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Agenda

Monday

9.00-9.45 Getting started with Fortran

10.00-10.45 Fortran arrays

11.00-12.00 Exercises

12.00-13.00 Lunch break

13.00-13.45 Procedures & modules

14.00-15.45 Exercises

15.45-16.00 Wrap-up, Q&A

Tuesday

9.00-9.45 File I/O

10.00-10.45 Derived datatypes

11.00-12.00 Exercises

12.00-13.00 Lunch break

13.00-13.45 Other handy Fortran features

14.00-15.45 Exercises

15.45-16.00 Wrap-up, Q&A



Web resources

CSC’s Fortran95/2003 Guide (in Finnish) for free
http://www.csc.fi/csc/julkaisut/oppaat
Fortran wiki: a resource hub for all aspects of Fortran programming
http://fortranwiki.org
GNU Fortran online documents
http://gcc.gnu.org/onlinedocs/gcc-4.5.0/gfortran
Code examples
http://www.nag.co.uk/nagware/examples.asp
http://www.personal.psu.edu/jhm/f90/progref.html
Mistakes in Fortran 90 Programs That Might Surprise You
http://www.cs.rpi.edu/~szymansk/OOF90/bugs.html



PART I: GETTING STARTED WITH FORTRAN
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Outline

First encounter with Fortran
Variables and their assignment
Control structures
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Why learn Fortran?

Well suited for numerical computations
– Likely over 50% of scientific applications are written in 

Fortran
Fast code (compilers can optimize well)
Handy array data types
Clarity of code
Portability of code
Optimized numerical libraries available
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Fortran through the ages

John W. Backus et al (1954): The IBM Mathematical
Formula Translating System
Early years development: Fortran II (1958), Fortran IV 
(1961), Fortran 66 & Basic Fortran (1966)
Fortran 77 (1978)
Fortran 90 (1991) major revision, Fortran 95 (1995) a 
minor revision to it
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Fortran through the ages

Fortran 2003: major revision, adding e.g. object-oriented
features
– ”Fortran 95/2003” is the current de facto standard

The latest standard is Fortran 2008 (approved 2010), a 
minor upgrade to 2003
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PROGRAM square_root_example
! Comments start with an exclamation point. 
! You will find data type declarations, couple arithmetic operations
! and an interface that will ask a value for these computations.
IMPLICIT NONE
REAL :: x, y   
INTRINSIC SQRT ! Fortran standard provides many commonly used functions

! Command line interface. Ask a number and read it in
WRITE (*,*) 'Give a value (number) for x:'
READ (*,*) x

y=x**2+1   ! Power function and addition arithmetic

WRITE (*,*) 'given value for x:', x
WRITE (*,*) 'computed value of x**2 + 1:', y
! Print the square root of the argument y to screen
WRITE (*,*) 'computed value of SQRT(x**2 + 1):', SQRT(y)

END PROGRAM square_root_example

Look & Feel
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compiler

linker

source code

modules

object code

libraries

executable

INCLUDE
files compiler output

(optional)

linker output
(optional)

Compiling and linking
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IMPLICIT NONE

INTEGER :: n0

REAL :: a, b
REAL :: r1=0.0

COMPLEX :: c
COMPLEX :: imag_number=(0.1, 1.0)

CHARACTER(LEN=80) :: place
CHARACTER(LEN=80) :: name='James Bond'

LOGICAL :: test0 = .TRUE.
LOGICAL :: test1 = .FALSE.

REAL, PARAMETER :: pi=3.14159

Variables

Constants defined with the 
PARAMETER clause – they cannot be 
altered after their declaration

Variables must be declared at the 
beginning of the program or 
procedure

They can also be given a value at 
declaration

The intrinsic data types in Fortran are 
INTEGER, REAL, COMPLEX, 
CHARACTER and LOGICAL
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PROGRAM numbers
IMPLICIT NONE
INTEGER :: i
REAL :: r
COMPLEX :: c, cc
i = 7
r = 1.618034
c = 2.7182818   !same as c = CMPLX(2.7182818)
cc = r*(1,1) 
CMPLX(r)
WRITE (*,*) i, r, c, cc

END PROGRAM 

Output (one integer and real and two complex values) :
7  1.618034  (2.718282, 0.000000)  (1.618034, 1.618034)

Assignment statements

How can I convert numbers to 
character strings and vice versa? See 
“INTERNAL I/O” in the File I/O lecture.

Automatic change of representation, 
works between all numeric intrinsic 
data types
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Arithmetic operators
REAL :: x,y
INTEGER :: i = 10
x=2.0**(-i)  !power function and negation     precedence: first
x=x*REAL(i)  !multiplication and type change  precedence: second
x=x/2.0      !division                        precedence: second
i=i+1        !addition                        precedence: third
i=i-1        !subtraction                     precedence: third
Relational operators
.LT. or <     !less than
.LE. or <=    !less than or equal to
.EQ. or ==    !equal to
.NE. or /=    !not equal to
.GT. or >     !greater than
.GE. or >=    !greater than or equal to
Logical operators
.NOT.      !logical negation              precedence: first
.AND.      !logical conjunction           precedence: second
.OR.       !logical inclusive disjunction precedence: third

Operators
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Arrays

INTEGER, PARAMETER :: M = 100, N = 500
INTEGER :: idx(M)
REAL :: vector(0:N-1)
REAL :: matrix(M, N)
CHARACTER (len = 80) :: screen ( 24)

! or

INTEGER, DIMENSION(1:M) :: idx
REAL, DIMENSION(0:N-1) :: vector
REAL, DIMENSION(M, N) :: matrix
CHARACTER(len=80), dimension(24) :: screen

By default, indexing starts from 1
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Control structures: conditionals

PROGRAM test_if
IMPLICIT NONE
REAL :: x,y,eps,t

WRITE(*,*)' Give x and y :'
READ(*,*) x, y
eps = EPSILON(x)

IF (ABS(x) > eps) THEN
t=y/x

ELSE
WRITE(*,*)'division by zero'
t=0.0

END IF
WRITE(*,*)' y/x = ',t

END PROGRAM
Fortran95
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! DO loop with an integer counter (count controlled)
INTEGER :: i, stepsize, NumberOfPoints
INTEGER, PARAMETER :: max_points=100000
REAL :: x_coodinate(max_points), x, totalsum
...
stepsize=2
DO i = 1, NumberOfPoints, stepsize

x_coordinate(i) = i*stepsize*0.05
END DO

! Condition controlled loop (DO WHILE)
totalsum = 0.0
READ(*,*) x
DO WHILE (x > 0)

totalsum = totalsum + x 
READ(*,*) x

END DO
Fortran95

Control structures: loops
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! DO loop without loop control

REAL :: x, totalsum, eps
totalsum = 0.0
DO
READ(*,*) x
IF (x < 0) THEN

EXIT ! exit the loop
ELSE IF (x > upperlimit) THEN

CYCLE          ! do not execute any statements but
! cycle back to the beginning of the loop

END IF
totalsum = totalsum + x

END DO

Fortran95

Control structures: loops
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... 
INTEGER :: i
LOGICAL :: is_prime_number, 
test_prime_number
...
SELECT CASE (i)
CASE (2,3,5,7)
is_prime_number = .TRUE.

CASE (1,4,6,8:10)
is_prime_number = .FALSE.

CASE DEFAULT 
is_prime_number=test_prime_number(i)

END SELECT
...

Fortran95

Control structures: select case

SELECT CASE statements 
matches the entries of a 
list against the case index
– Only one found match is 

allowed
– Usually arguments are 

character strings or 
integers

– DEFAULT branch if no 
match found

15

PROGRAM gcd
! Computes the greatest common divisor, Euclidean algorithm
IMPLICIT NONE
INTEGER :: m, n, t
WRITE(*,*)' Give positive integers m and n :'
READ(*,*) m, n
WRITE(*,*)'m:', m,' n:', n
positive_check: IF (m > 0 .AND. n > 0) THEN

main_algorithm: DO WHILE (n /= 0)
t = MOD(m,n)
m = n
n = t

END DO main_algorithm
WRITE(*,*)'Greatest common divisor: ',m

ELSE 
WRITE(*,*)'Negative value entered'

END IF positive_check
END PROGRAM gcd Fortran95

Control structures example

Labels can be given to 
control structures and used 
in conjunction with e.g. exit
and cycle statements
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PROGRAM placetest
IMPLICIT NONE
LOGICAL :: in_square1, in_square2
REAL :: x,y

WRITE(*,*) 'Give point coordinates x and y'
READ (*,*) x, y
in_square1 = (x >= 0. .AND. x <= 2. .AND. y >= 0. .AND. y <= 2.)
in_square2 = (x >= 1. .AND. x <= 3. .AND. y >= 1. .AND. y <= 3.)
IF (in_square1 .AND. in_square2) THEN      ! inside both 

WRITE(*,*) ‘Point within both squares’
ELSE IF (in_square1) THEN     ! inside square 1 only

WRITE(*,*) ‘Point inside square 1’
ELSE IF (in_square2) THEN      ! inside square 2 only

WRITE(*,*) ‘Point inside square 2’
ELSE                                       ! both are .FALSE.

WRITE(*,*) ‘Point outside both squares’
END IF

END PROGRAM placetest

Another example

1

22
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Source code remarks

A variable name can be no longer than 31 characters 
(containing only letters, digits or underscore, must start 
with a letter)
Maximum row length is 132 characters 
There can be max 39 continuation lines
– if a line is ended with ampersand (&), the line continues 

onto the next line. 
No distinction between lower and uppercase characters
– Character strings are case sensitive 
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! Character strings are case sensitive
CHARACTER(LEN=32) :: ch1, ch2
Logical :: ans
ch1 = 'a'
ch2 = 'A'
ans = ch1 .EQ. ch2
WRITE(*,*) ans ! OUTPUT from that WRITE statement is: F

! When strings are compared 
! the shorter string is extended with blanks 
WRITE(*,*) 'A' .EQ. 'A '    ! OUTPUT: T
WRITE(*,*) 'A' .EQ. ' A'    ! OUTPUT: F

! Statement separation: newline and semicolon, ;
! Semicolon as a statement separator
a = a * b; c = d**a
! The above is equivalent to following two lines
a = a * b
c = d**a

Fortran95

Source code remarks
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Summary

Fortran 95/2003 is – despite its long history - a modern
programming language especially for scientific
computing
– Versatile, quite easy to learn, powerful

In our first encounter, we discussed
– Variables & data types
– Control structures: loops & conditionals
– Operators

20



 



PART II: FORTRAN ARRAYS
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Array syntax & array sections
Dynamic memory allocation
Array intrinsic functions
Pointers to arrays
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Significance of Fortran arrays

Fortran arrays enable a natural and versatile way to 
access multi-dimensional data during computation
– Matrices, vectors,...
– Array has particular data type (same for all elements)
– Dimension specified in the variable declaration
– Fortran 95 supports up to 7 dimensional arrays
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Loop order in multi-dimensional arrays

Always increment the left-most index of multi-
dimensional arrays in the innermost loop (i.e. fastest)
Some compilers (with sufficient optimization flags) may 
re-order loops automatically

do i=1,N 
do j=1,M
y(i) = y(i)+ a(i,j)*x(j)

end do
end do

do j=1,M 
do i=1,N
y(i) = y(i)+ a(i,j)*x(j)

end do
end do
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Array syntax

In older Fortran, arrays were traditionally accessed 
element-by-element basis
Modern Fortran has a way of accessing several elements 
in one go: array syntax

y(:) = y(:)  +  A(:,j) * x(j)
Array syntax improves code readability and performance
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Array syntax

Element-by-element initialization

Using array syntax in initialization

do j = 0, 10
vector (j) = 0
idx (j) = j

end do

vector = 0
! or
vector(:) = 0

idx(0:10) = (/ (j, j = 0, 10) /)
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Array syntax

Array syntax allows for less explicit DO loops

integer :: m = 100, n = 200
real    :: a(m,n), x(n), y(m)
integer :: i, j

y = 0.0
outer_loop: do j = 1, n
inner_loop: do i = 1, m
y(i) = y(i) + a(i,j) * x(j)

end do inner_loop
end do outer_loop

integer :: m = 100, n = 200
real    :: a(m,n), x(n), y(m)
integer :: j

y = 0.0
outer_loop: do j = 1, n

y(:) = y(:) + a(:,j) * x(j)
end do outer_loop
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Array sections

With Fortran array syntax we can access a part of an 
array in a pretty intuitive way: array sections

Sections enable us to refer to (say) a sub-block of a 
matrix, or a sub-cube of a 3D array:

Sub_Vector(3:N+8)  = 0
Every_Third(1:3*N+1 : 3) = 1
Diag_Block(i–1:i+1, j–2:j+2) = k

REAL(kind = 8) :: A ( 1000, 1000)
INTEGER(kind = 2) :: pixel_3D(256, 256, 256)
A(2:500, 3:300:3) = 4.0
pixel_3D(128:150, 56:80, 1:256:8) = 32000

28



Array sections

When copying array sections, then both left and right 
hand sides of the assignment statement has to have 
conforming dimensions 
LHS(1:3, 0:9) = RHS(-2:0, 20:29)  ! This is OK

! but here is an error :

LHS(1:2, 0:9) = RHS(-2:0, 20:29)
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Dynamic memory allocation

Memory allocation is static if the array dimensions have 
been declared at compile time
If the sizes of an array depends on the input of the 
program, its memory should be allocated at runtime
– Memory allocation becomes dynamic
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Dynamic memory allocation

Fortran provides two different mechanisms to allocate 
memory dynamically through arrays:
– Array variable declaration has an ALLOCATABLE attribute

memory is allocated through the ALLOCATE  statement
and freed through DEALLOCATE

– A variable, which is declared in the procedure with size 
information coming from the argument list or from a 
module, is an automatic array

no ALLOCATE or DEALLOCATE is needed
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Dynamic memory allocation

INTEGER :: M=100, N=200, alloc_stat
INTEGER, ALLOCATABLE :: idx(:)
REAL, ALLOCATABLE :: mat(:,:)

ALLOCATE(idx(0:M–1), STAT=alloc_stat)
IF (alloc_stat /= 0) CALL abort()

ALLOCATE(mat(M,N), STAT=alloc_stat)
IF (alloc_stat /= 0) CALL abort()
...
DEALLOCATE(idx, mat)
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Memory allocation with automatic arrays

SUBROUTINE CALCULATE(M, N)
INTEGER, INTENT(IN) :: M, N ! Intended dimensions
INTEGER :: idx(0:M-1)       ! An automatic array
REAL :: mat(M,N)            ! An automatic array

! No explicit ALLOCATE – but no checks upon failure either 
...
CALL DO_SOMETHING(M, N, idx, mat)
...

! No explicit DEALLOCATE - memory gets reclaimed automatically

END SUBROUTINE CALCULATE
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Array intrinsic functions

Built-in functions can apply various operations on whole 
array, not just array elements
As a result either another array or just a scalar value is 
returned
A subset selection through masking is possible
– Masking and use of array (intrinsic) functions is often 

accompanied with use of FORALL and WHERE array 
statements
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Array intrinsic functions

SIZE(array[, dim]) returns # of elements in the 
array, optionally along the specified dimension
SHAPE(array) returns an INTEGER vector containing 
SIZE of array with respect to each of its dimension
COUNT(L_array[, dim]) returns the count of 
elements which are .TRUE. in the LOGICAL L_array
SUM(array[, dim][, mask]) : sum of the elements, 
optionally along a dimension, and optionally under mask
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Array intrinsic functions

ANY(L_array[, dim]) returns a scalar value of .TRUE. 
if any value in LOGICAL L_array is found to be .TRUE.
ALL(L_array[, dim]) returns a scalar value of .TRUE. 
if all values in LOGICAL L_array are .TRUE.
MINVAL/MAXVAL(array[, dim][, mask]) return 
the minimum/maximum value in a given array [along 
specified dimension] [, under mask]
MINLOC/MAXLOC(array[, mask]) return a vector of 
location(s) [, under mask], where the 
minimum/maximum value(s) is/are found
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Array intrinsic functions

INTEGER :: M, N
REAL :: X(M,N), V(N)
PRINT *, SIZE(X), SIZE(V) ! M, N, N
PRINT *, SHAPE(X)         ! M, N
PRINT *, SIZE(SHAPE(X))   ! 2
PRINT *, COUNT(X >= 0)
PRINT *, SUM(X, DIM=2, MASK=X < 1) PRINT *, ANY(V > -1 .and. V < 1)

PRINT *, ALL(X >= 0, DIM=1)
PRINT *, MINVAL(V), MAXVAL(V)
PRINT *, MINLOC(V), MAXLOC(V)
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Array intrinsic functions

RESHAPE(array, shape) returns a reconstructed 
array with different shape than in the input array, for 
example:
– Can be used as a single line statement to initialize an array 

(often in expense of readability)
– Create from an M-by-N matrix a vector of length MxN

INTEGER :: M, N
REAL :: A(M,N), V(M*N)
! “Carbon”-copy A to V without loops
V = RESHAPE(A, SHAPE(V))
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Array intrinsic functions

Some array functions manipulate vectors/matrices effectively :
– DOT_PRODUCT(a, b) returns a dot product of two vectors
– MATMUL(a, b) returns matrix multiply of two matrices
– TRANSPOSE(a) returns transposed of the input matrix

INTEGER :: L, M, N
REAL :: A(L,M), B(M,N), C(L,N)
REAL :: A_tr(M,L)
REAL :: V1(N), V2(N), DOTP

A_tr = TRANSPOSE(A)
C = MATMUL(A, B)
DOTP = DOT_PRODUCT(V1, V2)
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Array intrinsic functions

Array control statements FORALL and WHERE are 
commonly used in the context of manipulating arrays
– These are frankly speaking not array intrinsic functions, 

but very closely related to
They can provide a masked assignment of values using 
effective vector operations
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Examples of array control statements

INTEGER :: j
REAL :: a(100,100), b(100), c(100)

! Fill in diagonal matrix
FORALL (j=1:100) a(j,j) = b(j)

! Fill in lower bi-diagonal matrix
FORALL (j=2:100) a(j,j-1) = c(j)

Array intrinsic functions

INTEGER :: j, ix(5)

ix(:) = (/ (j, j=1, size(ix)) /)

WHERE (ix == 0) ix = -9999

WHERE (ix < 0) 
ix = -ix

ELSEWHERE
ix = 0

END WHERE
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Pointers to arrays

The POINTER attribute enables to create array (or scalar) 
aliasing variables
Pointer variables are usually employed to refer to 
another array or array section
A pointer variable can also be a sole variable itself, but 
requires ALLOCATE
– This is not a recommended practice – use the 

ALLOCATABLE attribute and employ POINTERs for aliasing
only

C programmers: a ”pointer” has a slightly different
meaning in C and Fortran
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Pointers to arrays

A POINTER can refer to an already allocated memory 
region

INTEGER, POINTER :: p_x(:) => NULL()
INTEGER, TARGET :: x(1000)
...
p_x => x
p_x => x(2 : 300)
p_x => x(1 : 1000 : 5)
...
p_x(1) = 0
NULLIFY(p_x)

Disconnects p_x’s connection to x

Initialized to point to nothing

This would change also x(1) to 0

Pointers provide a neat way for array
sections
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Summary

Arrays make Fortran language a very versatile vehicle for 
computationally intensive program development
Using its array syntax, vectors and matrices can be 
initialized and used in a very intuitive way
Dynamic memory allocation enables sizing of arrays 
according to particular needs 
Array intrinsic functions further simplify coding effort  
and improve code readability
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PART III: PROCEDURES & MODULES
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Structured programming
Procedures: functions and subroutines
Procedure arguments
Modules
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Structured programming

Structured programming based on program sub-units 
(functions, subroutines and modules) enables
– testing and debugging separately
– re-use of code
– improved readability
– re-occurring tasks

The key to success is in well defined data structures and 
scoping, which lead to clean procedure interfaces
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What are procedures?

With procedures we mean subroutines and functions
Subroutines exchange data through its argument lists
CALL mySubroutine(arg1, arg2, arg3)

Functions return a value
value = myFunction(arg1, arg2)

Both can also interact with the rest of the program
through module (global) variables

48

Declaration

Function
[TYPE] FUNCTION func(arg1,

arg2,...) [RESULT(arg3)]

[declarations]
[statements]

END FUNCTION func

Call convention
res = func(arg1, arg2,...)

Subroutine
SUBROUTINE sub(arg1, arg2,...)

[declarations]
[statements]

END SUBROUTINE sub

Call convention
CALL sub(arg1, arg2,...)
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REAL FUNCTION dist(x, y)
IMPLICIT NONE
REAL :: x, y
dist = SQRT(x**2 + y**2)
END FUNCTION dist

PROGRAM do_something
...
r = dist(x, y)
...

SUBROUTINE dist(x, y, d)
IMPLICIT NONE
REAL :: x, y, d
d = SQRT(x**2 + y**2)
END SUBROUTINE dist

PROGRAM do_something
...
call dist(x, y, r)
...

Declaration
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Procedure types

There are four procedure types in Fortran 90: intrinsic, 
external, internal and module procedures
Procedure types differ in
– Scoping, i.e. what data and other procedures a procedure

can access
– Interface type, explicit or implicit

In Fortran the procedure arguments are always passed by
reference, i.e. just as a pointer to a location in  memory
Compiler can check the argument types of the at compile
time only if the interface is explicit
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Procedure types, cont.

The interfaces of the intrinsic, internal and module
procedures are explicit
The interfaces of the external procedures, such as many
library subroutines, are implicit. You can write an explicit
interface to those, though.
Intrinsic procedures are the procedures defined by the 
programming language itself, such as
INTRINSIC SIN
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Internal procedures

Each program unit (program/subroutine/function) may 
contain internal procedures

SUBROUTINE mySubroutine
…
CALL myInternalSubroutine
...

CONTAINS
SUBROUTINE myInternalSubroutine

…
END SUBROUTINE myInternalSubroutine

END SUBROUTINE mySubroutine
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Internal procedures, cont.

Declared at the end of a program unit after the 
CONTAINS statement
– Nested CONTAINS statements are not allowed

Scoping: internal procedure can access the parent 
program unit’s variables and objects
Often used for ”small and local, convenience” 
subroutines within a program unit
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External procedures

Declared in a separate program unit
– Referred to with the EXTERNAL keyword 
– Compiled separately and linked to the final executable

Do not use them within a program, module procedures 
provide much better compile time error checking
External procedures are often needed when using
– procedures written with different programming language
– library routines (e.g. BLAS & MPI libraries)
– old F77 subroutines

55

Procedure arguments

Call by reference:
– Means that only the memory addresses of the arguments

are passed to the called procedure
– Any change to argument changes the actual argument
– Compiler can check the argument types only if the 

interface is explict, i.e. compiler has information about the 
called procedure at compile time.

– INTENT keyword adds readability and possibility for more 
compile-time error catching
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INTENT keyword

Declares how formal argument is 
intended for transferring a value
– in: the value of the argument

cannot be changed
– out: the value of the argument 

must be provided
– inout (default)

Compiler uses INTENT for error 
checking and optimization

SUBROUTINE foo(x, y, z)
IMPLICIT NONE
REAL, INTENT(in) :: x
REAL, INTENT(inout) :: y
REAL, INTENT(out)   :: z

x = 10 ! Compilation error
y = 10    ! Correct
z = y * x ! Correct

END SUBROUTINE foo
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Passing array arguments

Two (three) ways to pass arrays to procedures
– Explicit shape array (dimensions passed explicitly, F77’tish)

subroutine foo(size1, size2, ..., matrix, ...)
implicit none
integer :: size1, size2
real, dimension(size1, size2) :: matrix
…

– Assumed shape array (requires explicit interface)
subroutine foo(matrix)

real, dimension(:,:) :: matrix

One can use the intrinsic function SIZE for checking the 
actual dimensions
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Procedure arguments

We may pass into 
procedures also other
procedures (i.e., not
only data)
Internal procedures
cannot be used as 
arguments

PROGRAM degtest
IMPLICIT NONE
INTRINSIC ASIN, ACOS, ATAN
WRITE (*,*) ’arcsin(0.5): ’, deg(ASIN,0.5)
WRITE (*,*) ’arccos(0.5): ’, deg(ACOS,0.5)
WRITE (*,*) ’arctan(1.0): ’, deg(ATAN,1.0)

CONTAINS
REAL FUNCTION deg(f, x)

IMPLICIT NONE
INTRINSIC ATAN 
REAL, EXTERNAL :: f
REAL, INTENT(IN) :: x
deg = 45 * f(x) / ATAN(1.0)

END FUNCTION deg
END PROGRAM degtest
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Modular programming

Modularity means dividing a program into minimally 
dependent modules
– Enables division of the program into smaller self-contained 

units
Where to employ Fortran modules
– Global definitions of procedures, variables and constants
– Compilation-time error checking
– Hiding implementation details
– Grouping routines and data structures
– Defining generic procedures and custom operators
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Module procedures & variables

Declaration
MODULE check
IMPLICIT NONE
INTEGER, PARAMETER :: &
longint = SELECTED_INT_KIND(8)

CONTAINS
FUNCTION check_this(x) RESULT(z)
INTEGER(longint):: x, z
...

END FUNCTION
END MODULE check

Usage
PROGRAM testprog
USE check
IMPLICIT NONE
INTEGER(KIND=longint) :: x,test
test=check_this(x)

END PROGRAM testprog

A good habit
USE check, ONLY: longint

Procedures defined in 
modules can be referred 
to in any other program 
unit with the USE clause

Module procedures are 
declared after the CONTAINS 
statement
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Global data/variables

Global variables can be accessed from any program unit
F90 module variables provide controllable way to define
and use global variables

MODULE commons
INTEGER, PARAMETER :: r = 0.42
INTEGER, SAVE :: n, ntot
REAL, SAVE :: abstol, reltol
END MODULE commons

– Explicit interface: type checking, limited scope
Implemented as common blocks in old F77 codes

COMMON/EQ/N,NTOT
COMMON/TOL/ABSTOL,RELTOL

– Extremely error prone
62

Visibility of module objects

Variables and procedures in modules can be PRIVATE or 
PUBLIC
– PUBLIC = visible for all program units using the module 

(default)
– PRIVATE will hide the objects from other program units

REAL :: x, y
PRIVATE :: x
PUBLIC :: y
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Program units

Module procedures Internal procedures

ModulesMain program

External 
procedures
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Summary

Procedural programming makes the code more readable
and easier to develop
– Procedures encapsulate some piece of work that makes

sense and may be worth re-using elsewhere
Fortran uses functions and subroutines
– Values of procedure arguments may be changed upon

calling the procedure
Fortran modules are used for modular programming and 
data encapsulation
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PART IV: INPUT/OUTPUT
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Outline

Input/output (I/O) formatting
Internal I/O
File I/O
– File opening and closing
– Writing and reading to/from a file
– Formatted and unformatted (binary) files
– Stream I/O
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Input/Output formatting

To prettify output and to make it human readable, use 
FORMAT descriptors in connection with the WRITE 
statement
Although less often used nowadays, it can also be used 
with READ to input data at fixed line positions and using 
predefined field lengths
Use either through FORMAT statements, CHARACTER 
variable or embedded in READ / WRITE fmt keyword
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Data type FORMAT descriptors Examples

Integer Iw, Iw.m WRITE(*,'(I5)') J
WRITE(*,'(I5.3)') J
WRITE(*,'(I0)') J

Real (decimal and 
exponential forms,
auto-scaling)

Fw.d
Ew.d
Gw.d

WRITE(*,'(F7.4)') R
WRITE(*,'(E12.3)') R
WRITE(*,'(G20.13)') R

Character A, Aw WRITE(*,'(A)') C

Logical Lw WRITE(*,'(L2)') L

w=width of the output field, d=number of digits to the right of decimal 
point, m=minimum number of characters to be used. 
Variables: Integer :: J,  Real :: R, Character :: C, Logical :: L

Output formatting
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Output formatting: miscellaneous

With complex numbers provide format for both real and 
imaginary parts:

COMPLEX :: Z
WRITE (*,'(F6.3,2X,F6.3)') Z

Line break and tabbing:
WRITE (*,'(F6.3,/,F6.3)') X, Y
WRITE (*,'(I5,T20,I5)') I, J

It is possible that an edit descriptor will be repeated a 
specified number of times

WRITE (*,'(5I8)')
WRITE (*,'(3(I5,F8.3))')
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Internal  I/O

Often it is necessary to filter out data from a given 
character string
Or to pack values into a character string
Fortran internal I/O with READ & WRITE becomes handy
No actual (physical) files are involved at all
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Internal  I/O : Examples

Extract a number from a given character string

CHARACTER(LEN=13) :: CL ='Time step# 10'
INTEGER :: ISTEP
READ(CL,fmt='(10X,I3)') ISTEP

Write data to a character string

INTEGER :: njobs
CHARACTER(LEN=60) :: CL
WRITE(CL,'(A,I0)') 'The number of jobs completed = ', njobs
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Opening & closing files : basic concepts

Writing to or reading from a file is similar to writing onto 
a terminal screen or reading from a keyboard
Differences
– File must be opened with an OPEN statement, in which the 

unit number and (optionally) the file name are given
– Subsequent writes (or reads) must to refer to the given 

unit number 
– File should be closed at the end

73



Opening & closing a file

The syntax is (the brackets [ ] indicate optional keywords 
or arguments)
OPEN([unit=]iu, file='name' [, options])
CLOSE([unit=]iu [, options])

For example
OPEN(10, file= 'output.dat', status='new')
CLOSE(unit=10, status='keep')
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Opening & closing a file

The first parameter is the unit number
The keyword unit= can be omitted
The unit numbers 0, 5 and 6 are predefined
– 0 is output for standard (system) error messages
– 5 is for standard (user) input
– 6 is for standard (user) output
– These units are opened by default and should not be re-

opened nor closed by the user
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Opening & closing a file

The default input/output unit can be referred with a star:
WRITE(*, ...)
READ(*, ...)

– Note that these are not necessarily the same as the stdout
and stdin unit numbers 6 and 5

If the file name is omitted in the OPEN, the file name will 
based on unit number being opened, e.g. for unit=12 this 
usually means the filename ’fort.12’
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File opening options

status : existence of the file
– 'old', 'new', 'replace', 'scratch', 'unknown'

position : offset, where to start writing
– 'append'

action : file operation mode
– 'write', 'read', 'readwrite'

form : text or binary file 
– 'formatted', 'unformatted'
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File opening options

access : direct or sequential file access
– 'direct', 'sequential', 'stream',

iostat : error indicator, (output) integer
– Non-zero only upon an error

err : the label number to jump upon error
recl : record length, (input) integer
– For direct access files only
– Warning (check): may be in bytes or words
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File opening: file properties

Use INQUIRE statement  to find out information about 
– file existence
– file unit open status
– various file attributes

The syntax has two forms, one based on file name, the 
other for unit number
INQUIRE(file=’name’, options ...)
INQUIRE(unit=iu, options ...)
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File opening: file properties

exist : does file exist ? (LOGICAL)
opened : is file / unit opened ? (LOGICAL)
form : ’formatted’ or ’unformatted’ (CHAR)
access  : ’sequential’ or ’direct’ or ’stream’ (CHAR) 
action : ’read’, ’write’, ’readwrite’ (CHAR)
recl : record length (INTEGER)
size : file size in bytes (INTEGER)
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File opening: file properties

Find out about existence of a file 

LOGICAL :: file_exist

INQUIRE (FILE='foo.dat', EXIST=file_exist)
IF (.NOT. file_exist) THEN
WRITE(*,*) 'The file does not exist'

ELSE
! Do something with the file 'foo.dat'

ENDIF
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File writing and reading

Writing to and reading from a file is done by giving the 
corresponding unit number (iu) as a parameter :
WRITE(iu,*) str
WRITE(unit=iu, fmt=*) str
READ(iu,*) str
READ(unit=iu, fmt=*) str

Formats and other options can be used as needed
If keyword 'unit' used, also 'fmt' keyword must be used 
('fmt'  is applicable to formatted, text files only)

The star format (*) indicates list-
directed output (i.e. programmer does 
not choose the input/output styles)
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Formatted vs. unformatted files

Text or formatted files are
– Human readable
– Portable i.e. machine independent

Binary or unformatted files are
– Machine readable only, not portable
– Much faster to access than formatted files
– Suitable for large amount of data due to reduced file sizes
– Internal data representation used for numbers, thus no number 

conversion, no rounding of errors compared to formatted data
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Unformatted I/O

Write to a sequential binary file
REAL rval
CHARACTER(len = 60) string
OPEN(10, file='foo.dat', form='unformatted')
WRITE(10) rval
WRITE(10) string
CLOSE(10)

No FORMAT descriptors allowed
Reading similarly
READ(10) rval
READ(10) string
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Stream I/O

A binary file write adds extra record delimiters (hidden 
from programmer) to the beginning and end of records 
In Fortran 2003 using access method 'stream' avoids this 
and implements a C-like approach
– One should move to use stream I/O

Create a stream (binary) file
REAL dbheader(20), dbdata(300)
OPEN(10,file='my_database.dat', access='stream')
WRITE(10) dbheader
WRITE(10) dbdata
CLOSE(10)

Reading similarly
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Summary

Input/Output formatting
Files: communication between a program and the 
outside world
– Opening and closing a file
– Data reading & writing

Use unformatted (binary) I/O for all except text files
Stream I/O
Internal I/O
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PART V: DERIVED DATA TYPES
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Outline

Recalling Fortran built-in data types
Rationale behind derived data types
Data type declaration and visibility with examples
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Fortran built-in types

Standard Fortran already supports a wide variety of 
fundamental data types to represent integers, floating 
point numbers (real), truth values (logical) and variable 
length character strings
In addition each of these built-in types may have 
declared as multi-dimensional array
Furthermore, reals and integers can be declared to 
consume less memory in expense of reduced numerical 
precision through kind parameter (e.g. 8 or 4)
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The variable representation method (precision) may be 
declared using the KIND statement

! SELECTED_INT_KIND(r)
! SELECTED_REAL_KIND(p)
! SELECTED_REAL_KIND(p,r)

INTEGER, PARAMETER :: short=SELECTED_INT_KIND(4)
INTEGER, PARAMETER :: double=SELECTED_REAL_KIND(12,100)
INTEGER (KIND=short) :: index
REAL (KIND=double) :: x, y, z
COMPLEX (KIND=double) :: c

x=1.0_double; y=2.0_double * ACOS(x)

Integer between -10r < n < 10r

Real number accurate to p decimals

A real number between
-10100 < x < 10100, accurate to 12
decimals

A few words about numerical precision
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PROGRAM Precision_Test
IMPLICIT NONE

INTEGER, PARAMETER :: sp = SELECTED_REAL_KIND(6,30), &
dp = SELECTED_REAL_KIND(10,200)

REAL(KIND=sp) :: a
REAL(KIND=dp) :: b
WRITE(*,*) sp, dp, KIND(1.0), KIND(1.0_dp)
WRITE(*,*) KIND(a), HUGE(a), TINY(a), RANGE(a), PRECISION(a)
WRITE(*,*) KIND(b), HUGE(b), TINY(b), RANGE(b), PRECISION(b) 

END PROGRAM Precision_Test

Output:
4  8  4  8
4 3.4028235E+38 1.1754944E-38 37 6 
8 1.797693134862316E+308 2.225073858507201E-308 307 15

Numerical precision
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F2008 standard module ISO_FORTRAN_ENV

MODULE prec
USE ISO_FORTRAN_ENV, ONLY: INT32, INT64, REAL32, REAL64
IMPLICIT NONE
PRIVATE
INTERGER, PARAMETER :: i4 = INT32 &

i8 = INT64 &
r4 = REAL32 &
r8 = REAL64

PUBLIC :: i4, i8, r4, r8
END MODULE prec
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Other intrinsic functions related to numerical precision

KIND(A)             Returns the kind of the supplied argument
TINY(A)             The smallest positive number
HUGE(A)           The largest positive number
EPSILON(A)         The smallest positive number added to 1.0 

returns a number just greater than 1.0
PRECISION(A)       Decimal precision
DIGITS(A)          Number of significant digits
RANGE(A)           Decimal exponent
MAXEXPONENT(A) Largest exponent (of the kind(A))
MINEXPONENT(A)  Smallest exponent (of the kind(A))

Numerical precision
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What is derived data type ?

Derived data type is a data structure composed of built-in 
data types and possibly other derived data types
– Equivalent to structs in C programming language

Derived type is defined in the variable declaration section 
of programming unit
– Not visible to other programming units

Unless defined in a module and used via USE clause, which is 
most often the preferred way 
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Derived data types – rationale

Properly constructed data types make the program more 
readable, lead to clean interfaces and less errors
Variables used in the same context should be grouped 
together, using modules and derived data types
Please do not forget computationally efficient data layout 
when diving into object oriented programmin in Fortran 
(or any other language)
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Data type declaration

Type declaration
TYPE playertype
CHARACTER (LEN=30) :: name
INTEGER :: number, goals, assists

END TYPE playertype

Declaring variables using a derived data type
TYPE(playertype) :: ville, pekka
TYPE(playertype), DIMENSION(30) :: players
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Accessing data types

Initialization
ville%name = ‘Ville Nieminen'
ville%number = 17
ville%goals = 10
ville%assists = 8

Alternatively
ville = playertype(‘Ville Nieminen', 17, 10, 8)

Vector of derived data type: element-wise addressing
players(1)%name = 'Pekka Saravo'
players(1)%number = 6
players(1)%goals = 2
players(1)%assists = 4
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Nested derived types

Declaration of a derived type using another derived type
TYPE hockeyteam
CHARACTER (LEN=80) :: name
TYPE(playertype) :: players(30)
TYPE(goalietype) :: goalies(3)

END TYPE hockeyteam

Declaring variables:
TYPE(hockeyteam) :: tappara, ilves, karpat

Initialization / access example:
tappara%name = 'Tappara'
tappara%players(2)%name = 'Ville Nieminen'
tappara%players(2)%number = 17
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Visibility of derived data types

When declared in the same programming unit derived 
data types are visible to that unit only
– and subunits under CONTAINS statement

When declared in a module unit, a derived data type can 
be accessed outside the module through USE-statement
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Summary

Derived data types enables grouping of data to form 
logical objects
A Fortran program becomes more readable and modular 
with sensible use of derived data types
Handling of linked lists or binary trees becomes more 
manageable with use of data structures
Enables the use of object oriented programming
concepts
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PART VI: OTHER HANDY FORTRAN 95/2003 
FEATURES
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Outline

Interface definition & Generic procedures
Special procedure attributes & optional procedure
attributes
Command-line arguments
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Interface definition

It is a good practice to 
define the interfaces
for external
procedures
– Enables compilation

time error checking
The INTERFACE block
can be also used for 
defining sc. generic
procerudes

SUBROUTINE nag_rand(table)
INTERFACE
SUBROUTINE g05faf(a, b, n, x)
REAL, INTENT(IN) :: a
REAL, INTENT(IN) :: b
INTEGER, INTENT(IN) :: n
REAL, INTENT(OUT), DIMENSION(n) :: x

END SUBROUTINE g05faf
END INTERFACE
REAL, DIMENSION(:), INTENT(OUT) :: table
CALL g05faf(-1.0, 1.0, SIZE(table), table)

END SUBROUTINE nag_rand

Defining an interface for the g05faf
subroutine of the NAG library
(generates a set of random numbers)

103

Generic procedures

Procedures which perform similar actions but for 
different data types can be defined as generic 
procedures
Procedures are called using the generic name and 
compiler uses the correct procedure based on the 
argument number, type and dimensions
– Compare with ”overloading” in C++

Generic name is defined in INTERFACE section
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MODULE swapmod
IMPLICIT NONE
INTERFACE swap
MODULE PROCEDURE swap_real, swap_char

END INTERFACE
CONTAINS
SUBROUTINE swap_real(a, b)
REAL, INTENT(INOUT) :: a, b
REAL :: temp
temp = a; a = b; b = temp

END SUBROUTINE 
SUBROUTINE swap_char(a, b)
CHARACTER, INTENT(INOUT) :: a, b
CHARACTER :: temp
temp = a; a = b; b = temp

END SUBROUTINE
END MODULE swapmod

Generic procedures example

PROGRAM switch
USE swapmod
IMPLICIT NONE
CHARACTER :: n, s
REAL :: x, y
n = 'J'
s = 'S'
x=10
y=20
PRINT *, x, y
PRINT *, n, s
CALL swap(n,s)
CALL swap(x,y)
PRINT *, x, y
PRINT *, n, s

END PROGRAM
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Special attributes for procedures: RECURSIVE

Recursion means calling a procedure within itself
Triggered via RECURSIVE keyword

RECURSIVE FUNCTION factorial(n) RESULT(fac)
INTEGER, INTENT(IN) :: n
INTEGER :: fac
IF (n == 0) THEN
fac = 1

ELSE
fac = n * factorial(n - 1)

END IF
END FUNCTION factorial
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Special attributes for procedures: PURE

PURE keyword indicates that the function is free of side 
effects
– Such as a change in value of an input argument or global 

variable
Intrinsic functions are always pure
No (external) I/O is allowed in PURE procedures
Pure procedure must specify intents of its all arguments
The motivation is efficiency: Enables more aggressive
compiler optimization and parallelization with e.g. 
OpenMP
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Special attributes for procedures: ELEMENTAL

The ELEMENTAL attribute
allows for declaring
procedures that operate
element-by-element
The argument can be a scalar
or an array of any shape
This is another way for 
defining more general 
procedures

ELEMENTAL REAL FUNCTION f(x, y)
REAL, INTENT(IN) :: x, y
f = SQRT(x**2 + y**2)

END FUNCTION f

...
REAL, DIMENSION(n,n) :: a, b, c 
REAL, DIMENSION(n) :: t, u, v
...
c = f(a, b)
v = f(t, u)
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SAVEd variables

By default objects in procedures are dynamically 
allocated upon invocation
Only saved variables keep their value from one call to the 
next
– SAVE attribute

REAL, SAVE :: a

– Variables assigned with a value upon declaration are equal 
to SAVE attribute (C programmers should note this!)
REAL :: a = 1.0
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Optional procedure arguments

Procedure arguments
can be defined as 
optional, i.e., using
some predefined value
for arguments not
provided

REAL FUNCTION average(x, low, up)
IMPLICIT NONE
REAL, DIMENSION(:), INTENT(IN) :: x
REAL, INTENT(IN), OPTIONAL :: low, up
REAL :: a, b
INTEGER :: i, icount
a = -HUGE(a)
b = HUGE(b)
IF (PRESENT(low)) a = low
IF (PRESENT(up)) b = up
average = 0.0
icount = 0
DO i = 1, SIZE(x)

IF (x(i) >= a .AND. x(i) <= b) THEN
average = average + x(i)
icount = icount + 1

END IF
END DO
average = average/icount

END FUNCTION average

Counting an average of a set
of real numbers – optionally numbers
outside [low,up] can be omitted from
the average. The function can be called
with either 1, 2 or 3 argumets, but the set 
of numbers has to be provided.
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Command line input

In many cases, it is convenient to give parameters for the 
program directly during program launch
– Instead of using a parser, reading from an input file etc.

Fortran 2003 provides a way for this
– COMMAND_ARGUMENT_COUNT() : compute the number of 

user-provided arguments
– GET_COMMAND_ARGUMENT(integer i, character
arg(i)) extract the argument from position i

– You will need internal I/O to convert e.g. integer-valued
arguments into values of integer variables
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Command line input

Example: reading in 
two integer values
from the command
line
The (full) program
should be launched as 
(e.g.)
% ./a.out 100 100

subroutine read_command_line(height, width)
integer, intent(out) :: height, width
character(len=10) :: args(2)
integer :: n_args, i
n_args = command_argument_count()
if (n_args /= 2) then             

write(*,*) ' Usage : ./exe height width '
call abort()

end if
do i = 1, 2

call get_command_argument(i, args(i))
args(i) = trim(adjustl(args(i)))

end do
read(args(1), *) height
read(args(2), *) width

end subroutine read_command_line
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Fortran 95/2003 crash course summary

Variables, 
control

structures

Arrays, array
intrinsics

Pointer
aliasing

Procedures
& Modules

Generic
procedures

& special
attributes

File I/O

Derived
types
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Towards Fortran 2008

The Fortran 2008 standard features e.g. the following
capabilities on top of Fortran 2003
– Submodules
– Coarray Fortran – a parallel execution model
– The DO CONCURRENT construct
– The CONTIGUOUS attribute
– The BLOCK construct

114

Towards Fortran 2008

"Coarrays were designed to answer the question: ‘What 
is the smallest change required to convert Fortran into a 
robust and efficient parallel language?’ 
The answer: a simple syntactic extension. 
It looks and feels like Fortran and requires Fortran 
programmers to learn only a few new rules." 

John Reid, 
ISO Fortran Convener 
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Towards Fortran 2008
See http://fortranwiki.org/fortran/show/Fortran+2008+status
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Don’t stop here!

See for more PRACE training opportunities at 
www.prace-ri.eu/training
CSC’s course calendar: www.csc.fi/courses
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EXERCISE ASSIGNMENTS



1. Playing around with control structures and arrays
a. Declare an integer array of dimensions 100 by 100 and initialize it to zero otherwise but

where the first index is equal to 50 or the second index is equal to 50 the array elements get
a value of 1.

b. Then initialize another array with the same dimensions, but its values are computed from the 
first array such that

• The cells with exactly two elements equal to 1 in the first array get the same value in the 
new array as in the first array.

• Any cell with exactly three neighbors with value 1 gets the value 1 in the new array.

• Otherwise, i.e. new array cells with less than two or more than three neighbors with
value 1 in the old array get a value 0.

At this stage, just run the indices from 2 to 99, i.e. not referencing to the boundaries at all.

c. Modify the program from exercise 1b such that the array becomes periodic – that is, the 
boundaries depend on the cells on the other side of the array. The solutions for all three
items of Exercise 1 is provided in ex1_arrays.f90.

2. Getting acquainted with procedures
a. Modify the program such that you can produce new arrays iteratively, i.e. taking the array

from the previous iteration and obtaining a new array by applying the same rules for it.

b. Modify the exercise 2a so that it uses a  function or a subroutine to produce the new array.

c. Change the initialization of the board such that the board starts from a random
configuration. The intrinsic procedure is called RANDOM_NUMBER. Wrap also this board
initialization into its own procedure. The solutions for all three items of Exercise 2 is provided
in ex2_procedures.f90.

Fortran 95/2003 exercises

Value 1 on the black rows, value 0
elsewhere



Fortran 95/2003 exercises

3. Game of Life
The Game of Life (GoL) is a cellular automaton devised by John Horton Conway in 1970, see 
http://en.wikipedia.org/wiki/Conway's_Game_of_Life.

You can compile a reference executable (since the file ex3_gol.f90 will contain the solution) 
with

% f90 –o gol gol_io.f90 ex3_gol.f90 

Run the  program of e.g. 200x200 board for 100 iterations. With the command xview or eog
you can view the images (.pbm) and see how the automaton looks like after those. You can also 
animate the board development by first using convert as

% convert -delay 40 -geometry 512x512 life_*.pbm life.gif
(on a single line) and then displaying the animation with

% animate life.gif

a. See the file ex3_gol0.f90, get acquainted with the program and complete the missing 
parts of the code (search: “TODO”). Refer back to assignments 1 and 2.

b. Experiment, how the game evolves if you replace the starting pattern (‘plus’, c.f. exercise 1a) 
to a random one (c.f.  Exercise 2c).

c. Modify the GoL program such that the board is manipulated through a derived datatype
GoL_board, which contains the actual board, its dimensions as well as how many iterations 
it has gone through. No solution has been prepared.

d. Now we will examine the I/O module of the Game of Life program. It visualizes the board in 
the netpbm image format, see http://en.wikipedia.org/wiki/Netpbm_format.  Implement the 
writing of the board as pbm images - or in some other image format if you want to go your 
own way. Consult the gol_io.f90 when in trouble. Shortcut: study the draw subroutine in 
gol_io.f90 and make sure you understand the piece of code.

e. Modify the program such that the user input is read directly from the command line instead 
of parsering, i.e. the program is launched as ./gol (# iterations) (board height) (board width), 
for example

% ./gol 200 100 100
The answer is provided in gol_io.f90.



More bonus exercises

Fortran Quiz
a. Are the following Fortran statements written correctly?

character_string = ’Awake in the morning,
& asleep in the evening.’

x = 0.4-6
answer = ’True & false’
low-limit = 0.0005E10
y = E6

b. Are the following declarations legimate in Fortran?
DOUBLE :: x
CHARACTER(LEN=*), PARAMETER :: "Name" 
REAL :: pi = 22/7
REAL :: x = 2., y = -3
REAL :: pii = 22.0/7.0
REAL x = 1.0

c. What are the iteration counts of the following DO loops, the values of loop variable i inside 
the loop, and the value of the loop variable after the DO construct?

DO i = 1, 5
DO i = 5, 0, -1
DO i = 10, 1, -2
DO i = 0, 30, 7
DO i = 3, 2, 1

Derived types
a. Declare the derived type which can save the birth date in the form:

21 01 1990
This derived type thus contains three integers, which have different KIND values: 
SELECTED_INT_KIND(2) and SELECTED_INT_KIND(4).

b. Add the field the for a name to the derived type. Write a function, which returns the name 
and date in a character string in the following form
Charlie Brown (01.01.1999)

Recursion
Write a recursive function, which calculates ”Tribonacci numbers”: 

Calculate  x12. Carry out the computation also using a loop structure.


