, source, recvtag, comm,
status, ierror)

<type>, dimension(*) :: sendbuf, recvbuf

integer :: sendcount, sendtype, dest, sendtag, recvcount,
recvtype, source, recvtag, comm, ierror

integer, dimension(MPI_STATUS_SIZE) :: status

125

Non-blocking send

C/C++ binding
int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int

dest, int tag, MPI_Comm comm, MPI_Request *request)

Fortran binding
MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST,IERROR)

<type> :: BUF(*)
INTEGER :: COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

126

Non-blocking receive

C/C++ binding
int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Request *request
)

Fortran binding
MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM,

REQUEST,IERROR)

<type> :: BUF(*)
INTEGER :: COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST,

IERROR

127

Wait for non-blocking operation

C/C++ binding
int MPI_Wait(MPI_Request *request, MPI_Status *status)

Fortran binding
MPI_WAIT(REQUEST, STATUS, IERROR)

INTEGER :: REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

128

Wait for non-blocking operations

C/C++ binding
int MPI_Waitall(int count, MPI_Request

*array_of_requests,MPI_Status *array_of_statuses)

Fortran binding
MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES,

IERROR)

INTEGER :: COUNT, ARRAY_OF_REQUESTS(:),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,:), IERROR

129

Creating a communicator

C and Fortran bindings
int MPI_Comm_split (MPI_Comm comm, int color, int key,

MPI_Comm newcomm)

MPI_COMM_SPLIT (comm, color, key, newcomm, rc)
integer :: comm, color, key, newcomm, rc

Return code values
MPI_SUCCESS No error; MPI routine completed

successfully.

MPI_ERR_COMM Invalid communicator. A common

error is to use

a null communicator in a call

MPI_ERR_INTERN This error is returned when some

part of the

implementation is unable to acquire

memory. 130

Time for hands-on

131

Applications for Physicists

Jussi Enkovaara

High Performance Computing support

447

249

153

138

107

43

38

34

32

287

Users of computing resources by discipline 2013

Biosciences

Physics

Chemistry

Language research

Nanoscience

Computational fluid
dynamics

Engineering

Computational drug design

Earth sciences

Other disciplines

Total

1 528
active users

133

38 %

23 %

14 %

8 %

5 %

5 %

1 %
1 %

5 %

Computing usage by discipline 2013

Physics

Nanoscience

Chemistry

Biosciences

Astrophysics

Computational fluid dynamics

Materials sciences

Computational drug design

Other disciplines

Total

201,6 million
billing units

134

Software usage 2014

Software maintained by CSC

135

CLASSICAL MOLECULAR

DYNAMICS

136

Molecular dynamics

Numerical integration of Newton’s law:

Forces can be calculated quantum

mechanically (ab initio MD) or from

classical force fields

The form of the force field (or potential) V

is chosen to represent physics of the

problem

– Empirically parameterized

– Large variety of force fields exists
137

Classical force fields

Typical terms in force fields:

Effects of surroundings (temperature,

pressure etc.)

– Canonical ensemble, isothermal-isobaric

ensemble, …

– Thermostats

Torsional

Vibrational

Coulombic

138

Molecular dynamics

Basic outcome is the time evolution of

system of atoms (positions and velocities)

i.e sample of phase space

Different distribution functions provide

information about the system

Collect statistics to obtain representative

ensemble of the phase space

Typically length and time scales in MD

– 104 – 106 atoms, time up to μs

139

Molecular models

All atoms

– OPLS-AA/L, CHARM, AMBER

– Each atom is treated as

particle

Coarse grained superatoms

– Group of atoms (i.e. 4 is

treated as particle)

140

MD software at CSC

Gromacs

– Widely used open source software

package

– Mainly biomolecules

– Different molecular models and

algorithms

NAMD

– Main emphasis also on biomolecules

– Massively parallel

– Freeware

141

QUANTUM MECHANICS

142

Interacting electrons and nuclei

Nanosystems: 1 – 100 Å

Nuclei as point particles with charge Za

and mass Ma (nuclear radii < 10-4 Å)

Hamiltonian for electron-nuclei system

Atomic units:

143

Born-Oppenheimer approximation

Nuclei are much heavier than electrons (MI

> 103)

Electronic time scales are often

significantly shorter than the nuclear ones

Decouple the dynamics of electrons and

nuclei

Electronic Hamiltonian:

144

Many-body Schrödinger equation

Can be solved analytically for single electron

Storing 8 electron wavefunction in 6x6x6

cartesian grid requires ~1010 GB !

145

Wave-function based methods

Hartree-Fock approximation: many-body

wave-function as determinant of single

particle orbitals

– Often only qualitatively correct

Post-Hartree-Fock methods: configuration

integration (CI), coupled cluster (CC),

Møller–Plesset perturbation theory (MP2,

MP3, MP4)

– Accurate, computational scaling O(Nm), m > 4

– Only small molecules

146

Wave-function based methods

Physical quantities

– Formation and dissociation energies, geometry

optimizations, excited state energies, various

spectra

Software packages at CSC

– Turbomole, Gaussian, Molpro, NWChem

– Typically not massively parallel, up to few tens

of CPU cores

147

Density-functional theory

Hohenberg-Kohn theorems

– The ground state properties of many-electron

system are unique functionals of the ground

state density n(r)

– The ground state density minimizes the energy

functional

Density depends only on three spatial

variables

The exact energy functional is not known

but must be approximated

148

Kohn-Sham equations

Formulate problem in terms of single particle

orbitals

Non-linear problem, computational scaling O(N3)

149

Density-functional theory

Physical quantities

– Energetics, geometry optimization, elastic

constants, phonons, …

– Analysis of electronic structure

– Excited state properties with time-dependent

density-functional theory

Accuracy depends on the exchange-

correlation approx.

– Local density approximation, generalized

gradient approximation, …

150

Numerical solution

The strong Coulomb potential may be

replaced with a smoother one

– Pseudopotential vs. all-electron methods

Wave-functions (or Kohn-Sham orbitals)

are expanded in a basis:

Matrix equations:

151

Plane-wave basis

Periodic functions can be expanded in

plane waves

Relies on fast Fourier transforms

Systematic convergence with the number

of plane waves

Requires pseudopotential approximation 152

Localized atomic orbital basis

Use chemical insight for constructing basis

– Radial solution of isolated atom

– Gaussian basis

– Slater basis

Nomenclature: single-zeta (SZ), double-

zeta (DZ), double-zeta + polarized (DZP),

…

Systematic convergence of basis can be

difficult

All-electron or pseudopotential methods
153

Real-space grids

Represent wave-functions, potentials,

densities etc. on real-space grid

Derivatives with finite-differences

Systematic convergence with grid spacing

Requires pseudopotential approximation

154

Comparison on basis sets

Plane waves

– systematic convergence with single parameter

– parallelization more limited due FFTs

Localized basis set

– compact basis

– systematic convergence can be difficult

Real-space grids

– systematic convergence with single parameter

– good parallelization prospects

155

DFT software packages

GPAW

– Real-space grids, plane waves, atomic orbital

basis

– Projector augmented wave approximation

– Time-dependent density-functional theory

– Good parallelization in real-space mode (> 10

000 CPU cores)

– Flexible Python interface, simple GUI

– Open source

156

DFT software packages

VASP

– Plane waves

– Projector augmented wave approximation

– Standard ground state features, some excited

state functionality

– Widely used, stable software package

– Parallelization up to few hundreds of CPU

cores

– Requires a license

157

DFT software packages

CP2K

– Mixed Gaussian and plane wave basis

– Norm conserving pseudopotentials

– Well suited for ab-initio molecular dynamics of

insulating systems

– Good parallelization (thousands of CPU cores)

depending on usage mode

– Open source

158

User interfaces for DFT software

Atomic simulation environment (ASE)

– Python interface for setting up atomic

structures and other non-computational

intensive tasks

– Can be used with several “computational

engines” (GPAW, VASP, …)

– Simple GUI

– Open source, runs either locally or remotely

(Linux, Mac, Windows)

159

User interfaces for DFT software

Materials Studio

– Extensive graphical user interface for materials

simulations

– Setting up of structures, performing

calculations, analysis

– DFT calculations with CASTEP (plane-wave

pseudopotential code), also several classical

simulation methods

– Proprietary, user interface only for Windows

160

OTHER SOFTWARE

161

Other software

Elmer – multiphysical finite-element

software

– Fluid dynamics, structural mechanics,

electromagnetics, heat transfer, acoustics, …

– Open source

162

Other software

Mathematica

– Symbolic mathematics (including derivatives and

integrals)

– Visualization

Matlab

– Numerical mathematics especially with matrices

– Toolboxes for specific tasks

Python (+ NumPy + SciPy + matplotlib + …)

– General purpose programming, numeric, and

visualization

163

Other software

VMD

– Molecular visualization with

balls, sticks, ribbons etc.

– Isosurfaces

ParaView

– Analysis and visualization

– Interactive or batch

processing

164

Summary

CSC offers large selection of software

suitable for physicists

– Chemistry databases can also be useful

No single “best” tool

See

research.csc.fi/software

for full listing of available software

165

Coding

Debugging and code optimization

Debugging

Debugging is inevitable but often
difficult

Naive approach: "print *, 'foo 1' "

Parallel debuggers can be of great help

– Totalview

– LGDB

– Other, e.g., DDT, gdb, …

168

Debugging demo

169

Code optimization

Obvious benefits

– Better throughput => more science

– Cheaper than new hardware

– Save energy, compute quota etc.

..and some non-obvious ones

– Collaboration opportunities

– Potential for cross-disciplinary research

– Deeper understanding of application

170

Code optimization

Several trends making code optimization

even more important

– More and more cores

– CPU’s vector units getting wider

– The gap between CPU and memory speed

ever increasing

– Datasets growing rapidly but disk I/O

performance lags behind

171

Code optimization

Adapting the problem to the underlying

hardware

Combination of many aspects

– Effective algorithms

– Implementation: Processor utilization &

efficient memory use

– Parallel scalability

Important to understand interactions

– Algorithm – code – compiler – libraries –

hardware

Performance is not portable!
172

Not going to touch the source code?

Find the compiler and its compiler flags

that yield the best performance

Employ tuned libraries wherever possible

Find suitable settings for environment

parameters

Mind the I/O

– Do not checkpoint too often

– Do not ask for the output you do not need

173

Memory hierarchy

Registers

L1 Cache

L2 Cache

L3 Cache

Physical memory

Remote memory (over interconnect)

File system disks

<= 1

~4

~10

~25

O(102)

O(105...6)

O(100 B)

O(100 kB)

O(1 MB)

O(10 MB)

GB’s

TB’s

100s GB’sO(103)

174

Why does scaling end?

W
al

l-
cl

o
ck

 t
im

e

MPI tasks

Ideal

Reality

1

2

4

8

16

32

Sp
e

e
d

-u
p

MPI tasks

Ideal

Reality

175

Why does scaling end?

Amount of data per process small -

computation takes little time compared to

communication

Amdahl’s law in general

– E.g., single-writer or stderr I/O

Load imbalance

Communication that scales badly with Nproc

– E.g., all-to-all collectives

Congestion on network – too many

messages or lots of data
176

Application timing

Most basic information: total wall clock

time

– Built-in timers in the program (e.g. MPI_Wtime)

– System commands (e.g. time) or batch system

statistics

Built-in timers can provide also more fine-

grained information

– Have to be inserted by hand

– Typically no information about hardware

related issues

– Information about load imbalance and

communication statistics of parallel program is

difficult to obtain 177

Performance analysis tools

Instrumentation of code

– Adding special measurement code to binary

– Normally all routines do not need to be

measured

Measurement: running the instrumented

binary

– Profile: sum of events over time

– Trace: sequence of events over time

Analysis

– Text based analysis reports

– Visualization
178

Profiling

Purpose of the profiling is to find the "hot

spots" of the program

– Usually execution time, also memory

Usually the code has to be recompiled or

relinked, sometimes also small code

changes are needed

Often several profiling runs with different

techiques is needed

– Identify the hot spots with one approach,

identify the reason for poor performance

179

Profiling: sampling

Pros

Lightweight

does not interfere the

code execution too much

Cons

Not always accurate

Difficult to catch small

functions

Results may vary

between runs

The application execution is interrupted at constant intervals and
the program counter and call stack is examined

Profiling: tracing

Pros

Can record the program

execution accurately and

repeatably

Cons

More intrusive

Can produce prohibitely

large log files

May change the

performance behaviour of

the program

Hooks are added to function calls (or user-defined points in
program) and the required metric is recorder

CODE OPTIMIZATION CYCLE

182

Code optimization cycle

Instrument & run

Identify scalability
bottlenecks

Identify single-
core issues

Optimize

Validate/debug

Measure
scalability

Select test
case

183

Step 1: Choose a test problem

The dataset used in the analysis should

– Make sense, i.e. resemble the intended use of

the code

– Be large enough for getting a good view on

scalability

– Be runable in a reasonable time

– For instance, with simulation codes almost a

full-blown model but run only for a few time

steps

Should be run long enough that

initialization/finalization stages are not

exaggerated

– Alternatively, we can exclude them during the

analysis 184

1

1,2

1,4

1,6

1,8

2

64 128 256 512 1024 2048

Speedup

0

200

400

600

64 128 256 512 1024 2048

Walltime

Step 2: Measure scalability

Run the

uninstrumented code

with different core

counts and see where

the parallel scaling

stops

Often we look at strong

scaling

– Also weak scaling is

definitely of interest

185

Step 3: Instrument & run

Obtain first a sampling profile to find which

user functions should be traced
– With a large/complex software, one should not

trace them all: it causes excessive overhead

– Tracing also e.g. MPI, I/O and library (BLAS,

FFT,...) calls

Execute and record the first analysis with
– The core count where the scalability is still ok

– The core count where the scalability has ended

and identify the largest differences

between these profiles

186

Step 4: Identify scalability

bottlenecks

What communication pattern and routines

are dominating the true time spent for

communication (excluding the sync

times)?

How does the message-size profile look

like?

Note that the analysis tools may report

load imbalances as ”real” communication
– Put an MPI_Barrier before the suspicious

routine - load imbalance will aggregate into it

187

Example with CrayPAT

188

Example with CrayPAT

Table 4: MPI Message Stats by Caller

MPI Msg |MPI Msg | MsgSz | 4KB<= |Function
Bytes | Count | <16B | MsgSz | Caller

| | Count | <64KB | PE[mmm]
| | | Count |

15138076.0 | 4099.4 | 411.6 | 3687.8 |Total
|--
| 15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND
||---
|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_
3| | | | | MAIN_
||||---
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0
4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9
4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15
||||===
...

189

Step 4: Identify scalability

bottlenecks

Signature: User routines scaling but MPI

time blowing up
– Issue: Not enough to compute in a domain

Weak scaling could still continue

– Issue: Expensive collectives

– Issue: Communication increasing as a function

of tasks

Signature: MPI_Sync times increasing
– Issue: Load imbalance

Tasks not having a balanced role in communication?

Tasks not having a balanced role in computation?

Synchronous (single-writer) I/O or stderr I/O?
190

Step 5: Find single-core hotspots

Remember: pay attention only to user routines

that consume significant portion of the total time

Collect the key hardware counters, for example

– L1 and L2 cache metrics (PAT_RT_PERFCTR=2)

– use of vector (SSE/AVX) instructions

(PAT_RT_PERFCTR=13)

– Computational intensity (= ratio of floating point ops /

memory accesses) (PAT_RT_PERFCTR=1, default)

Trace the “math” group to see if expensive

operations (exp, log, sin, cos,...) have a

significant role
191

Step 5: Find single-core hotspots

Signature: Low L1 and/or L2 cache hit

ratios

– <96% for L1, <99% for L1+L2

– Issue: Bad cache alignment

Signature: Low vector instruction usage

– Issue: Non-vectorizable (hotspot) loops

Signature: Traced ”math” group featuring a

significant portion in the profile

– Issue: Expensive math operations

192

The Golden Rules of profiling

Profile your code
– The compiler/runtime will not do all the optimisation for you.

Profile your code yourself
– Don't believe what anyone tells you. They're wrong.

Profile on the hardware you want to run on
– Don't profile on your laptop if you plan to run on a Cray system.

Profile your code running the full-sized problem
– The profile will almost certainly be qualitatively different for a

test case.
Keep profiling your code as you optimize
– Concentrate your efforts on the thing that slows your code

down.
– This will change as you optimise.
– So keep on profiling.

193

Wrap-up of day 1

194

Unix for Physicists

Contents

Shells and commands on CSC supercomputers

– bash (recommended)

– tcsh

NX

Dealing with files and directiories

Programs

Useful tools

Use cases

196

What is shell?

A shell is a program which provides the

traditional, text-only user interface for

Linux (and other Unix like systems)

Shell’s primary function is to

read commands that are typed into

a console or terminal window and

then execute them.

197

What is shell cont., bash on Taito

Text shell: Terminal with a set of commands

Different flavors

– bash (default)

– tcsh (old default)

– zsh,

– corn-shell, …

198

bash and tcsh comparison

bash tcsh invoking bash output tcsh output

Shell

variables
x=2 set x = 2 echo $x 2 2

Env.

variables
export z=3 setenv z 3 echo $z 3 3

PATH
export PATH=/

a:/b

set

path=(/a /b)

echo $path;

echo $PATH;

-

/a:/b

/a /b

/a:/b

Aliases alias ls="ls -l" alias ls "ls -l" ls same as ls -l same as ls –l

Command

prompt
PS1=abc-

set prompt=a

bc-
[ENTER] abc- abc-

Redirection
prog > ofile 2>

efile

(prog > ofile)

>& efile
[ENTER]

stdout -> ofile

stderr -> efile

stdout -> ofile

stderr -> efile

199

Shell commands

A command is an instruction given by a user

telling a computer to do something, e.g.:

– run a single program

– run a group of linked programs

Commands are generally issued by typing

them in at the command line and then

pressing the ENTER key, which passes them

to the shell

200

Commands cont.

Structure of a command:

command -option [optional input]

Examples

– apropos list

– ls –l

– clear

– finger username (Taito)

finger –m username (Sisu)

201

ls

• Prints names of files in current directory

• Prints contents of a directory, if given as

ls directory

• Only print filenames matching a wildcard expression

– ls *.txt

• Option -l gives more info

• May find useful on Taito and Sisu

– ls –lrt (reverse time ordered)

– ls -d /* --color=tty (list directories, colorize the

output) 202

mkdir [directory]

• Make a new directory

• -p to not complain about already existing

directory and to make missing parent directories

as needed

cd [directory]

• Change the current working directory

• cd .. to go up a directory

203

mv [source] [dest]

rm [file]

• Moves files or directories

• Can also rename files

• Removes files (be careful!)

• -r to remove a directory recursively

• -f to force removal (be supercareful!)

• Sometimes, e.g., on Taito, alias: rm = ’rm –i’

204

find [directory] [options]

• Finds files in a directory and it's

subdirectories that match the criteria given

with the options

• Common use case, find files with certain

names in the current directory:

find . -name '*.c’ -print

205

grep -e 'searchterm' [files]

• Search for matching lines inside files

• -i for case insensitive

• -n to print line numbers

206

cat [file]

• Prints contents of file to screen

• cat -n to precede lines with line numbers

pwd

• Print the current working directory

207

less [file]

• Opens a scrollable view of a file

• q to quit

• / to search forward, ? to search backwards

• n to find the next match, N for previous

• Some people prefer more [file], it allows

to scroll down, but not up

208

man [command]

• Show the manual of command in less

cp [source] [destination]

• Copy a file

• -r to copy recursively a directory and its

contents

• -v for verbose

209

scp [source] [dest]

• Like cp, but used for remote transfer

• For example: scp my_file

user@taito.csc.fi:’/absolute/path/to/dir’

rsync [source] [dest]

• Fast, versatile tool, remote and local usage

• E.g.: rsync my_file taito.csc.fi:

210

tar [commands] [file]

• Versatile tool used most in two ways

– tar xvf some_file.tar

• Extracts from file some_file.tar the contents of the archive verbosely

– tar cvf my_files.tar my_dir/

• Creates verbosely a new archive in file my_files.tar from the

directory my_dir/

– tar cvzf my_files.tar.gz my_dir/

• Apply gzip (i.e., compress the tar archive)

211

wget URL

• Used to download files from the internet

without a graphical browser such as

Firefox or Chrome

• For example: wget

http://ftp.gnu.org/gnu/hello/hello-2.7.tar.gz

to download the gnu program hello

212

Selected Taito aliases

• Type alias to get the full list

– alias chsh='/usr/alt/uadm2/bin/chsh'

– alias mv='mv -i'

– alias passwd='/usr/alt/uadm2/bin/passwd'

– alias quota='/etc/profile.d/csc/csc-quota.bash'

– alias sj='scontrol show job'

– alias sn='scontrol show node'

– alias vi='vim'

213

What is a program?

A program is a sequence of instructions understandable

by a computer’s central processing unit (CPU) that

indicates which operations the computer should perform

Ready-to-run programs are stored as executable

files

An executable file is a file that has been converted

from source code into machine code, by a

specialized program called a compiler

214

Programming languages at supercomputers

215

gcc [source files] [-o prog]

• Compiles C source files into a program

• -o to give the name of the program, defaults to

a.out

• -c to compile into .o -files

216

Compiling and installing programs

• For most programs, the three commands

to compile and install in directory

/home/user/programs are:

./configure --prefix=/home/user/programs

make

make install

• make will be discussed in detail later today

• Common destination: $USERAPPL

217

More useful tools

• head

• tail

• wc

• which

• time

• ps

• top

• touch

• sed

• sort

• uniq

• cut

• paste

• awk

218

Use case: set command prompt on Taito

1) Edit your profile file, e.g., with

vi or nano

• vi .profile

add:

• export

PS1='\[\033[1;30m\]\u\[\033[0m\]@\[\

033[1;34m\]\h\[\033[0m\]:[\w]# '

2) Apply changes

• source .profile

219

Using NoMachine Remote Desktop

220

Direct ssh connection – Unix/Linux

From UNIX/Linux/OSX command line

Use –X (or –Y) to enable remote graphics*

ssh –X yourid@taito.csc.fi

ssh -l yourid –Y taito.csc.fi

* In Windows you’d also need a windows emulator, but there is a better way 221

NoMachine Remote Desktop

Client connection between user and
gateway

Good performance even with slow
network

Ssh from gateway to server (fast if
local)

Connect to right gateway
– nxkajaani.csc.fi

– nxlogin.csc.fi

Persistent connection

Suspendable
– Continue later at another location

Read the instructions…
– ssh-key, keyboard layout, mac

specific workarounds, …

Choose an application or server to
use (right click)

222

https://research.csc.fi/-/nomachine

Bunch of files use case:

You have received a bunch of files from a colleague,

describing a glacier. They are in the directory "data". Your

mission is to make sense of it all, in a possibly unfamiliar

environment called bash.

Your team will consist of two veteran agents Google and

man. As usual, ask for help form the friendly locals (person

next to you and instructors) to succeed in the mission.

Part 1. The files in general

How many files is there?

How big are they in kilobytes?

Are they small enough to be emailed?

How about copying over Internet by some other means?

What means there is to move or share files?

How many lines and words is there in them?

224

Part 1. The files in general

Simple commands do the job:

$ cd data

$ls

bed.txt README stake_positions.txt surface.txt thick.txt

$ ls -lh

total 812K

-rw-r--r-- 1 svali-user svali-user 271K Apr 26 13:11 bed.txt

-rw-r--r-- 1 svali-user svali-user 364 Apr 26 13:11 README

-rw-r--r-- 1 svali-user svali-user 150 Apr 26 13:12 stake_positions.txt

-rw-r--r-- 1 svali-user svali-user 267K Apr 26 13:11 surface.txt

-rw-r--r-- 1 svali-user svali-user 263K Apr 26 13:11 thick.txt

$ wc -lw *

231 46431 bed.txt

12 63 README

10 20 stake_positions.txt

231 46431 surface.txt

231 46431 thick.txt

715 139376 total

225

Part 1. The files in general

Also try:
$ file *

bed.txt: ASCII text, with very long lines

README: ASCII English text

stake_positions.txt: ASCII text

surface.txt: ASCII text, with very long lines

thick.txt: ASCII text, with very long lines

$ less README

$ less bed.txt

226

Part 2. Lot's of numbers?

Let's filter the numbers in the files so that you can calculate

meaningful characteristics of the data. For example:

What are the minimum and maximum values in bed.txt?

Notice the null values -99.0

Data does not need to be kept in matrix format to calculate

minimum and maximum

use the pipes, cat, tr, grep, sort (because data is not that big)

227

Part 2. Lot's of numbers?

Let' pipe the data to tr, which can replace characters with other

characters (like space “ “ with the end of line “\n”)

$ cat bed.txt | tr ' ' '\n' | less

Now there is one value per line (and if you look closely, we

accidentally inserted some blank lines, too).

Let's remove null values and blank lines with grep and regular

expressions.

$ cat bed.txt | tr ' ' '\n' | grep -v -e '-99.0' -e '^$' | less

Then sort the numbers and put them into a file.

$ mkdir -p ~/tmp

$ cat bed.txt | tr ' ' '\n' | grep -v -e '-99.0' -e '^$'| sort -n >

~/tmp/bed.values

228

Part 2. Lot's of numbers?

Now that the numbers are ordered, it is pretty easy to see the maximum

and the minimum

$ head -1 ~/tmp/bed.values

44.1

$ head -1 ~/tmp/bed.values

644.2

Let's next sum the values in file thick.txt. That would be very close to

actually calculating the volume of the glacier, right?

Let's first extract the values, one value per line, the same thing as we

did to bed.txt.

$ cat thick.txt | tr ' ' '\n' | grep -v -e '-99.0' -e '^$'| sort -n >

~/tmp/thick.values

229

Part 2. Lot's of numbers?

Now, enter awk!

$ awk '{sum+=$1}END{print sum}' ~/tmp/thick.values

983583

What happened? Uh, a lot. Awk is a programming language, that

reads files, line by line

for each line matching the condition, it applies commands in the

curly braces {} after the condition. If there is no condition before the

{}, those commands are applied to all lines. BEGIN and END are

special conditions. The commands in them are executed before and

after any/all lines are read, respectively.

The fields in the lines can be referenced using $0 (all fields), $1 (the

first field), $2 (the second field), etc.

230

Part 2. Lot's of numbers?

What about the volume of the ice in the glacier? The grid size dx=20m,

so the volume is

$ bc -l <<< “983583*20*20”

393433200

Average thickness is also easy to calculate (NR is one of the special

variables in awk, it tells the number of lines read so far).

$ awk '{sum+=$1}END{print sum/NR}' ~/tmp/thick.values

75.4224

And so is the median (because we sorted the values).

$ wc -l ~/tmp/thick.values

13041 /home/svali-user/tmp/thick.values

$ awk 'NR == int(13041/2){print $1}' ~/tmp/thick.values

73.2

231

Part 3. Make your own command!

In order to visualize the data, we often need to filter it, or change the

format. I have written two commands, elop, that can be used to

manipulate matrix formatted data, and txt2xyz, that transforms data

in matrix format to data in xyz-format understood by gnuplot.

Let's first have a small look at how shell scripts (the commands

above are written as shell scripts), and interactive shell interpreter

work. Very simplified:

1.shell reads files (or standard input) line by line as awk

2.shell replaces variables ($variable, etc.) by their value

3.shell interprets the first word of each “block” as a command (or

alias or function), rest of the words are arguments to the command

232

Part 3. Make your own command!

For example, elop:
$ cat ../bin/elop

#!/bin/bash

function usage {

echo 'Usage: cat M0.txt | ./elop EXPRESSION [M1] [M2] …'

echo

echo 'Reads matrix M0 from stdin, modifies each element according to the'

echo 'expression, and writes the resulting matrix to stdout. The matrix'

echo 'M0 elements are referred using m[0] in the EXPRESSION. elop accepts'

echo 'optional files containing matrixes M1, M2, ... which elements'

echo 'can be referred in EXPRESSION using m[1] and m[2], etc.'

echo

echo ' Examples:'

echo

echo '1\) Multiply each element of the matrix by 10'

echo ' cat M0.txt | ./matoper "m[0]*10"'

echo

echo '2\) Find out which elements in M0 are larger than corresponding'

echo ' elements in matrix M1'

echo ' cat M0.txt | ./matoper "m[0] > m[1]" M1.txt'

echo

echo '3\) Multiply the elements of matrix M0 and M1, and add the elements'

echo ' in M2'

echo ' cat M0.txt | ./matoper "m[0] * m[1] + m[2]" M1.txt M2.txt'

echo

}

First line tells

that this is a

bash, so use

bash to interpret

the rest of it.

Second line

starts a function

definition. This

function is

defined only

inside the script,

and only prints

out usage

instructions.

233

Part 3. Make your own command!
case $# in

0)

usage

exit

;;

*)

n=$#

expression=$1

shift

paste - $@ | awk "

{

for(i=1;i<=NF/$n;i++){

for(j=0;j<$n;j++){

m[j]=\$(i+NF/$n*j)

}

printf \"%s \",$expression

}

printf \"\n\"

}"

;;

esac

$# expands to the number of the arguments

for the script. If there is none, print usage and

exit script.

By default, put the number of arguments to

variable n, the first argument to variable

expression, “move arguments one step to

left” and paste stardard input with the files

given as arguments to awk.

Paste concatenates files “side by side”,

whereas cat concatenates them one after the

other.

234

Part 3. Make your own command!

We need to do two things to use the file ../bin/elop as a command

1.give the script execution permissions

2.add the location of the script to the search path of our command

line interpreter

$ chmod u+x ../bin/elop

$ export PATH=${PATH}:${PWD}/../bin

235

Part 3. Make your own command!

Let's check that “surface - bed = thick” really, with for example

$ cat surface.txt | elop '(m[1]>0)*(m[0] - m[1] - m[2])' thick.txt

bed.txt | less

Now, the elop-script that I presented, is already far from simple. Try

understanding it little by little. To see what “$#” and “shift” in the

script do, write a little test script:

$ emacs ../bin/mytest &

$ cat ../bin/mytest

#!/bin/bash

echo "Number of arguments: $#"

shift

echo "Number of arguments after shift: $#"

$ chmod u+x ../bin/mytest

$ mytest arg1 arg2 arg3

236

Part 4. Visualize it!

File surface.txt contains the surface, whether it be rock surface or glacier

surface. File bed.txt gives the interface between the glacier and rock. It

would make a better picture if we would have the rock surface, would it be

under the glacier or not, and the surface of the glacier. That small elop

command may be of help now ;)

$ cat surface.txt | elop '(m[1]>0)*m[1] + (m[1]<0)*m[0]' bed.txt >

~/tmp/rock.txt

$ cat surface.txt | elop '(m[1]>0)*m[0] + (m[1]<0)*(-99.0)' bed.txt >

~/tmp/glacier_surface.txt

Great!

surface

bed

glacier surface

rock

237

Part 4. Visualize it!

Next, we pick a visualization program: gnuplot

Gnuplot can draw lines in 3D. The lines are given in xyz-format.

Xyz-format has three values on each line, x-, y-, and z-coordinates

of points, and blank lines separating each line segment.

I wrote a small command to do the transform, ../bin/txt2xyz, let's first

have a look how it works and then what's inside the script.

$ cat ~/tmp/glacier_surface.txt | txt2xyz > ~/tmp/glacier_surface.xyz

$ cat ~/tmp/rock.txt | txt2xyz > ~/tmp/rock.xyz

238

Part 4. Visualize it!

#!/bin/bash

Transform grid formatted data to xyz-formatted data

Coordinates of the SW-corner

xmin=434000

ymin=8756400

Grid spacing

dx=20

1. Put the matrix formatted data into pipe last line first with tac

2. With awk

2.1 Add a blank line in front of every line to separate lines drawn

by gnuplot, i.e. draw lines in x-direction

2.2 loop over all elements in the row

2.3 for each element, print its x-, y-, and z-coordinates, if the

matrix element value is positive, otherwise, print a blank line.

This is to allow discontinuous lines in the x-direction.

3. remove excessive blank lines with cat -s

tac - | awk "

{

printf \"\n\"

for(i=1;i<=NF;i++){

if(\$i>0){

printf \"%s %s %s\n\",$xmin+(i-1)*$dx,$ymin+(NR-1)*$dx,\$i

} else {

printf \"\n\"

}

}

}" | cat -s

239

Part 4. Visualize it!

Then, let's draw the plot

$ gnuplot

> splot '~/tmp/rock.xyz' w l, '~/tmp/glacier_surface.xyz' w l

240

Part 5. Stakes

File stake_positions.txt has the x- and y-coordinates of the stakes.

We'd like to plot them in the picture, too. But, there is no z-

coordinate...

Let's take the z-coordinate from the surface data. The problem is that

the stakes are not at the grid points, and we need to interpolate the z-

coordinate value at stake positions. Proper interpolation starts to be a

job that might be better done using more specialized software or

compiled programming language. But, for the sake of exercise, let's

have a look at a small script that I wrote to do a very simple

interpolation :)

$ less zinterp

241

Part 5. Stakes

#!/bin/bash

dx=20

function usage {

echo 'usage: cat xy-data.txt | zinterp xyz-data.xyz'

echo

echo 'Interpolate z values from xyz-data.xyz to points in'

echo 'xy-data.txt using the value closest to xy-point'

echo 'in xyz-data.xyz.'

echo

echo 'File xy-data.txt contains two values (x- and y-coordinate)'

echo 'per line, and file xyz-data.xyz contains three values'

echo '(x-, y-, and z-coordinates). Output is in xyz-format.'

echo

}

242

Part 5. Stakes
case $# in

1)

cat - $1 | awk -v dx=$dx '

BEGIN {

n = 0

}

NF == 2 {

n++

x[n]=$1

y[n]=$2

z[n]=-99.0

d[n]=dx^2+dx^2+1

}

NF == 3 {

for(i=1;i<=n;i++) {

l = (x[i]-$1)^2 + (y[i]-$2)^2

if(l < d[i]) {

d[i] = l

z[i] = $3

}

}

}

END {

for(i=1;i<=n;i++) {

print x[i],y[i],z[i]

}

}'

;;

*)

usage

exit

;;

esac

Notice how we pass a variable to awk

1.First collect all stake positions and initialize

z-value to “null” and distance d to a value

large, but not too large

2.Read in the xyz-coordinate. Check if it is

close to the any of the stake positions. If it is

closer than any before it, use the z-value for

stake position z-value.

3.Print the result

243

Part 5. Stakes

Let's see how it works:

$ cat data/stake_positions.txt | zinterp ~/tmp/surface.xyz >

~/tmp/stake_positions.xyz

$ gnuplot

> splot '~/tmp/rock.xyz' w l, '~/tmp/glacier_surface.xyz' w l,

'~/tmp/stake_positions.xyz' w p

244

Part 5. Stakes

And last, we would like to plot the thickness of the glacier along the

path spanned by the stakes. To make it simple, the path will consist of

straight line segments between the stakes, and the thickness is

plotted at about constant interval (d=20m) along the path.

The script generates a list of points along the path, including the stake

positions.

$ less bin/pathinterp

#!/bin/bash

d=20

function usage {

echo 'usage: cat xy-data.txt | pathinterp'

echo

echo 'Interpolate evenly spaced xy-values between points.'

echo

echo 'File xy-data.txt contains two values (x- and y-coordinate)'

echo 'per line'

echo

}

245

Part 5. Stakes

case $# in

0)

cat - | awk -v d=$d '

NR == 1{

x1 = $1

y1 = $2

print x1,y1

}

NR != 1 {

x2 = $1

y2 = $2

n = int(sqrt((x2-x1)^2+(y2-

y1)^2)/d)

dx=(x2-x1)/n

dy=(y2-y1)/n

for (i=1;i<n;i++) {

x = x1+i*dx

y = y1+i*dy

printf "%f %f\n",x,y

}

print x2, y2

x1 = x2

y1 = y2

}'

;;

*)

usage

exit

;;

esac

Let's assume that the stake positions

are in correct order

(x1,y1)

(x2,y2)

(x,y)

246

Part 5. Stakes

With the extended list of points, and thickness in xyz-format, we run

zinterp, and plot the result.

$ txt2xyz < data/thick.txt > ~/tmp/thick.xyz

$ pathinterp < data/stake_positions.txt > ~/tmp/path.txt

$ cat ~/tmp/path.txt | zinterp ~/tmp/thick.xyz > ~/tmp/path_thick.xyz

$ gnuplot

> splot '~/tmp/path_thick.xyz' w impulses, '~/tmp/path.txt' using 1:2:(0),

'data/stake_positions.txt' using 1:2:(0)

247

Congratulations!

• That's all!

• No, not really ;)

• Continue by making small modifications to the

example scripts. Especially the plots could be

prettier.

• Write your own command line filters and scripts.

They do not need to be perfect in the beginning...

or later :)

• Always, visualize your data!

248

Computational physics using GPUs
and Xeon Pihs

Fredrik Robertsen

Åbo Akademi

froberts@abo.fi

Outline

 What is a GPU and what is a Xeon Phi ?

 Why and when should you use them ?

 How can they be programmed ?

 Demo

 Advanced usage

250

Your average CPU

 Fairly good at everything

 Excellent at single threaded work

– Out of order execution

– High clock rates, 3.5 GHZ and beyond

 Multicore with shared memory

– Up to 18 cores

 Vector instructions

– 256 bit registers with Advanced Vector Instructions
AVX

251

What is a GPU and a Xeon Phi

 Floating point computation accelerators

 Many cores

 Some do vector instructions

 Additional PCI-e cards that need to be added to a host

 They are only good for certain types of jobs
– Massively data parallel

– Not control bound

– Vectorized or vectorizable code

252

What are they II

GPU

 Two vendors: NVIDIA and
AMD

 Streaming architectures

 Large core count, 2000+
– Organized into larger units

 Very little cache memory
– ~40 byte per CUDA core on

Nvidia

Xeon Phi

 Evolution of Intel’s GPU
architecture

 More like a “normal” CPU
– X87 FPU

 Large L2 cache

 512 bit vector instructions

253

Reasons to use computational
accelerators

Reason #1

 Tianhe-2 (MilkyWay-2)

 #1 on Top500

 33.9 Pflop/s

 16000 computer nodes
– two Intel Ivy Bridge Xeon

processors

– three Xeon Phi cards

Reason #2

 Titan - Cray XK7

 #2 on Top500

 17.6 Pflop/s

 18688 computer nodes
– One 16-core AMD Opteron

– One Nvidia Tesla K20X GPU

1 Pflop/s = 10^15 flop/s

254

More realistic reasons …

GPUs

 Cheap

– 300-600 € for a normal graphics
processor

– 2-6000 € for a dedicated GPGPU

 Performance

– 4-6 Tflop single precision

– 1+ Tflop double precision

 Excellent way of adding
performance to existing
computers

 Massive internal memory
bandwidth

Xeon Phi

 X86 compatible

– Programs need to be recompiled

 “Easy” to program

 Performance

– 2+ Tflop single precision

– 1+ Tflop double precision

 Massive memory bandwidth

 Tricky to build a Xeon Phi system

Taito node:
0,324 Tflop DP
0,649 Tflop SP

255

Programming

GPUs

 CUDA
– Nvidia only

– Like C

 OpenACC
– Nvidia only for now..

– Directive based

 OpenCL
– Like CUDA but cross platform

Xeon Phi

 Native
– Run code only on the device

 Offload
– Directive based

– OpenMP 4.0 offload

 OpenCL
– Existing OpenCL code will

work

256

Programming II

 Main issues when programming

– Data movements between host and card

– “Any order execution” there are no guarantees
that threads are executed in a certain order

– Optimizing it for the accelerator

 Next a few examples

257

Basic example with
OpenMP

• Basic code example parallelized
with OpenMP

• Simple vector addition

• 100000000 elements

• Computation runtime on an Intel
Ivy Bridge i7-3770k:

• 0.0653523 sec with 8 threads

• 0.124101 sec with 1 thread

258

OpenACC

• Similar to the OpenMP version

• Replace #omp pragmas with
equivalent OpenAcc versions

• Computational runtime on an
Nividia K20:

• 0.00935793 sec

• 0.452739 sec with data transfers

• PGI, CAPS, Cray compiler support

Move data

Offload to GPU

Segment executed
on the GPU

259

Simple CUDA example

• Computational runtime on an
Nividia K20:

• 0.00845494 sec

• 0.456792 sec with data transfers

• Code is compiled with nvcc
compiler that is part of NVIDIA’s
software development toolkit

Allocate
memory on
the GPU

Code
executed on
the GPU

Set threadblock and grid size

Transfer data
to the device

Start kernel

Transfer data
to the host

260

CUDA unified memory
example

• Introduced in Cuda 6.0

• Simplifies data movement
between host and device

• Will not speed up code and there
are cases where it will give worse
performance

• Copile with “nvcc -gencode
arch=compute_35,code=sm_35”

• Only works on newer cards

Code
executed on
the GPU

Allocate memory
for the host and the
GPU

Set threadblock and grid size

Start kernel, with A, B, C
pointers

Sync device before data
is used on the host

Use A, B pointers in
host code

261

Xeon Phi offload

• Computational runtime on an Intel
Xeon Phi 5110P

• 0.118713 sec

• Room for further optimizations

• Easy to get running, hard to get
running well

• Compiled normally with the Intel
compiler

Move data & offload

Ingonre dependencies

Segment executed
on the Phi

262

Xeon Phi native

 Xeon Phi’s “party piece”

 Compile with Intel’s compiler and –mmic
flag

 Log in to the card with ssh

 Run on the Xeon Phi card!

263

Demo

 Port a simple N-body solver

 True O(n^2) complexity

 Not really tuned for any specific architecture

 Should however give a decent performance

 Parallelized per particle

– Calculate all the forces on a particle
• One particle per iteration of a the parallel loop

– Update the position and velocity of each particle

264

Xeon Phi native

 Ssh into taito.csc.fi then ssh to m1

 Do a “module purge”

 Then “module load intel/15”

 Code is in: NbodyNative

 Have a look in the makefile

– Set architecture to be mic

 Recompile and run

– “make”

– “./solver” or “srun –n 1 –p mic –gres=mic:1 ./solver”

 (non CSC systems: ssh into mic0 and then run)

 No libpng, would need to be recompiled for the card

265

Xeon Phi offload

 Ssh into taito.csc.fi then ssh to m1

 Do a “module purge”

 Then “module load intel/15”

 Code is in: NbodyOffload

 All modifications are done to Solver.cpp

 Add a #pragma offload target (mic) in(var1,
var2…:length(var lenght) inout(..) to the block that should
be run on the accelerator

 Add __attribute__((target(mic))) before the declaration of any
function that will be called from accelerator code

 Recompile and run

– “make”

– “./solver” or “srun –n 1 –p mic –gres=mic:1 ./solver”

266

Cuda

 Ssh into taito-gpu.csc.fi

 All modifications happen in Solver.cu located in NbodyCuda

 Allocate memory for dev_ pointers, copy the host memory to the
corresponding pointers

 Add __device__ to declarations of functions to be run on the
accelerator

 Add __global__ to your kernel functions, the ones you call from host
code to be executed on the device

 Add calculations for getting the current thread id to the kernel functions

 Add launch parameters

 Compile and run

– “make”

– “srun –n 1 –p gpu –gres=gpu:1 ./solver”

267

Performance
Subject to change

 Taito node: 0.09354179 sec / frame

 Xeon phi offload: 0.051267 sec / frame

 Xeon phi native: 0.050066 sec / frame

 Sisu node: 0.043749 sec / frame

 Cuda: 0.038971 sec / frame

0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1

Cuda

Sisu (node)

Native

Offload

Taito (node)

Frame time (s)

268

Optimization

 Xeon phi general
– Vectorization

– Cache behavior

– Prefetching

 Xeon phi native

– Memory alignment

 Cuda

– More parallelism

– In this case manually caching particles for reuse by other
threads

269

Theoretical vs actual performance

 Theoretical floating point performance is measured
using FMA (fused multiply add)

– If your code cannot me structured for FMA
performance can never get to more than 50% of
theoretical

 Memory bandwidth

– GPU

• Able to get to 85++% of theoretical peek

– Phi

• Good if you get 50%

270

Multi node accelerated code

 Separate cards in the system

 Communication needs to go trough the host*

– You need to move the data back

– Xeon phi native you can just call MPI functions

*currently changing and there are systems where the
accelerator and NIC can communicate without the
host

271

Cuda and MPI

 Normal workflow:

– Move data from host to device, pass device buffer
to MPI

 GPU aware MPI

– Give MPI the pointer to the data on the device, it
will take care of the transfers

 GPU Direct

– Give MPI the device pointer and the data will be
moved from the device to the network without
going trough the host

272

Summary

 Floating point accelerators

– Cheap performance

 Surprisingly easy to program

– Basically C

 Great performance

273

Thank you

Questions?

froberts@abo.fi

Massively parallel computations

275

Visualization at CSC
visualization@csc.fi

Jyrki Hokkanen

276

Scientific visualization - Information visualization

277

I II III IV

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Data sets I, II, III, IV have identical simple statistical properties

(mean, variance, correlation, linear regression)

Anscombe's quartet example

278

Always take a look at the data!

http://en.wikipedia.org/wiki/Anscombe%27s_quartet
279

Be aware of ”information processing”

280

281

Scientific visualization
examples, techniques, tips

282

283

284

285

PLoS Computation Biology

February 2009 Cover

CSC Grand Challenge project:

Voltage-gated ion channels

Vattulainen, Lindahl

C
S

C
 J

y
rk

i H
o
k
k
a
n
e
n 286

External rendering for extra impact

Export from scientific software, import to 3D-graphics application

•most examples here rendered with free app Blender (blender.org)

•is excessively versatile, has two internal and several plug-in renderers

•POV-Ray is another widely used free stand alone renderer (povray.org)

287

ParaView render288

Blender render289

290

291

CSC Grand Challenge project:

ModProMicro

Bunker

C
S

C
 J

y
rk

i H
o
k
k
a
n
e
n292

ParaView render

293

Blender render

NATURE GEOSCIENCE

Termini of calving glaciers as

self-organized critical systems

Åström et al. 2014

294

Blender render

295

Our short ParaView session is an extract from The ParaView Tutorial

http://www.paraview.org/Wiki/The_ParaView_Tutorial

Links for further information:

The ParaView Users Guide

http://www.paraview.org/Wiki/ParaView/Users_Guide/Table_Of_Contents

Comprehensive ParaView wiki

http://paraview.org/Wiki/ParaView

Video Introduction to ParaView (1h 20min)

https://vimeo.com/41009606

Search ParaView users mailing list

http://paraview.markmail.org

ParaView hands-on session

296

ParaView on CSC’s servers

Most people run ParaView locally on their desktop PC. You might want to use

ParaView on CSC's servers if you need more power/memory or your big data sits

on CSC's disks.

Information about ParaView installations on CSC servers

https://research.csc.fi/-/paraview

Tips

• the old Hippu's were for interactive use, are about to be run down

• Taito-shell is the new Hippu, intended for interactive use

• Taito is for batch jobs but you can allocate time via SLURM for interactive use

• use NX for faster interactive graphics (https://research.csc.fi/-/nomachine)

• running ParaView in parallel mode via MPI is useful only if interaction is slow

and your data is suitable for parallel tasks (is a structured file, for example)

297

Wrap-up of day 2 and concluding remarks

298

