CSC

Pekka Manninen

March 25-27, 2013
CSC - IT Center for Science Ltd, Finland

implicit none
integer ele, ierr
do ele = 1, nfaces
call mpi_isend(commvec(ele)%fieldl(commvec(ele)%out_il, &
& commvec(ele)%out_jl, &
& commvec(ele)%out_k1), &
& 1, commvec(ele)%mpi_type_outl, &
& commvec(ele)%to_id, commvec(ele)%to id, &
& MPI_COMM_WORLD, send regs(ele), ierr)
if(ierr /= MPI_SUCCESS) then
call pio_abort(ierr)

end if

call mpi_isend(commvec(ele)%field2(commvec(ele)%out_i2, &
& commvec(ele)%out_j2, &
& commvec(ele)%out_k2), &

& 1, commvec(ele)%mpi_type_out2, &
& commvec(ele)%to_id, commvec(ele)%to_id+tag offset, &
& MPI_COMM_WORLD, send reqs(nfaces+ele), ierr)
if(ierr /= MPI_SUCCESS) then
call pio_abort(ierr)
end if
end do
#ifdef NONBLOCK
do ele = 1, nfaces
call mpi_irecv(commvec(ele)%fieldl(commvec(ele)%in_il, &
& commvec(ele)%in_jl, &
& commvec(ele)%in_k1), &
& 1, commvec(ele)%mpi_type_inil, &

All material (C) 2010-2013 by CSC — IT Center for Science Ltd
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License, http://creativecommons.org/licenses/by-nc-sa/3.0/

9.00-9.45
9.45-10.30
10.30-10.45
10.45-12.15
12.15-13.00
13:00-13:30
13:30-14:30
14.30-14.45
14.45-15.15

15:15-

Exercises

Non-blocking communication
Coffee break

Exercises

Lunch break

Defining own communicators
Exercises

Coffee break

Communication topologies

Exercises

9.00-9.45 Getting started with MPI

10.00-10.30 Point-to-point communication

10.30-10.45 Coffee break

10.45-11.45 Exercises

11.45-12.15 Collective communication

12.15-13.00 Lunch break

13.00-13:30 Collective communication
cont’d

13:30-14:30 Exercises

14.30-14.45 Coffee break

14.45-15.15 More about point-to-point
communication

15:30- Exercises

9.00-9.45 User-defined datatypes

10.00-10.30 Exercises

10.30-10.45 Coffee break

10.45-12.15 Exercises

12.15-13.00 Lunch break

13.00-13:45 MPII/O

13:45-14:30 Exercises

14.30-14.45 Coffee break

14.45-15.15 MPI1/0 cont’d

15:15-15:45 Exercises

15:45-16:15 Performance considerations,

course wrap-up

Web resources

List of MPI functions with detailed descriptions http://mpi.deino.net/mpi_functions/index.htm
Good online MPI tutorial: https://computing.linl.gov/tutorials/mpi
Lots of MPI lecture recordings (slides & videos): http://www.prace-ri.eu/training
MPI standard http://www.mpi-forum.org/docs/
MPI Implementations:
* MPICH2 http://www.mcs.anl.gov/research/projects/mpich2/
* OpenMPI http://www.open-mpi.org/

Types of parallel computers

@ Shared memory
— all the cores can access the whole
memory

o
<

Flg

B
:

@ Distributed memory

— all the cores have their own memory "':i'r“e"{y
— communication is needed in order to
access the memory of other cores

w Current supercomputers combine the

distributed memory and shared memory LEmas)
core 1 -
approaches

Parallel programming models

o Message passing

— Can be used both in distributed and shared memory
computers

PART I: INTRODUCTION TO PARALLEL COMPUTING — Programming model allows for good parallel scalability
— Programming is quite explicit
@ Threads (pthreads, OpenMP)
— Can be used only in shared memory computers
— Limited parallel scalability
— “Simpler”/less explicit programming

What is parallel computing? Exposing parallelism

« Serial computing
— single processing unit (core) is used
for solving a problem
— single task performed at once
@ Parallel computing
— multiple cores are used for solving a

task 1]
task 2 [
task 3
task 4 O

v Data parallelism

— Data is distributed to processor
cores

3 m® —oc o0 - ©
® -~ 0o
+ —c v O =

— Each core performs
simultaneouosly (nearly)
identical operations with different data

problem cl
— problem is split into smaller ': @ r © Task parallelism
e
subtasks o 5 — Different cores perform different operations with (the
— multiple subtasks are performed T e % lll same or) different data
simultaneously € t © These can be combined
cN

Why parallel computing?

« Solve problems faster

— parallel programming is required for utilizing multiple

cores
@ Solve bigger problems PART Il: FIRST ENCOUNTER WITH MPI

— parallel computing may allow application to use more
memory

— apply old models to new length and time scales
— grand challenges

@ Solve problems better
— more precise models

¢

MPI application programming interface (API) is the most
widely used approach for distributed parallel computing

¢

MPI programming is based on library routines

¢

MPI programs are portable and scalable

¢

MPl is flexible and comprehensive

— large (over 120 procedures)

— concise (often only 6 procedures are needed)
MPI standardization by MPI Forum

¢

w Parallel program is launched as set of independent
processes

— The same program source code

— The processes can reside in different nodes or even in
different computers

@ The way to launch parallel program is implementation
dependent

— mpirun, mpiexec, aprun, poe, ...

@ MPI runtime assigns each process a rank
— identification of the processes
— ranks start from 0 and extent to N-1

v Processes can perform different operations and handle
different data basing on their rank

1f(my_id == 0) {
if (my_id == 1) {

}

« All variables and data structures are local to the process

@ Processes can exchange data by sending and receiving
messages

a=1.0 ———— a=-1.0
b=2.0 MPI b=-2.0
Process 1 e Process 2
(rank 0) (rank 1)

« Communicator is an object connecting a group of
processes

¢

Initially, there is always a communicator
MPI_COMM_WORLD which contains all the processes
Most MPI functions require communicator as an
argument

¢

— i.e., in which "context” the required communication
happens

Users can define own communicators

¢

v Information about the communicator
— number of processes
— rank of the process
@ Communication between processes
— sending and receiving messages between two processes

— sending and receiving messages between several
processes

@ Synchronization between processes
@ Advanced features

« MPI standard defines interfaces to C and Fortran

programming languages

— There are unofficial bindings to Python, Perl and Java
w C call convention

rc = MPI_Xxxx(parameter,...)

— some arguments have to passed as pointers
@ Fortran call convention

CALL MPI_XXXX(parameter,..., rc)

— return code in the last argument

w Set up the MPI environment
MPI_Init()

@ Information about the communicator
MPI_Comm_size(comm, size)
MPI_Comm_rank(comm, rank)

— Parameters
comm communicator
size number of processes in the communicator

rank rank of this process

C & Fortran bindings
@ Synchronize processes int MPI_Init(int *argc, char **argv)
int MPI_Comm_size(MPI_Comm comm, int *size)

MPI_Barrier(comm)
- int MPI_Comm_rank(MPI_Comm comm, int *rank)

« Finalize MPI environment int MPI_Barrier(MPI_Comm comm)
MPI_Finalize() MPI_Finalize()

MPI_INIT(ierror)
MPI_COMM_SIZE(comm, size, ierror)
MPI_COMM_RANK(comm, rank, ierror)
MPI_BARRIER(comm, ierror)
MPI_FINALIZE(ierror)

integer comm, size, rank, ierror

Include MPI header files
— C:#include <mpi.h>
— Fortran: USE MPI

Call MPI_Init
Write the actual program

¢

€

¢

¢

Call MPI_Finalize before exiting from the main program

v In MPI, a set of independent processes is launched
— Processes are identified by ranks
— Datais always local to the process

v Processes can exchange data by sending and receiving
messages

w The MPI library contains procedures for
— Communication = exchanging data between processes
— Synchronizing processes

— Communicator manipulation
—1/0, etc

progran foo a=0 | a=1
:;zlnﬁéignit(m a1 I a1 Rank #0
—— - Rank #1

a=2 a=2
Rank #2

=3 =3
2 : @ Rank #3

|

if (my_id == 1)
call mpi_send(a,...,0,...
else if (my_id == 0)

call mpi_recv(a,...,1,...
end if

-

cscC

MPI point-to-point operations

« Each message (envelope) contains
— The actual data that is to be sent
— The datatype of each element of data.
— The number of elements the data consists of
— An identification number for the message (tag)
— The ranks of the source and destination process

MPI communication Presenting syntax
Operations presented in pseudocode,
© MPI processes are independent, they . . Send operation € and Fortran bindings presented in
. . L extra
communicate to coordinate work 1 \ sl comt, dattyoe, st tas, com) B material slides.
. . . . " — coun umber of elements in buffer
© Point-to-point communication INPUT Ziatate Tpeofech slemént i s o]
. . argumentsin | - Thankorteratar
— Messages are Sent between tWO red :tag xmtegerfd;nufymg the message
processes, others not being affected (nor I — error Error value; in C/Ch it the return value of Send operation
R ; OUTPUT the function, and in Fortran an additional
aware) of the communication argumentsin output parameter
= id ~buffer, 1ot count, NP1 Datatype datatype,int
. L bl T i
< Co”ectlve communlcatlon ue . lTh;.ve;urr value of the function is the error value
«© Fortran binding
— Involving a number of processes at the . .‘ o
same time the error value
. LS SAEIEEESE S I
— All processes participate ondo -
Send operation
MPI_Send(buf, count, datatype, dest, tag, comm)
buf The data that is sent
PART I: BASIC POINT-TO-POINT OPERATIONS count Number of elements in blieh ,
datatype Type of each element in buf (see later slides)
dest The rank of the receiver
tag An integer identifying the message
comm A communicator
error Errorvalue; in C/C++ it’s the return value of
the function, and in Fortran an additional
output parameter
MPI point-to-point operations Send operation
@ One process sends a message to another process that w C/C++ binding
receives it int MPI_Send(void *buffer, int count, MPI_Datatype datatype,int
dest, int tag, MPI_Comm comm)
@ Sends and receives in a program should match — one * The return value of the function is the error value

receive per send w Fortran binding

MPI_SEND(buffer, count, datatype,
dest,tag, comm, ierror)
<type>, dimension(*) :: buf
integer :: count, datatype, dest, tag, comm, ierror

= jerror: the error value

]

MPI_Recv(buf, count, datatype, source, tag, comm,

status)
buf Buffer for storing received data
count Number of elements in buffer, not the number

of element that are actually received
datatype Type of each element in buf

source Sender of the message

tag Number identifying the message
comm Communicator

status Information on the received message
error As for send operation

w C/C++ binding
int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)

@ Fortran binding
mpi_recv(buf, count, datatype, source, tag, comm, status, ierror)
<type>, dimension(*) :: buf
integer :: count, datatype, source, tag, comm, ierror
integer, dimension(MPI_STATUS_SIZE) :: status

@ MPI has a number of predefined datatypes to represent
data

@ Each C or Fortran datatype has a corresponding MPI
datatype
— Cexamples: MPI_INT for int and MPI_DOUBLE for double
— Fortran example: MPI_INTEGER for integer

@ One can also define custom datatypes — will be covered
in later lectures!

MPI type C type
MPI_CHAR signed char
MPI_SHORT short int
MPL_INT int
MPI_LONG long int

MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED_INT unsigned int
MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE

MPI type

Fortran type

MPI_CHARACTER

MPI_INTEGER

MPI_REAL
MPI_REALS8

MPI_DOUBLE_PRECISION DOUBLE PRECISION

Memory

PO

Memory

P1

P1

CHARACTER

INTEGER

REAL

REAL*8 (non-standard)

MPI_COMPLEX COMPLEX

MPI_DOUBLE_COMPLEX DOUBLE COMPLEX

MPI_LOGICAL LOGICAL

MPI_BYTE
Memory @ Array originally on process #0 (P0)
PO P1

o Parallel algorithm
— Scatter
= Half of the array is sent to process 1
— Compute
= PO & P1 sum independently their
segments
— Reduction
= Partial sum on P1 sent to PO
= PO sums the partial sums

Step 1.1: Receive operationin
scatter

Timeline

PO

p1 TR

P1 posts a receive to receive half of the
array from PO

Step 1.2: Send operation in
scatter

Timeline

PO

P1

PO posts a send to send the lower part
of the array to P1

Memory

(e N)

PO

P1

=

Case study: parallel sum

Step 2: Compute the sumin

parallel
Timeline
PO
P1

PO & P1 computes their parallel

) sums and store them locally

Memory Step 3.1: Receive operationin
70 > reduction
Timeline
PO
= 0 P1
s= @ PO posts a receive to receive
[A 4 partial sum
Case study: parallel sum
Memory Step 3.2: send operation in
o Y P) reduction
Timeline
PO
1
P1
P1 posts a send with partial sum
Case study: parallel sum
Memory Step 4: Compute final answer
PO P1
Timeline
PO I
1
P1
PO sums the partial sums
S= @Ed
-

Case study: parallel sum

Exercise session

@ Write, compile and run a Hello World style dummy

program employing MPI

w Do the Exercise 1 a

PART Il: MORE ABOUT POINT-TO-POINT

OPERATIONS

Blocking routines & deadlocks

v Blocking routines

— Completion depends on other processes

— Risk for deadlocks — the program is stuck forever

v MPI_Send exits once the send buffer can be safely read
and written to

w MPI_Recv exits once it has received the message in the
receive buffer

Point-to-point communication patterns

Pairwise exchange

«—| T |e—m

Pipe, a ring of processes exchanging data

Process 0

Process 1

Process 2

Process 3
Process 3

Combined send & receive CS2: MPI_Sendrecv

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, @ MPI Sendrecv
recvbuf, recvcount, recvtype, source, recvtag, comm,

status)
— Parameters as for MPI_Send and MPI_Recv combined
@ Sends one message and receives another one, with one
single command
— Reduces risk for deadlocks
@ Destination rank and source rank can be same or PO

— Sends and receives
with one command

— No risk of deadlocks

different
P1
e
Combined send & receive Special parameter values
w C/C++ binding MPI_Send(buf, count, datatype, dest, tag, comm)

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype
sendtype, int dest, int sendtag, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,

MPI_Status *status)

s dest MPI_PROC_NULL Null destination, no operation takes
« Fortran binding

mpi_sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, place
recvcount, recvtype, source, recvtag, comm, status, ierror) comm MPI_COMM_WORLD Includes all processes
<type>, dimension(*) :: sendbuf, recvbuf
integer :: sendcount, sendtype, dest, sendtag, recvcount, recvtype, 3
source, recvtag, comm, ierror error MP|_5UCCE55 Operatlon successful
integer, dimension(MPI_STATUS_SIZE) :: status
Case study 2: Domain decomposition Special parameter values
@ Computation inside each domain can be carried out MPI_Recv(buf, count, datatype, source, tag,
independently; hence in parallel comm, status)
@ Ghost layer at boundary represent the value of the
elements of the other process source MPI_PROC_NULL No sender, no operation takes place
MPI_ANY_SOURCE Receive from any sender
Serial = Parallel tag MPI_ANY_TAG Receive messages with any tag
0123
0 [y Pl comm MPI_COMM_WORLD Includes all processes
2 -1
;;{ 3 % P2 status MPI_STATUS_IGNORE Do not store any status data
5 3 -1o
g & %ﬁ error MPI_SUCCESS Operation successful
8 3
CS2: One iteration step Status parameter
[paralle | w The status parameter in MPI_Recv contains information

v Need to carefully
schedule the order
of sends and
receives to avoid
deadlocks

on how the receive succeeded

— Number and datatype of received elements
— Tag of the received message

— Rank of the sender

« In C the status parameter is a struct, in Fortran it is an
Timeline integer array

PO

P1

P2

@ Received elements

Use the function
MPI_Get_count(status, datatype, count)

w Tag of the received message
C: status.MPI_TAG, Fortran: status(MPI_TAG)
@ Rank of the sender
C: status.MPI_SOURCE, Fortran: status(MPI_SOURCE)

v Point-to-point communication
— Messages are sent between two processes

v We discussed send and receive operations enabling any
parallel application

— MPI_Send & MPI_Recv
— MPI_Sendrecv

@ Status parameter
w Special argument values

v Do the Exercises 1 b-f
@« Start working on the Game of Life, Exercise 7 a

+ Broadcasting

cscC

01001
0)
10701
gy g1
110G, Y1
00,0114 !

« With MPI_Bcast, the task root sends a buffer of data to
all other tasks

101,010
011 1oy
11000018

((.

MPI_Bcast(buffer, count, datatype, root, comm)

buffer data to be distributed

count number of entries in buffer

datatype data type of buffer

root rank of broadcast root

comm communicator
Introduction MPI Bcast

w Collective communication transmits data among all

. C & Fortran bindings
processes in a process group

int MPI_Bcast(void* buffer, int count, MPI_datatype datatype,

— These routines must be called by all the processes in the int root, MPI_Comm comm)
group

i))) MPI_BCAST(buffer, count, datatype, root, comm, ierror)
w Collective communication includes type buffer(*)
_ data movement Example integer count, datatype, root, comm, ierror
MPI_Barrier
makes each task hold

— synchronization until all tasks have
called it

int MPI_Barrier(comm)
MPI_BARRIER(comm, rc)

— collective computation

Introduction Scattering

w Collective communication outperforms normally point- v Send equal amount of data from one process to others
to-point communication

) P P

« Code becomes more compact and easier to read: o elal | | |
if (my_id == @) then call mpi_bcast(a, 1048576, & Pl IID:I Pl E...

do i = 1, ntasks-1 MPI_REAL, 0, &
call mpi_send(a, 1048576, & MPI_COMM_WORLD, rc) P, IID:I P, ...

MPI_REAL, i, tag, &

MPI_COMM_WORLD, rc) p Im P _
end do ; el [[|
else

Communicating a vector a consisting of
call mpi_recv(a, 1048576, & 1M float elements from the task 0 to all
MPI_REAL, O, tag, &

NPT GO WORLD. status, rc) other tasks v Segments A, B, ... may contain multiple elements

end if

Broadcasting Scattering

© Send the same data from one process to all the other @ MPI_Scatter: Task root sends an equal share of data

P, I P, [A I (sendbuf) to all other processes
MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf,
P, I P, | A I recvcount, recvtype, root, comm)
p sendbuf send buffer (data to be scattered)
2 | I sendcount number of elements sent to each process
sendtype data type of send buffer elements
P3 I I I recvbuf receive buffer
recvcount number of elements in receive buffer
This buffer may contain any recvtype data type of-receive buffer elements
contiguous chunk of memory (any root rank of sgndmg process
datatype, any number of comm communicator

elements)

C & Fortran bindings

int MPI_Scatter(void* sendbuf, int sendcount, MPI_datatype
sendtype, void* recvbuf, int recvcount,
MPI_datatype recvtype, int root, MPI_Comm comm)

MPI_SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, root, comm, ierror)

type sendbuf(*), recvbuf(*)

integer sendcount, recvcount, sendtype, recvtype, root, comm,

ierror

if (my_id==@) then
doi=1, 16
a(i) = i
end do
end if

call mpi_bcast(a,16,MPI_INTEGER,Q, &
MPI_COMM_WORLD, rc)
if (my_id==3) print *, a(:)

if (my_id==0) then
doi=1, 16
a(i) = i
end do
end if
call mpi_scatter(a,4,MPI_INTEGER, &
aloc,4,MPI_INTEGER, &
©,MPI_COMM_WORLD, rc)
if (my_id==3) print *, aloc(:)

Assume 4 MPI tasks. What would the (full) program print?

A. 1234

B. 13 14 15 16

C. 12314
5678
9 10 11 12
13 14 15 16

A, 12034

B. 13 14 15 16

C 1234
5678
9 10 11 12
13 14 15 16

w Like MPI_Scatter, but messages can have different sizes

and displacements

MPI_Scatterv(sendbuf, sendcounts, displs, sendtype,
recvbuf, recvcount, recvtype, root, comm)

sendbuf send buffer

sendcounts array (of length ntasks) specifying
the number of elements to send
to each processor

displs array (of length ntasks). Entry i
specifies the displacement
(relative to sendbuf)

sendtype data type of send buffer elements

recvbuf receive buffer

if (my_id==0) then

doi=1, 10
a(i) = i
end do
sendcnts = (/ 1, 2, 3, 4 /)
displs = (/ @0, 1, 3, 6 /)
end if

call mpi_scatterv(a, sendcnts, &
displs, MPI_INTEGER,&
aloc, 4, MPI_INTEGER, &
9, MPI_COMM_WORLD, rc)

recvcount number of elements in
receive buffer

recvtype data type of receive buffer
elements

root rank of sending process

comm communicator

A. 123

B. 78910

C. 12345678910

Assume 4 MPI tasks. What are the values in
aloc in the last task (#3)?

C & Fortran bindings

int MPI_Scatterv(void* sendbuf, int *sendcounts, int *displs,
MPI_datatype sendtype, void* recvbuf,
int recvcount, MPI_datatype recvtype,
int root, MPI_Comm comm)

MPI_SCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf,
recvcount, recvtype, root, comm, ierror)
type sendbuf(*), recvbuf(*)
integer sendcounts(*), displs(*), recvcount, sendtype,
recvtype, root, comm, ierror

w Collect data from all the process to one process

@ Segments A, B, ... may contain multiple elements

« MPI_Gather: Collect equal share of data (in sendbuf)
from all processes to root
MPI_Gather(sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, root, comm)

sendbuf send buffer (data to be gathered)
sendcount number of elements pulled from each process

sendtype data type of send buffer elements
recvbuf receive buffer

recvcount number of elements in any single receive
recvtype data type of receive buffer elements
root rank of receiving process

comm communicator

C and Fortran bindings

int MPI_Gather(void* sendbuf, int sendcount,
MPI_datatype sendtype, void* recvbuf,
int recvcount, MPI_datatype recvtype,
int root, MPI_Comm comm)

MPI_GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, root, comm, ierror)
type sendbuf(*), recvbuf(*)

integer sendcount, recvcount, sendtype, recvtype, root, comm,
ierror

@ MPI_Gatherv is similar to MPI_Gather, but allows for @ Available reduction Operation _ Meaning

varying amounts of data operations (argument MPI_MAX Max value
MPI_MIN Min value
MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, op) MPI SUM -
recvcounts, displs, recvtype, root, comm) MPI:PROD Product

MPI_MAXLOC Max value + location
MPI_MINLOC Min value + location

sendbuf send buffer displs integer array (of length group size). MPI LAND Logical AND
sendcount number of elements in send Entry i specifies the displacement MPI_BAND Bytewise AND
buffer relative to recvbuf where to put MPI LOR Logical OR
sendtype data type of send buffer the incoming data from process i MPI BOR Bytewise OR
elements recvtype data type of recv buffer elements MPI_LXOR Logical XOR
recvbuf receive buffer root rank of receiving process MPI_BXOR Bytewise XOR
recvcnts array of number of elements to comm communicator
receive from each task D
C and Fortran bindings C and Fortran bindings
int MPI_Gatherv (void *sendbuf, int sendcnt, int MPI_Reduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype sendtype, void *recvbuf, MPI_Datatype datatype, MPI_Op op,
int *recvcnts, int *displs, int root, MPI_Comm comm)

MPI_Datatype recvtype, int root,
MPI_Comm comm)
MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root,
MPI_GATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, comm, ierror)
displs, recvtype, root, comm, ierror)
type sendbuf(*), recvbuf(*)
type sendbuf(*), recvbuf(*) integer count, datatype, op, root, comm, ierror
integer sendcount, recvcounts(*), displs(*), sendtype,
recvtype, root, comm, ierror

v Applies an operation over set of processes and places w MPI_Allreduce combines values from all processes and
resultin single process distributes the result back to all processes
— Compare: MPI_Reduce + MPI_Bcast
P AlB [c,|D P, lzalzB.|zC|3D MPI_Allreduce(sendbuf, recvbuf, count, datatype, op,
0 0 0 i i i i comm)
P P sendbuf send buffer
& | Al Bl Cl D1 1 | recvbuf receive buffer
m count number of elements in
P2 A, B, C,| D, Pz send buffer
(SUm) datatype data type of elementsin P,
PlalslclD P send buffer
% 2 3 3 3 3 op operation R
comm communicator P
« Applies a reduction operation op to sendbuf over the set C & Fortran bindings
of tasks and places the resultin recvbuf on root int MPI_Allreduce(void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op,

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, MPI_Comm comm)

root, comm)

sendbuf send buffer MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm,
recvbuf receive buffer ierror)

count number of elements in send buffer

datatype data type of elements of send buffer type :: sendbuf(*), recvbuf(*)

op operation integer :: count, datatype, op, comm, ierror

root rank of root process

comm communicator

real ::

call mpi_scatter(a, 128, MPI_INTEGER, &

rloc = dot_product(aloc,aloc)
call mpi_allreduce(rloc, r, 1, MPI_REAL,&

a(1024), aloc(128)

aloc, 128, MPI_INTEGER, &
@, MPI_COMM_WORLD, rc)

MPI_SUM, MPI_COMM_WORLD,
rc)

« MPI_Allgather gathers data from each task and
distributes the resulting data to each task
— Compare: MPI_Gather + MPI_Bcast
MPI_Allgather(sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, comm)
sendbuf send buffer
sendcount number of elements in send buffer
P P,

sendtype data type of send buffer elements ° ... ° E
recvbuf receive buffer P

recvcount number of elements received fromp

recvtype

> mpirun -np 8 ./a.out
id= 6 local= 39.68326 global= 338.8004
id= 7 local= 39.34439 global= 338.8004

id= 1 local= 42.86630 global= 338.8004
id= 3 local= 44.16300 global= 338.8004
id= 5 local= 39.76367 global= 338.8004

id= 2 local= 40.67361 global= 338.8004
id= local= 49.45086 global= 338.8004

1
3
5
id= @ local= 42.85532 global= 338.8004
2
4

data type of receive buffer B E... P

C & Fortran bindings

int MPI_Allgather(void* sendbuf, int sendcount,
MPI_datatype sendtype, void* recvbuf,
int recvcount, MPI_datatype recvtype,
MPI_Comm comm)

MPI_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm, ierror)

type :: sendbuf(*), recvbuf(*)
integer :: sendcount, recvcount, sendtype, recvtype, comm, ierror

MPI_Reduce_scatter applies a reduction operation to
sendbuf over the tasks and scatters the result according
to the values in recvcounts

— Compare: MPI_Reduce + MPI_Scatter

MPI_Reduce_scatter(sendbuf, recvbuf, recvcounts,
datatype, op, comm)

sendbuf send buffer datatype data type of elements of input
recvbuf receive buffer buffer
recvcounts array specifying the op operation

number of elements in comm
result distributed to
each process

communicator

LI [k
|—JALLGATHER>
P
any process 2| ¢ I Gl KBRS

C & Fortran bindings

int MPI_Reduce_scatter(void* sendbuf, void* recvbuf,
int* recvcounts, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype,
op, comm, ierror)

type :: sendbuf(*), recvbuf(*)
integer :: recvcounts(*), datatype, op, comm, ierror

w Send a distinct message from each task to every task

@ "Transpose” like operation

w MPI_Alltoall sends a distinct message from each task to
every task

— Compare: “All scatter”

MPI_Alltoall(sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, comm)

sendbuf send buffer

sendcount number of elements to send to each process
sendtype data type of send buffer elements

recvbuf receive buffer

recvcount number of elements received from any process
recvtype data type of receive buffer elements

comm communicator

C & Fortran bindings

int MPI_Alltoall(void* sendbuf, int sendcount,
MPI_datatype sendtype, void* recvbuf,
int recvcount, MPI_datatype recvtype,
MPI_Comm comm)

MPI_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, comm, ierror)

type :: sendbuf(*), recvbuf(*)
integer :: sendcount, recvcount, sendtype, recvtype, comm, ierror

if (my_id==0) then
doi=1, 16
a(i) = i
end do
end if
call mpi_bcast(a, 16, MPI_INTEGER, 0, &
MPI_COMM_WORLD, rc)

call mpi_alltoall(a, 4, MPI_INTEGER, &
aloc, 4, MPI_INTEGER, &
MPI_COMM_WORLD, rc)

D recvbuf

A. 1,825 83804
Assume 4 MPI tasks. What will be the B. 1,45 41p
values of aloc in the process #0? C. 1, 2883, WA PR A
1, 2,850 aN 15253 A

« MPI_Alltoallv is similar to MPI_Alltoall, but messages can
have different sizes and displacements
MPI_Alltoallv(sendbuf, sendcounts, sdispls, sendtype,

recvbuf, recvcounts, rdispls, recvtype,
comm)
sendbuf send buffer

sendcounts number of elements to
send to each process

recvcounts maximum numbers of elements
that can be received from each

sdispls displacements relative to process
sendbuf rdispls displacements relative to recvbuf
sendtype data type of send buffer (ocytype data type of receive buffer
elements elements
receive buffer comm communicator

C & Fortran bindings

int MPI_Alltoallv(void* sendbuf, int *sendcounts, int *sdispls,
MPI_Datatype sendtype, void* recvbuf,
int *recvcounts, int *rdispls,
MPI_Datatype recvtype,MPI_Comm comm)

MPI_ALLTOALLV(sendbuf,sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm, ierror)

type :: sendbuf(*), recvbuf(*)
integer :: sendcounts(*), recvcounts(*), sdispls(*), rdispls(*),
sendtype, recvtype, comm, ierror

X Using a collective operation within one branch of an if-
test of the rank

IF (my_id == @) CALL MPI_BCAST(...

— All processes, both the root (the sender or the gatherer)
and the rest (receivers or senders), must call the collective
routine!

X Assuming that all processes making a collective call
would complete at the same time

X Using the input buffer as the output buffer
CALL MPI_ALLREDUCE(a, a, n, MPI_REAL, MPI_SUM, ...

Processes

w« Collective communications involve all the processes
within a communicator

— All processes must call them

w Collective operations make code more transparent and
compact

w Collective routines allow optimizations by MPI library

w A performance consideration: All-to-all are expensive
operations, avoid them if possible

Local memory

BA000ws@000 | @000 BECE
0000 = WO00 | E000~w-EECR
0000 @ @000 | @000 = AECE
0000 @000 @000 AECE

Send buffer Recv buffer

Wl bEm
BHEH"ES @EON
WOIE ~ e
Mo omUE

Send buffer Recv buffer

(a1(8)(c)(Dlwpr_scareeea] (I
0000 E®EOUO
0000 — 000
OO her saner @) I

@ Do the Exercises 2 a and b

Non-blocking communication

w Non-blocking sends and receives: MPI_lsend &
MPI_lIrecv

— returns immediately and sends/receives in background

w Enables some computing concurrently with
communication

« Avoids many common dead-lock situations

Non-blocking communication

v Send/receive operations have to be finalized:
— MPI_Wait, MPI_Waitall,...

= Waits for the communication started with MPI_Isend or
MPI_Irecv to finish (blocking)

— MPI_Test,...
= Tests if the communication has finished (non-blocking)

@ You can mix non-blocking and blocking routines
— Receive MPI_Isend with MPI_Recv or vice versa

Typical usage pattern

MPI_Irecv(ghost_data)
MPI_Isend(border_data)
Compute(ghost_independent_data)
MPI_Waitall(receives)
Compute(border_data)
MPI_Waitall(sends)

Non-blocking send

MPI_Isend(buf, count, datatype, dest, tag,
comm, request)

Parameters
Similar to MPI_Send but has an request parameter
buf send buffer cannot be written to until
one has checked that the operation is over

request a handle that is used when checking if the
operation has finished

Non-blocking send

w C/C++ binding

int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request)

w Fortran binding
MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST,IERROR)

<type> :: BUF(*)
INTEGER :: COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Non-blocking receive

MPI_Irecv(buf, count, datatype, dest, tag,
comm, request)
parameters similar to MPI_Recv but has no status
parameter
buf receive buffer guaranteed to contain the data only
after one has checked that the operation is over
request a handle that is used when checking if the
operation has finished

Non-blocking receive

v C/C++ binding
int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request)
« Fortran binding
MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST,IERROR)

<type> :: BUF(*)
INTEGER :: COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_Wait(request, status)

Parameters
request handle of the non-blocking communication
status status of the completed communication,
see MPI_Recv

A call to MPI_WAIT returns when the operation identified
by request is complete

w C/C++ binding
int MPI_Wait(MPI_Request *request, MPI_Status *status)
@« Fortran binding

MPI_WAIT(REQUEST, STATUS, IERROR)
INTEGER :: REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

MPI_Waitall(count, requests, status)

Parameters
count number of requests
requests array of requests
status array of statuses for the operations that are
waited for

MPI_Waitall returns when all operations identified by the
array of requests are complete

v C/C++ binding
int MPI_Waitall(int count, MPI_Request *array_of_requests,MPI_Status
*array_of_statuses)
@ Fortran binding
MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)

INTEGER :: COUNT, ARRAY_OF _REQUESTS(:),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,:), IERROR

« other useful routines:
— MPI_Waitany
— MPI_Waitsome
— MPI_Test
— MPI_Testall
— MPI_Testany
— MPI_Testsome
— MPI_Probe

MPI_Waitany(count, requests, index, status)

Parameters
count number of requests
requests array of requests
index index of request that completed

status status for the completed operations

A call to MPI_Waitany returns when one operation
identified by the array of requests is complete

MPI_Waitsome(count, requests, done, index, status)

Parameters
count number of requests
requests array of requests
done number of completed requests
index array of indexes of completed requests

status array of statuses of completed requests

A call to MPI_Waitsome returns when one or more
operation identified by the array of requests is complete

MPI_Test(request, flag, status)

Parameters
request request
flag True if operation has completed

status status for the completed operations
A call to MPI_Test is non-blocking

Allows one to schedule alternative activities while
periodically checking for completion

@ The MPI standard version 3.0 introduces non-blocking
collectives
— MPI_Ibcast, MPI_lgather, MPI_lscatter,...
— They return immediately, and completion has to be waited
@ Routine interfaces similar to the blocking ones but with
an additional request argument for MPI_Wait

@ Mixing blocking and non-blocking collectives for the
same transmit is not possible

« Non-blocking communication is usually the smarter way
to do point-to-point communication in MPI
@ Non-blocking communication realization
— MPI_Isend
— MPI_TIrecv
— MPI_Wait
@ Non-blocking collectives available soon as well

« Do the Exercise 3

@ Bonus exercise (a solution can be shown on request):
modify the MPI implementation of the Game of Life (Ex
7a) such that the communication is done with non-
blocking routines.

@ Bonus exercise 2: modify the non-blocking GolL such that
the board update and the boundary communication is
being overlapped.

Creating a communicator

@ MPI_Comm_split creates new communicators based on
‘colors' and 'keys'

MPI_Comm_split(comm, color, key, newcomm)

comm communicator handle
color control of subset assignment, processes with

the same color belong to the same new communicator
key control of rank assignment

newcomm new communicator handle

If color = MPI_UNDEFINED,
a process does
not belong to any of the
new communicators

Communicators Creating a communicator
w The communicator determines the "communication w Cand Fortran bindings
universe" int MPI_Comm_split (MPI_Comm comm, int color, int key,
MPI_Comm newcomm)
— The source and destination of a message is identified by MPI_COMM_SPLIT (comm, color, key, newcomm, rc)
process rank within the communicator integer comm, color, key, newcomm, rc
@ So far: MPI_COMM_WORLD © Return code values
. . ! MPI_SUCCESS No error; MPI routine completed successfully.
@ Processes can be divided into subcommunicators MPI_ERR_COMM Invalid communicator. A common error is to use
— Task level parallelism with process groups performing a null communicator in a call

MPI_ERR_INTERN This error is returned when some part of the

separate duties together
ep e eés togethe implementation is unable to acquire memory.

— Parallel I/O
— Scalability: avoiding unnecessary synchronization L]
Creating a communicator
if (myid%2 == @) {
color = 1;
} else {
color = 2;
}
PART I: CREATING OWN COMMUNICATORS MPI_Comm_split(MPI_COMM_WORLD, color, myid, &subcomm);
: MPI_Comm_rank(subcomm, &mysubid);
printf ("I am rank %d in MPI_COMM_WORLD, but %d in
Comm %d.\n",myid, mysubid, color);
I am rank 2 in MPI_COMM_WORLD, but 1 in Comm 1.
I am rank 7 in MPI_COMM_WORLD, but 3 in Comm 2.
I am rank © in MPI_COMM_WORLD, but @ in Comm 1.
I am rank 4 in MPI_COMM_WORLD, but 2 in Comm 1.
I am rank 6 in MPI_COMM_WORLD, but 3 in Comm 1.
I am rank 3 in MPI_COMM_WORLD, but 1 in Comm 2.
I am rank 5 in MPI_COMM_WORLD, but 2 in Comm 2.
I am rank 1 in MPI_COMM_WORLD, but @ in Comm 2.
Grouping processes in communicators Communicator manipulation
MPI_Comm_size Returns number of processes in
MPI_COMM_WORLD . \
communicator's group
MPI_Comm_rank Returns rank of calling process in

communicator's group

¢ A MPI_Comm_compare Compares two communicators
omm

y g MPI_Comm_dup Duplicates a communicator
« Communicators are dynamic - -

o) © A task can belong simultaneously MPI_Comm_free Marks a communicator for deallocation

to several communicators

Comm 2 — In each of them it has a unique
ID

@ Do the Exercise 4 @ Cand Fortran bindings

: . q me .
@ Unless you have a working MPI version (Ex 7a) of the A it i kot .~y
Gol, it would now be a good time to complete it
MPI_CART_CREATE(old_comm, ndims, dims, periods,
reorder, comm_cart, rc)
integer :: old_comm, ndims, dims(:), comm_cart, rc
logical :: reorder, periods(:)

w Translate a rank to coordinates
MPI_Cart_coords(comm, rank, maxdim, coords)

comm Cartesian communicator

rank rank to convert

maxdim dimension of coords

coords coordinates in Cartesian topology that

corresponds to rank

w MPI process topologies allow for simple referencing v Translate a set of coordinates to a rank
scheme of processes MPI_Cart_rank(comm, coords, rank)
— Cartesian and graph topologies are supported comm Cartesian communicator

. . coords array of coordinates
— Process topology defines a new communicator)
rank a rank corresponding to coords
@ MPI topologies are virtual
— No relation to the physical structure of the computer
— Data mapping "more natural" only to the programmer
@ Usually no performance benefits

— But code becomes more compact and readable

@ New communicator with processes ordered in a @ Cand Fortran bindings
Cartesian grld int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdim, int *coords)
MPI_Cart_create(oldcomm, ndims, dims, MPI_CART_COORDS(comm, rank, maxdim, coords, rc)
per‘iods, r'eor'der', newcomm) integer :: comm, rank, maxdim, coords(:), rc
oldcomm communicator
ndims dimension of the Cartesian topology int MPI_Cart_rank(MPI_Comm comm, int *coords, int rank)
dims integer array (size ndims) that defines

. / . MPI_CART_RANK(comm, coords, rank, rc)
the number of processes in each dimension

X oh N int HH ds(: k
periods array that defines the periodicity of each integer comm, coords(:), rank, rc
dimension
reorder is MPI allowed to renumber the ranks

newcomm new Cartesian communicator D

dims(1)=4
dims(2)=4
period=(/ .true. , .true. /)

call mpi_cart_create(mpi_comm_world, 2,&
dims, period, .true., comm2d, rc)

call mpi_comm_rank(comm2d, my_id, rc)
call mpi_cart_coords(comm2d, my_id, 2,&

coords, rc)

w Counting sources/destinations on the grid

— for e.g. elegant nearest-neighbor communication
MPI_Cart_shift(comm, direction, displ, s

dest)
comm Cartesian communicator
direction shift direction (e.g. 0 or 1 in 2D)

0 1 2 3
(0,0) | (0,1) | (0,2) | (0,3)
4 5 6 i7
(1,0) | (1,1) | (1,2) | (1,3)
8 9 10 11
(2,0) | (2,1) | (2,2) | (2,3)
12 13 14 15
(3,0) | (3,1) | (3,2) | (3,3)

ource,

displ shift displacement (1 for next cell etc,

<0 for source from "down"/"right"

directions)
source rank of source process
dest rank of destination process

@ Cand Fortran bindings

int MPI_Cart_shift(MPI_Comm comm, int direction, int displ, int

*source, int *dest)

MPI_CART_SHIFT(comm, direction, displ, source, dest, rc)

Note that both source
and dest are output
parameters.
coordinates of the calling
task is implicit input.

The

With a non-periodic grid,
source or dest can land
outside of the grid; then

MPI_PROC_NULLis
returned.

integer :: comm, direction, displ, source, dest, rc
dims(1)=4 0 1 2 3
dims(2)=4 (0,0) | (8,1) | (0,2) | (0,3)
period =(/ .true. , .true. /) 4 5 6 7
(1,0) [(1,1) | (1,2) | (1,3)
call mpi_cart_create(mpi_comm_world, 2,& 8 9 10 1
dims, period, .true., comm2d, rc) (2,0) | (2,1) | (2,2) | (2,3)
call mpi_cart_shift(comm2d,®,1,nbr_up,nbr_down,rc) 12 13 14 15
call mpi_cart_shift(comm2d,1,1,nbr_left,nbr_right,rc) (3,8) | (3,1) | (3,2) | (3,3)

call mpi_sendrecv(hor_send, msglen, mpi_double_precision, nbr_left,&
tag_left, hor_recv, msglen, mpi_double_precision, nbr_right,&

tag_left, comm2d, mpi_status_ignore, rc)

call mpi_sendrecv(vert_send, msglen, mpi_double_precision, nbr_up,&
tag_up, vert_recv, msglen, mpi_double_precision, nbr_down,&

tag_up, comm2d, mpi_status_ignore, rc)

« A new feature of MPI 3.0 are in-build routines for
exchanging data with the nearest neighbors

— With Cartesian topologies, only nearest neighbor

communication (corresponding to MPI_Cart_shift with
displ=1) is supported

v These routines include MPI_Neighbor_allgather,
MPI_Neighbor_alltoall

— Varying-size variants as well as non-blocking versions

available

« In real-world applications it is very often beneficial to
divide MPI ranks into subsets
— Conceptual division for readability etc
— Improving parallel scalability by avoiding global

synchronizations

« MPI allows for ordering processes into topologies
— Readability, programmer performance
— Topology forms a new communicator
— MPI 3.0 introduces topology-aware collectives

@ Do the Exercise 5

@ Bonus: Decompose the Gol board in two dimensions.
Employ a Cartesian process topology. See Exercise 7b.

cscC

-

« MPI datatypes are used for communication purposes
— Datatype tells MPIl where to take the data when sending or
where to put data when receiving
v Elementary datatypes (MPI_INT, MPI_REAL, ...)

— Different types in Fortran and C, correspond to languages
basic types

— Enable communication using contiguous memory
sequence of identical elements (e.g. vector or matrix)

@ Row of a matrix is not contiguous in memory in Fortran
@ Several options for sending a row:
— Use several send commands for each element of a row

— Copy data to temporary buffer and send that with one send
command

— Create a matching datatype and send all data with one
send command

Logical layout Physical layout

« Use elementary datatypes as building blocks
v Enable communication of

— Non-contiguous data with a single MPI call, e.g. rows or
columns of a matrix

— Heterogeneous data (structs in C, types in Fortran)
w Provide higher level of programming & efficiency

— Code is more compact and maintainable

— Communication of non-contiguous data is more efficient
v Needed for getting the most out of MPI I/O

@ User-defined datatypes can be used both in point-to-
point communication and collective communication

« The datatype instructs where to take the data when
sending or where to put data when receiving

— Non-contiguous data in sending process can be received as
contiguous or vice versa

« A new datatype is created from existing ones with a
datatype constructor

— Several routines for different special cases

v A new datatype must be committed before using it
MPI_Type_commit(newtype)
newtype the new datatype to commit
@ A type should be freed after it is no longer needed
MPI_Type_free(newtype)
newtype the datatype for decommision

MPI_Type_contiguous contiguous datatypes

MPI_Type_vector regularly spaced datatype
MPI_Type_indexed variably spaced datatype

MPI_Type_create_subarray subarray within a multi-dimensional
array

MPI_Type_create_struct fully general datatype

v Creates a new type from equally spaced identical blocks
MPI_Type_vector(count, blocklen, stride, oldtype,

newtype)
count number of blocks
blocklen number of elements in each block
stride displacement between the blocks

MPI_Type_vector(3, 2, 3, oldtype, newtype)
oldtype - BLOCKLEN=2

STRIDE=3

integer, parameter :: n=3, m=3
real, dimension(n,m) :: a
integer :: rowtype

! create a derived type

call mpi_type_vector(m, 1, n, mpi_real, rowtype, ierr)
call mpi_type_commit(rowtype, ierr)

! send a row

call mpi_send(a, 1, rowtype, dest, tag, comm, ierr)

! free the type after it is not needed

call mpi_type_free(rowtype, ierr)

Logical layout Physical layout

w Creates a new type from blocks comprising identical
elements

— The size and displacements of the blocks may vary

MPI_Type_indexed(count, blocklens, displs,
oldtype, newtype)

count number of blocks
blocklens lengths of the blocks (array)
displs displacements (array) in extent of oldtypes

count=3 oldtype -

blocklens = (/2,3,1/)

950351 ey B EE

/* Upper triangular matrix */
double a[100][100];
int disp[100], blocklen[100], int i;
MPI_Datatype upper;
/* compute start and size of rows */
for (i=0;i<100;i++)
{
disp[i]=100%i+i;
blocklen[i]=100-1i;
}
/* create a datatype for upper triangular matrix */
MPI_Type_indexed(100,blocklen,disp,MPI_DOUBLE, &upper);
MPI_Type_commit(&upper);
/* ... send it ... */
MPI_Send(a,1,upper,dest, tag, MPI_COMM_WORLD);
MPI_Type_free(&upper);

v Creates a type describing an N-dimensional subarray
within an N-dimensional array

MPI_Type_create_subarray(ndims, sizes, subsizes,
offsets, order, oldtype, newtype)

ndims number of array dimensions

sizes number of array elements in each dimension (array)
subsizes number of subarray elements in each dimension (array)
offsets starting point of subarray in each dimension (array)
order storage order of the array. Either

MPI_ORDER_C or MPI_ORDER_FORTRAN

Two-dimensional grid with two-element ghost layers

int array_size[2] = {8,8}; [:]

int x_size[2] = {2,4};
int x1_start[2] = {0,2};

MPI_Type_create_subarray(2, array_size, x_size,

x1_start, MPI_ORDER_C, MPI_DOUBLE,
&x1_boundary);

int array_size[2] = {8,8}; .
int y_size[2] = {4,2};

int yd_start[2] = {2,0};

MPI_Type_create_subarray(2, array_size, y_size,

yd_start, MPI_ORDER_C, MPI_DOUBLE,
&yd_boundary) ;

Two-dimensional grid with two-element ghost layers

MPI_Sendrecv(array, 1, x1_boundary, nbr_left,
tag_left, array, 1, xr_boundary, nbr_right,
tag_right, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(array, 1, xr_boundary, nbr_right,
tag_right, array, 1, x1_boundary, nbr_left,
tag_left, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(array, 1, yd_boundary, nbr_down,
tag_down, array, 1, yu_boundary, nbr_up, tag_up,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(array, 1, yu_boundary, nbr_up, tag_up,
array, 1, yd_boundary, nbr_down, tag_down,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

int MPI_Type_commit(MPI_Datatype *type)
int MPI_Type_free(MPI_Datatype *type)

int MPI_Type_contiguous(int count, MPI_Datatype oldtype,
MPI_Datatype *newtype)

int MPI_Type_vector(int count, int block, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_indexed(int count, int blocks[], int displs[], MPI_Datatype
oldtype, MPI_Datatype *newtype)

int MPI_Type_create_subarray(int ndims, int array_of_sizes[], int
array_of_subsizes[], int array_of_starts[], int order, MPI_Datatype
oldtype, MPI_Datatype *newtype)

]

mpi_type_commit(type, rc)
integer :: type, rc
mpi_type_free(type, rc)
integer :: type, rc
mpi_type_contiguous(count, oldtype, newtype, rc)
integer :: count, oldtype, newtype, rc
mpi_type_vector(count, block, stride, oldtype, newtype, rc)
integer :: count, block, stride, oldtype, newtype, rc
mpi_type_indexed(count, blocks, displs, oldtype, newtype, rc)
integer :: count, oldtype, newtype, rc
integer, dimension(count) :: blocks, displs
mpi_type_create_subarray(ndims, sizes, subsizes, starts, order,
oldtype, newtype, rc)
integer :: ndims, order, oldtype, newtype, rc
[:::] integer, dimension(ndims) :: sizes, subsizes, starts

Process 0

1 o P o s o

Process 0

Process 1

Process 1

e

if (myid == 0)
MPI_Type_vector(n, 1, 2,
MPI_FLOAT, &newtype)

MPI_Send(A, 1, newtype, 1, ...)
else
MPI_Recv(B, n, MPI_FLOAT,0, ...)

if (myid == 0)
MPI_Send(A, n, MPI_FLOAT, 1, ...)
else
MPI_Type_vector(n, 1, 2, MPI_FLOAT,
&newtype)

MPI_Recv(B, 1, newtype,0, ...)

w Performance depends on the datatype - more general
datatypes are often slower

@ Overhead is potentially reduced by:

— Sending one long message instead of many small messages

— Avoiding the need to pack data in temporary buffers

@ Performance should be tested on target platforms

@ Example: MPI_Type_vector with blocksize=2 and
stride=20 (Cray XT5)
— Performance almost 10x better than naive manual packing

v Derived types enable communication of non-contiguous
or heterogenous data with single MPI calls

— Improves maintainability of program

— Allows optimizations by the system

— Performance is implementation dependent

« Life cycle of a user-defined type: create, commit, free

@ MPI provides constructors for several specific types

« Do the Exercise 6

@ Bonus: (Continue with the) Exercise 7b

+ Parallel 1/0

cscC

« New challenges
— Number of tasks is rising rapidly
— The size of the data is also rapidly increasing
— Gap between computing power vs. I/O rates increasing
rapidly
w The need for I/O tuning is algorithm & problem specific

w Without parallelization, I/O will become scalability
bottleneck for practically every application!

1/0 layers
Applications
PART I: INTRODUCTION TO PARALLEL I/O High-level High level /0
Libraries : =
Intermediate
level POSIX syscalls MPI 1/O
Low-level Parallel file system ‘m

Parallel 1/0 Parallel POSIX 1/O
v How to convert internal data structures and domains to v Spokesman strategy
files which are a streams of bytes? — One process takes care of all 1/0 using :A(:,
© How to get the data efficiently from thousands of nodes normal (POSIX) routines =
of a supercomputer to physical disks? — Requires a lot of communication <+
— Writing/reading slow, single writer not T

able to fully utilize filesystem
— Does not scale, single writer is a
bottleneck

»> — Can be good option when the amount
...110110101010110111 N . ,
911001010101010100101 Of data IS Sma” (eg |npUt f||es)
p1e1...
Parallel 1/0 Parallel POSIX 1/O

v Good I/0 is non-trivial v Every man for himself

— Performance, scalability, reliability — Each process writes its local

— Ease of use of output (number of files, format) results to a separate file

— Portability — Good bandwidth
© One cannot achieve all of the above - one needs to — Difficult to handle a huge number of

prioritize files in later analysis
— Can overwhelm filesystem (for
example Lustre metadata)

@ Subset of writers/readers
— Good compromise |:|
— Most difficult to implement ‘E
E>

— Number of readers/writers often
chosen to be sqrt(ntasks)

— If readers/writers are dedicated then
some computational resources are
wasted

v Defines parallel operations for reading and writing files

— 1/0 to only one file and/or to many files

— Contiguous and non-contiguous I/O

— Individual and collective I/0

— Asynchronous I/O
« Potentially good performance, easy to use (compared

with implementing the same algorithms on your own)
@ Portable programming interface

— By default, binary files are not portable

w File handle
— data structure which is used for accessing the file
w File pointer
— position in the file where to read or write
— can be individual for all processes or shared between the
processes
— accessed through file handle

w File view

— part of a parallel file which is visible to process
— enables efficient noncontiguous access to file

w Collective and independent 1/O

w

v

— Collective = MPI coordinates the reads and writes of
processes

— Independent = no coordination by MPI

All processes in a communicator open a file using
MPI_File_open(comm, filename, mode, info, fhandle)

comm communicator that performs parallel I/0
mode MPI_MODE_RDONLY, MPI_MODE_WRONLY,
MPI_MODE_CREATE, MPI_MODE_RDWR, ...
info Hints to implementation for optimal
performance (No hints: MPI_INFO_NULL)
fhandle parallel file handle

File is closed using
MPI_File_close(fhandle)

Each process moves its local file pointer (individual file
pointer) with
MPI_File_seek(fhandle, disp, whence)

disp Displacement in bytes (with default file view)

whence MPI_SEEK_SET: the pointer is set to offset
MPI_SEEK_CUR: the pointer is set to the current pointer
position plus offset
MPI_SEEK_END: the pointer is set to the end of file plus
offset

Read file at individual file pointer
MPI_File_read(fhandle, buf, count, datatype,

status)
buf Buffer in memory where to read the data
count number of elements to read
datatype datatype of elements to read
status similar to status in MPI_Recv, amount of data

read can be determined by MPI_Get_count
— Updates position of file pointer after reading
— Not thread safe

File writing

« Similar to reading
— File opened with MPI_MODE_WRONLY or
MPI_MODE_CREATE

v Write file at individual file pointer
MPI_File_write(fhandle, buf, count, datatype,
status)

— Updates position of file pointer after writing
— Not thread safe

Example: parallel write

4 N\
program output

use mpi

implicit none

integer :: err, i, myid, file, intsize

integer :: status(mpi_status_size)

integer, parameter :: count=100

integer, dimension(count) :: buf

integer(kind=mpi_offset_kind) :: disp
call mpi_init(err)
call mpi_comm_rank(mpi_comm_world, myid,&
err)
do i = 1, count
buf(i) = myid * count + i
end do

First process writes integers 1-100 to the

beginning of the file, etc.

Example: parallel write

Note: File (and total data) size depends on
number of processes in this example

Multiple processes write to a binary file ‘test’.

r

call mpi_file_open(mpi_comm world, 'test', &
mpi_mode_wronly + mpi_mode_create, &
mpi_info_null, file, err)

call mpi_type_size(mpi_integer, intsize,err)

disp = myid * count * intsize

File offset

determined by

MPI_File_seek call mpi_file_write(file, buf, count, mpi_integer, &
status, err)

call mpi_file_close(file, err)

call mpi_finalize(err)

end program output

.

call call mpi_file_seek(file, disp, mpi_seek_set, err)

File reading, explicit offset

v The location to read or write can be determined also
explicitly with
MPI_File_read_at(fhandle, disp, buf, count,
datatype, status)

disp displacement in bytes (with the default file view)
from the beginning of file

— Thread-safe
— Thefile pointer is neither referred or incremented

File writing, explicit offset

« Determine location within the write statement (explicit

offset)
MPI_File_write_at(fhandle, disp, buf, count,
datatype, status)

— Thread-safe
— The file pointer is neither used or incremented

Example: parallel read

Note: Same number of processes for rea

and writing is assumed in this example.

call mpi_file_open(mpi_comm_world, 'test', &
mpi_mode_rdonly, mpi_info_null, file, err)
File offset intsize = sizeof(count)
disp = myid * count * intsize
call mpi_file_read_at(file, disp, buf, &
count, mpi_integer, status, err)
call mpi_file_close(file, err)
call mpi_finalize(err)
end program output

determined
explicitly

\.

Collective operations

w 1/0 can be performed collectively by all processes in a
communicator

— MPI_File_read_all
— MPI_File_write_all
— MPI_File_read_at_all
— MPI_File_write_at_all
@ Same parameters as in independent I/O functions
(MPI_File_read etc)

Collective operations

w All processes in communicator that opened file must call
function

v Performance potentially better than for individual
functions

— Even if each processor reads a non-contiguous segment, in
total the read is contiguous

Non-blocking MPI 1/O

@ Non-blocking independent I/O is similar to non-blocking
send/recv routines

— MPI_File_iread

— MPI_File_iwrite

— MPI_File_iread_at

— MPI_File_iwrite_at
« Wait for completion using MPI_Test, MPI_Wait, etc.
@ Can be used to overlap I/O with computation

Exercise session

o Do the Exercise 7 b

PART Ill: NON-CONTIGUOUS DATA ACCESS WITH
MPI11/0

File view

v By default, file is treated as consisting of bytes, and
process can access (read or write) any byte in the file

w The file view defines which portion of a file is visible to a
process

« A file view consists of three components

— displacement: number of bytes to skip from the beginning
of file

— etype: type of data accessed, defines unit for offsets
— filetype: portion of file visible to a process

File view

MPI_File_set_view(fhandle, disp, etype,
filetype, datarep, info)

The values for datarep

disp Offset from beginning of file. Always in and the extents of etype
bytes must be identical on all
; . processes in the group;
etype Basic MPI type or user defined type values for disp, filetype,
Basic unit of data access and info may vary.
filetype Same type as etype or user defined type [UAEE I Ees Ll
constructed of etype must be committed.
datarep Data representation (can be adjusted for
portability) “native”: store in same format as in memory
info Hints for implementation that can improve

performance MPI_INFO_NULL: No hints

File view for non-contiguous data

Decomposition for a 2D array

File

— [T | I | O [

w Each process has to access small pieces of data scattered
throughout a file

w Very expensive if implemented with separate
reads/writes

w Use file type to implement the non-contiguous access

File view for non-contiguous data

Collective write can be over hundred times
faster than the individual for large arrays!
File
andlill HE BEECDEENN

MPI_TYPE_CREATE_SUBARRAY(...)
1 ™)

Decomposition for a 2D array

integer, dimension(2,2) :: array

call mpi_type_create_subarray(2, sizes, subsizes, starts, mpi_integer, &
mpi_order_c, filetype, err)

call mpi_type_commit(filetype)

disp = ©

call mpi_file_set_view(file, disp, mpi_integer, filetype, ‘native’, &
mpi_info_null, err)

call mpi_file_write_all(file, buf, count, mpi_integer, status, err)

Common mistakes with MP11/0

X Not defining file offsets as MPI_Offset in C and integer
(kind=MPI_OFFSET_KIND) in Fortran

X In Fortran, passing the offset or displacement directly as
a constant (e.g., 0)
— It has to be stored in a variable

@ MPI 1/O: MPI library is responsible for communication for
parallel I/O access
— File access coordinated through the file handle

w File views enable non-contiguous access patterns

w Collective /0 can enable the actual disk access to remain
contiguous

int MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info
info, MPI_File *fh)

int MPI_File_close(MPI_File *fh)

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

int MPI_File_read(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write(MPI_File fh, void *buf, int count, MPI_Datatype
datatype, MPI_Status *status)

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
MPI_Datatype filetype, char *datarep, MPI_Info info)

int MPI_File_read_all(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_all(MPI_File fh, void *buf, int count, MPI_Datatype
datatype, MPI_Status *status)

int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

mpi_file_open(comm, filename, amode, info, fh, ierr)
integer :: comm, amode, info, fh, ierr
character* :: filename
mpi_file_close(fh, ierr)
mpi_file_seek(fh, offset, whence)
integer :: fh, offset, whence
mpi_file_read(fh, buf, count, datatype, status)
integer :: fh, buf, count, datatype, status(mpi_status_size)
mpi_file_read_at(fh, offset, buf, count, datatype, status)
integer :: fh, offset, buf, count, datatype
integer, dimension(mpi_status_size) :: status
mpi_file_write(fh, buf, count, datatype, status)
mpi_file_write_at(fh, offset, buf, count, datatype, status)

mpi_file_set_view(fh, disp, etype, filetype, datarep, info)
integer :: fh, disp, etype, filetype, info
character* :: datarep
mpi_file_read_all(fh, buf, count, datatype, status)
mpi_file_read_at_all(fh, offset, buf, count, datatype, status)
mpi_file_write_all(fh, buf, count, datatype, status)
mpi_file_write_at_all(fh, offset, buf, count, datatype, status)

« Complete any unfinished exercises of the course.

w Strong parallel scaling o

@ Weak parallel scaling

w Parallel programs contain 1

v Amdahl's law gives the

Ideal scaling
— Real scaling

2

— constant problem size

— execution time decreases in s

proportionto the increase in the 254
number of cores

Speed-up

256 512 768 1024
cores

— increasing problem size

— execution time remains constant
when number of cores increases
in proportion to the problem size

Maximum speed-up:

often sequential parts (1-F)+ F/N

F: parallel fraction

N: number of cores

maximum speed-up in the
presence of non-

3F : : : _
parallelizable parts — F=1.0
24 |— F=0.98]
& — F=094
'é, o — F=0.90 |
#
o
8 ‘ 3 ED

« Load balance

— distribution of workload to different cores

w Parallel overhead

— additional operations which are not present in serial
calculation

— synchronization, redundant computations,
communications

« Amount of data per process small - computation takes

little time compared to communication
@ Load imbalance
« Communication that scales badly with N,

— E.g., all-to-all collectives ‘ . ‘

« Congestion on network — too
many messages or lots of data &
B . 3 s
@ Amdahl’s law in general &
256
- Eg., /O
A 3 59 768 02

« Most basic information: total wall clock time
— Built-in timers in the program (e.g. MPI_Wtime)
— System commands (e.g. time) or batch system statistics
w Built-in timers can provide also more fine-grained
information
— have to be inserted by hand

— typically, no information about hardware related issues
e.g. cache utilization

— information about load imbalance and communication
statistics of parallel program is difficult to obtain

v For more insight we need to employ performance
analysis tools

— Top time consuming routines (profile)
— Load balance across processes and threads
— Parallel overhead
— Communication patterns
— Hardware utilization details
@ HPC platforms usually have performance analysis suites
— CrayPAT, Scalasca, Paraver, Tau,...

.2
Choose

algorithms, Non-
data structures optimal Assess o Identify scalability le

and correct scalability bottlenecks
parallelization code

strategy

g Yes

Identify
single-core
performance
bottlenecks

Optimize
the
hotspots

Apply
“optimal
porting

Optimize MPI
and 1/0 etc

[+Yes:

No

Assess
scalability

Converged?

Optimized
code

Converged?

Efficient MPI programming style

@ Use collectives!

— If a collective call can do it for you, it will outperform all
point-to-point constructs

v Avoid unnecessary memory copies
— E.g. using array sections in Fortran
— Derived datatypes are much faster
w Do not perform ordered set of sends or recvs
— Employ a collective
— Or point-to-point with MPI_ANY_SOURCE instead

Efficient MPI programming style

« Reduce latency: Send one big message instead of several
small messages

— Do not pack manually however, but use derived datatypes
© Do not ask for the stuff you do not need
— Do not send dummy messages but use MPI_PROC_NULL

— Do not request for a status if you don’t employ it (but use
MPI_STATUS_IGNORE)

@ Mind the I/O

— Without parallelization, 1/0 will become a bottleneck in all
parallel applications -> use MPI I/O

Course summary

User-defined Process
communicators topologies

User-defined

Communication datatypes

Point-to-point
communication

Parallel

(mPI) 1/0 Collective

Non-blocking communication

communication

j. g -F',I:;:.- p

EXERCISE ASSIGNMENTS

L L ™
[g g

If" ’l",’f’;,"

-
-
L

-
-
-
-
-

We will use CSC’s Cray supercomputer Louhi for the exercises. Log onto Louhi using the provided
username and password, e.g.

ssh -X trngle@louhi.csc.fi

Alteratively, feel free to use the local workstations or your own Linux/Mac laptop and GNU
compiler (you will also need a working MPI installation).

For editing Fortran program files you can use e.g. Emacs editor:
emacs test.f90

Also other popular editors (vim, nano) are available.

Compilation and execution of MPI programs can also be done via the ftn and cc wrappers and
the aprun scheduler:

ftn test.f90 -0 test
aprun -n 2 ./test
Hello world!

Hello world!

These are specific to Cray systems. If you are using the classroom workstation or your own
laptop, you will most likely have to use mpif90 or mpicc wrappers to compile MPI programs and
mpirun command to launch them.

Write a simple program where every processor sends data to the next one. Let ntasks be the
number of the tasks, and my_id the rank of the current process. Your program should work as
follows:

* Every task with a rank less than ntasks-1 sends a message to task myid+1. For example, task
0 sends a message to task 1.

* The message content is an integer array, where each element is initialized to my_id
* The message tag is the receiver’s id number.

* The sender prints out the number of elements it sends and the tag number.

* All tasks with rank > 1 receive messages.

* Each receiver prints out their my_id, and the first element in the received array.

a. Implement the program described above using MPI_Send and MPI_Recv.

b. Extract from the status parameter how much data was received, and print out this
information from all receivers.

c. Use MPI_ANY_TAG when receiving. Print out the tag of the received message based on the
status message.

d. Use MPI_ANY_SOURCE and use the status information to find out the sender. Print out this
piece of information.

e. Canthe code be simplified using MPI_PROC_NULL?
f. Use MPI_Sendrecv instead of MPI_Send and MPI_Recv.

Example solutions are given in files ex1_msg-chain(.c|.f90).

~ e

a) Implement a parallel matrix-vector multiplication Ax=y, first assuming that N (=length of the
vectors) is dividable by the number of MPI processes. The most straightforward (and not the
optimal algorithm) implementation is to distribute the matrix A and replicate x to each task.
Use collective operations for distributing and replicating and for compiling the result y back
toall processes.

The approaches in C and Fortran will differ from each other because of the different layout
of multi-dimensional arrays in memory.

b) Generalize the program in to allow for arbitrary N (hint: use the varying-size versions of the
same collectives).

The answers are given in ex2a_mxv and ex2b_mxv.

Modify the program written in Exercise 1 to use non-blocking sends and receives (MPI_Isend and
MPI_lIrecv). Make sure to wait for the communication to finish before printing the results. An
example solution is in the file ex3_msg-chain-nonblock.

In this exercise, the approximation for 1t is computed by generating random point pairs (x, y) in
the square [-1,1]x[-1,1]. Then the value of 1t is obtained from the ratio of (points that fall into the
unit circle)/(total number of points). We will implement this in a scheme, where one task will be
the random number generator while the others determine whether the points are in the unit
circle.

Insert into the skeleton code ex4_mc_pi_0 a declaration for two communicators, world and
workers. The world communicator is equal to MPI_COMM_WORLD, but the workers communicator
will contain all the processes except the random number server (that is only one process). The
solution is in ex4_mc_pi.

Write a test program where v L £ ’
(8,0) | (0,1) | (0,2) | (0,3)

. . . . 4 5 6 7
The processes are arranged into a 2D Cartesian grid e | | ey | s

* Every task prints out their linear rank together with its coordinates 8 9 0 | 1"
. : (2,0) | (2,1) | (2,2) | (2,3)
in the process grid

12 13 14 15

* Every task prints out the linear rank of their nearest neighboring (3,001 (3,1] (3,2)] (3,3)
processes

Run the code with both periodic and non-periodic boundaries and experiment with the direction
and displacement parameters of the MPI_Cart_shift routine. The solution is given in
ex5_cart_test(.f90].c).

Starting from the “message chain” of Exercises 1 & 2, implement a similar communication
pattern but now the message should consist of

a) First row
b) First column
c) Diagonal elements

d) A submatrix consisting of the elements A(2:5,2:5)

of a 10x10 matrix with all elements initialized to the value of sender’s rank id. Use derived
datatypes all the way. A solution is being provided in ex6_matrix_msg.

The Game of Life (Gol) is a cellular automaton devised by John Horton Conway in 1970, see

http://en.wikipedia.org/wiki/Conway's_Game_of_Life. The game consists of two dimensional
orthogonal grid of cells. Cells are in two possible states, alive or dead. Each cell is correlated with
its eight neighbours, and at each time step the following transitions occur:

Any live cell with fewer than two live neighbours dies, as if caused by underpopulation
Any live cell with more than three live neighbours dies, as if by overcrowding

Any live cell with two or three live neighbours lives on to the next generation

Any dead cell with exactly three live neighbours becomes a live cell

Compile and run a serial reference implementation gol_ser(.f90|.c) and run the program of e.g.
500x500 board for 100 iterations. With the commands xview or eog you can view the
images (.pbm) and see how the automaton looks like after those. You can also animate the
board development by loading the ImageMagick module,

module load ImageMagick
and using the utilities found in it; first doing

convert -delay 30 -geometry 512x512 life_*.pbm life.gif
and then displaying the animation with

animate life.gif

a)

Parallelize the GolL program with MPI, by dividing the board in columns and assigning one
column to one task - a domain decomposition, that is. The tasks are able to update the board
independently everywhere else than on the column boundaries - there the communication
of a single column with the nearest neighbor is needed (the board is periodic, so the first
column of the board is 'connected' to the last column). This is realized by having additional
ghost layers on each of the local columns, that contain the boundary data of the neighboring
tasks. The periodicity in the other direction is accounted as earlier. When printing out the
board, all tasks send their local parts to one task that prints out the board. Insert the proper
MPI routines into a skeleton code available at ex7a_gol_mpi_0 (search for “TODO”s). A
solution using MPI_Sendrecv in ex7a_gol_mpi. You can as well start from the serial version.
Feel free to use other approaches to perform the halo exchange.

Decompose the Gol board in two dimensions by introducing a Cartesian process topology
and rewriting the communication routines of the program to employ it. Create a new MPI
datatype for sending and receiving rows (Fortran) or columns (C) of the board. A solution is
in ex7b_gol_2d.

Add a feature to the GolL program that enables the user to start the program from a
completed situation (i.e. not from scratch every time). This checkpointing will dump the
situation of the whole board to disk every now and then; in a format that can be read in
afterwards. Use MPI I/O to accomplish this. A solution is provided in ex7c_gol_mpiio. A
starting point is provided in ex7c_gol_mpiio_0.

Notes

- . &=

"f g, -
"'r"-l‘-i':::==:

iy erre s ™ o

i ltiprrim g ®™ o
7y L

u"rﬁi-.

.y
M-

