
CSC Pouta Cloud Course

Risto Laurikainen

What cloud?

Terminology overload, used to mean e.g.:

– Storage services (Dropbox)

– Virtual server hosting (Amazon Web Services)

– Software platforms (Google App Engine)

– Pretty much any web service

– The Internet as a whole

Self-service and automation are the

common features

SaaS

PaaS

IaaS

Computers, networks
and storage

Operating systems

Software

Cloud computing: three service models

3

The topic of this course: IaaS

The user manages their own

– Servers

– Networks

– Storage

The resources are typically virtualized

The user has full admin access to their

own virtual resources

Traditional HPC vs. IaaS

Traditional HPC environment Cloud environment
Virtual Machine

Operating system Same for all: CSC’s cluster OS Chosen by the user

Software
installation

Done by cluster administrators
Customers can only install software to their
own directories, no administrative rights

Installed by the user
The user has admin rights

User accounts Managed by CSC’s user administrator Managed by the user

Security e.g.
software patches

CSC administrators manage the common
software and the OS

User has more responsibility:
e.g. patching of running
machines

Running jobs Jobs need to be sent via the cluster’s Batch
Scheduling System (BSS)

The user is free to use or not
use a BSS

Environment
changes

Changes to SW (libraries, compilers) happen. The user can decide on
versions.

Snapshot of the
environment

Not possible Can save as a Virtual Machine
image

Performance Performs well for a variety of tasks Very small virtualization overhead
for most tasks, heavily I/O bound
and MPI tasks affected more

Cloud service development in 2015

Pouta = CSC cloud service

https://research.csc.fi/cloud-computing

– cPouta (in production): ”Amazon-type” cloud for research

communities and organisations

– ePouta (in development): Enterprise virtual hosting with a

focus on security

– Both are based on OpenStack

6

https://research.csc.fi/cloud-computing

Pouta’s use cases

Enhanced security – isolated virtual machines

Advanced users – able to manage servers

Difficult workflows – can’t run on Taito

Complex software stacks

Ready made virtual machine images

Deploying tools with web interfaces

”We need root access”

Pouta user guide: https://research.csc.fi/pouta-user-guide

If you can run on Taito – run on Taito

If not – Pouta might be for you

https://research.csc.fi/pouta-user-guide

Virtualization in Taito

Taito cluster:

two types of nodes, HPC and cloud

HPC
node

HPC
node

Cloud
node

Cloud node

Host OS: CentOS

Virtual machine

• Guest OS:
Ubuntu

Virtual machine

• Guest OS:
Windows

Virtual machine flavors in cPouta

Name Cores Memory

(GB)

Local disk

(total, GB)

RAM/core

tiny 1 1 120 1

small 4 15 230 4

medium 8 30 450 4

large 12 45 670 4

fullnode 16 60 910 4

ePouta

10CSC presentation

Renewing the cloud cluster

equipment in Espoo in 2015

Changes to OpenStack cloud

middleware (autumn 2014)

Focus on secure computing and service

for organisations

Idea: seamless scaling of local

resources using a trusted compute

center in Finland

Requires local IT admin contact

Funding model and resource allocation

policy is still under debate, supported by

ELIXIR Finland

Cloud contact information

Support: cloud-support@csc.fi

Documentation:

https://research.csc.fi/pouta-user-guide

https://research.csc.fi/pouta-user-guide

OpenStack

What OpenStack?

Set of tools to build an IaaS cloud for
creating virtualized
– servers

– networks

– storage

OpenStack is to the datacenter what Linux
is to a server - an operating system

Just like there are many Linux
distributions, there are many OpenStack
distributions

1. ”Give me two servers called
VM1 and VM2 connected to

internal network X.”

Virtualized resources

User Cloud interface
server

1. ”Give me two servers called
VM1 and VM2 connected to

internal network X.”

2. ”OK. They’re running.”

Virtualized resources

User Cloud interface
server

VM2VM1

Network X

1. ”Create virtual network Y.”

2. ”OK. Done.”

Virtualized resources

User Cloud interface
server

VM2VM1

Network X Network Y

1. ”Create a server called VM3 and
attach it to networks X and Y.”

2. ”OK. Done.”

Virtualized resources

User Cloud interface
server

VM2VM1

Network X Network Y

VM3

1. ”Reserve public IP address 1.2.3.4
and attach it to VM3.”

2. ”OK. Done.”

Virtualized resources

User Cloud interface
server

VM2VM1

Network X Network Y

VM3

Public network Z

1.2.3.4

Virtualized resources

User Cloud interface
server

Network X Network Y

VM3

Public network Z

1.2.3.4

VM1 VM2

1. ”Create two disks and attach them
to VM1 and VM2.”

2. ”OK. Done.”

Virtualized resources

User Cloud interface
server

Network X Network Y

VM3

Public network Z

1.2.3.4

VM1 VM2

1. Connect to 1.2.3.4

Interfaces

Web

– Works from any modern browser

– Launch, list, terminate servers

– Server console in the browser

– Manage storage and networks

Command line

– Can do all the same things as the web interface

and more

API

– Management through a programmable interface

Storage types in OpenStack

OS image
– The root disk of the VM

– Usually not very large for efficiency reasons

Ephemeral disk = scratch
– Throw-away scratch disk

– Disappears when VM instance is deleted

Volumes = persistent block storage
– Persistent disk for storing hot data

– Can be attached and detached to/from a running VM

Swift = reliable object storage
– Replicated storage for cold data

– Accessed over HTTP

Still missing: shared file system (CIFS,NFS,..)

Tips for the efficient use of IaaS

The most obvious workflow when

using a cloud

1. Start a virtual machine

2. Login

3. Configure some software using the

command line

– Install some packages

– Edit a few configuration files

– Make a few changes to the firewall

– Start some services

4. Done!

What needs to fail for this workflow

to fail? Just one of these:

Some recommendations

Automate as much as possible

Separate configuration from state

Automate as much as possible

If something goes wrong, manual recovery

may be difficult or impossible

Make it easy to recreate your VMs from

scratch

Configuration management helps. Some

tools for that:

– Ansible

– Puppet

– Chef

Separate configuration from state

Configuration is installed software,
configuration files, firewall rules etc.

State is e.g. data in a database or data
produced by a computation

Where to store each:
– Configuration: VM's local filesystem

– State: persistent volume (like a virtual hard
drive attached to the VM)

You should have a backup of both your
state and your configuration

Ansible (http://www.ansible.com)

Free and open source software for

automating configuration tasks

Easy to use

No need to install anything on the machine

to be configured - SSH is enough

For an example, see:

– https://github.com/CSC-IT-Center-for-

Science/pouta-ansible-demo

http://www.ansible.com/

Hands on exercises

Documentation:

https://research.csc.fi/pouta-user-guide

1. Setup prerequisites
– SSH key

– Security group

2. Launch a virtual machine (use CentOS 7)

3. Assign a floating IP to the VM

4. Login to the VM

5. Create a snapshot of the VM

6. Attach block storage

https://research.csc.fi/pouta-user-guide

