
import sys, os
try:

from Bio.PDB import PDBParser
__biopython_installed__ = True

except ImportError:
__biopython_installed__ = False

__default_bfactor__ = 0.0 # default B-factor
__default_occupancy__ = 1.0 # default occupancy level
__default_segid__ = '' # empty segment ID

class EOF(Exception):
def __init__(self): pass

class FileCrawler:
"""
Crawl through a file reading back and forth without loading
anything to memory.
"""
def __init__(self, filename):

try:
self.__fp__ = open(filename)

except IOError:
raise ValueError, "Couldn't open file '%s' for reading." % filename

self.tell = self.__fp__.tell
self.seek = self.__fp__.seek

def prevline(self):
try:

self.prev()

Python in High-performance Computing

Jussi Enkovaara
Harri Hämäläinen

January 27-29, 2015
PRACE Advanced Training Centre
CSC – IT Center for Science Ltd, Finland

All material (C) 2015 by the authors.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License, http://creativecommons.org/licenses/by-nc-sa/3.0/

Agenda

Tuesday
9:00-9:45 Introduction to Python

9:45-10:30 Exercises

10:30-10:45 Coffee Break

10:45-11:15 Control structures

11:15-12:15 Exercises

12:15-13:00 Lunch break

13:00-13:30 Functions and modules

13:30-14:30 Exercises

14:30-14:45 Coffee Break

14:45-15:15 File I/O and text processing

15:15-16:15 Exercises

Wednesday

Thursday
9:00-9:45 Visualization with Python

9:45-10:30 Exercises

10:30-10:45 Coffee Break

10:45-11:30 Scipy-package for scientific
computing

11:30-12:15 Exercises

12:15-13:00 Lunch break

13:00-13:30 C extensions – integrating
efficient C routines in Python

13:30-14:30 Exercises

14:30-14:45 Coffee break

14:45-15:45 MPI and Python – mpi4py

15:45-16:15 Exercises

9.00-9.45 Object oriented programming
with Python

9.45-10.30 Exercises

10.30-10.45 Coffee break

10:45-11:15 NumPy – fast array interface to
Python

11:15-12:15 Exercises

12.15-13.00 Lunch break

13.00-13:30 NumPy (continued)

13:30-14:30 Exercises

14.30-14.45 Coffee break

14.45-15.15 NumPy (continued)

15:15-16:15 Exercises

INTRODUCTION TO PYTHON

What is Python?

Modern, interpreted, object-oriented, full featured high
level programming language

Portable (Unix/Linux, Mac OS X, Windows)

Open source, intellectual property rights held by the
Python Software Foundation

Python versions: 2.x and 3.x

– 3.x is not backwards compatible with 2.x

– This course uses 2.x version

Why Python?

Fast program development

Simple syntax

Easy to write well readable code

Large standard library

Lots of third party libraries

– Numpy, Scipy, Biopython

– Matplotlib

– ...

Information about Python

www.python.org

H. P. Langtangen, “Python Scripting for Computational
Science”, Springer

www.scipy.org

matplotlib.sourceforge.net

mpi4py.scipy.org

FIRST GLIMPSE INTO THE PYTHON

Python basics

Syntax and code structure

Data types and data structures

Control structures

Functions and modules

Text processing and IO

Python program

Typically, a .py ending is used for Python scripts, e.g.
hello.py:

Scripts can be executed by the python executable:

print "Hello world!"

hello.py

$ python hello.py
Hello world!

Interactive python interpreter

The interactive interpreter can be started by executing
python without arguments:

Useful for testing and learning

$ python
Python 2.4.3 (#1, Jul 16 2009, 06:20:46)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-44)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> print "Hello"
Hello
>>>

Python syntax

Variable and function
names start with a letter
and can contain also
numbers and underscores,
e.g “my_var”, “my_var2”

Python is case sensitive

Code blocks are defined by
indentation

Comments start by # sign

example
if x > 0:

x = x + 1 # increase x
print("increasing x")

else:
x = x – 1
print "decreasing x"

print("x is processed")

example.py

Data types

Python is dynamically typed
language

– no type declarations for
variables

Variable does have a type

– incompatible types cannot
be combined

print "Starting example"
x = 1.0
for i in range(10):

x += 1
y = 4 * x
s = "Result"
z = s + y # Error

example.py

Numeric types

Integers

Floats

Complex numbers

Basic operations

– + and -

– * , / and **

– implicit type conversions

– be careful with integer
division !

>>> x = 2
>>> x = 3.0
>>> x = 4.0 + 5.0j
>>>
>>> 2.0 + 5 – 3
4.0
>>> 4.0**2 / 2.0 * (1.0 - 3j)
(8-24j)
>>> 1/2
0
>>> 1./2
0.5

Strings

Strings are enclosed by " or '

Multiline strings can be defined with three double quotes

s1 = "very simple string"
s2 = 'same simple string'
s3 = "this isn't so simple string"
s4 = 'is this "complex" string?'
s5 = """This is a long string
expanding to multiple lines,
so it is enclosed by three "'s."""

strings.py

Strings

+ and * operators with strings:
>>> "Strings can be " + "combined"
'Strings can be combined'
>>>
>>> "Repeat! " * 3
'Repeat! Repeat! Repeat!

Data structures

Lists and tuples

Dictionaries

List

Python lists are dynamic arrays

List items are indexed (index starts from 0)

List item can be any Python object, items can be of
different type

New items can be added to any place in the list

Items can be removed from any place of the list

Lists

Defining lists

Accessing list elements

Modifying list items

>>> my_list1 = [3, “egg”, 6.2, 7]
>>> my_list2 = [12, [4, 5], 13, 1]

>>> my_list1[0]
3
>>> my_list2[1]
[4, 5]
>>> my_list1[-1]
7

>>> my_list1[-2] = 4
>>> my_list1
[3, 'egg', 4, 7]

Lists

Adding items to list

Accessing list elements

+ and * operators with
lists

>>> my_list1 = [9, 8, 7, 6]
>>> my_list1.append(11)
>>> my_list1
[9, 8, 7, 6, 11]
>>> my_list1.insert(1,16)
>>> my_list1
[9, 16, 8, 7, 6, 11]
>>> my_list2 = [5, 4]
>>> my_list1.extend(my_list2)
>>> my_list1
[9, 16, 8, 7, 6, 11, 5, 4]

>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]
>>> [1, 2, 3] * 2
[1, 2, 3, 1, 2, 3]

Lists

It is possible to access
slices of lists

Removing list items

>>> my_list1 = [0, 1, 2, 3, 4, 5]
>>> my_list1[0:2]
[0, 1]
>>> my_list1[:2]
[0, 1]
>>> my_list1[3:]
[3, 4, 5]
>>> my_list1[0:6:2]
[0, 2, 4]
>>> my_list1[::-1]
[5, 4, 3, 2, 1, 0]

>>> second = my_list1.pop(2)
>>> my_list1
[0, 1, 3, 4, 5]
>>> second
2

Tuples

Tuples are immutable lists

Tuples are indexed and
sliced like lists, but cannot
be modified

>>> t1 = (1, 2, 3)
>>> t1[1] = 4
Traceback (most recent call last):
File "<stdin>", line 1, in

<module>
TypeError: 'tuple' object does not
support item assignment

Dictionaries

Dictionaries are associative arrays

Unordered list of key - value pairs

Values are indexed by keys

Keys can be strings or numbers

Value can be any Python object

Dictionaries

Creating dictionaries

Accessing values

Adding items

>>> grades = {'Alice' : 5, 'John'
: 4, 'Carl' : 2}
>>> grades
{'John': 4, 'Alice': 5, 'Carl': 2}

>>> grades['John']
4

>>> grades['Linda'] = 3
>>> grades
{'John': 4, 'Alice': 5, 'Carl': 2,
'Linda': 3}
>>> elements = {}
>>> elements['Fe'] = 26
>>> elements
{'Fe': 26}

Variables

Python variables are
always references

my_list1 and my_list2 are
references to the same list

– Modifying my_list2
changes also my_list1!

Copy can be made by
slicing the whole list

>>> my_list1 = [1,2,3,4]
>>> my_list2 = my_list1

>>> my_list2[0] = 0
>>> my_list1
[0, 2, 3, 4]

>>> my_list3 = my_list1[:]
>>> my_list3[-1] = 66
>>> my_list1
[0, 2, 3, 4]
>>> my_list3
[0, 2, 3, 66]

What is object?

Object is a software bundle of data (=variables) and
related methods

Data can be accessed directly or only via the methods
(=functions) of the object

In Python, everything is object

Methods of object are called with the syntax:
obj.method

Methods can modify the data of object or return new
objects

Summary

Python syntax: code blocks defined by indentation

Numeric and string datatypes

Powerful basic data structures:

– Lists and dictionaries

Everything is object in Python

Python variables are always references to objects

CONTROL STRUCTURES

Control structures

if – else statements

while loops

for loops

Exceptions

if statement

if statement allows one to execute code block depending
on condition

code blocks are defined by indentation, standard practice
is to use four spaces for indentation

boolean operators:

==, !=, >, <, >=, <=

if x > 0:
x += 1
y = 4 * x

numbers[2] = x

example.py

if statement

there can be multiple branches of conditions

Python does not have switch statement

if x == 0:
print "x is zero"

elif x < 0:
print "x is negative"

elif x > 100000:
print "x is large"

else:
print "x is something completely different"

example.py

while loop

while loop executes a code block as long as an expression
is True

x = 0
cubes = {}
cube = 0
while cube < 100:

cubes[x] = cube
x += 1
cube = x**3

example.py

for loop

for statement iterates over the items of any sequence
(e.g. list)

In each pass, the loop variable car gets assigned next
value from the sequence

– Value of loop variable can be any Python object

cars = ['Audi', 'BMW', 'Jaguar', 'Lada']

for car in cars:
print "Car is ", car

example.py

for loop

Many sequence-like Python objects support iteration

– Dictionary: ”next” values are dictionary keys

– (later on: file as sequence of lines, ”next” value of file
object is the next line in the file)

prices = {'Audi' : 50, 'BMW' : 70, 'Lada' : 5}

for car in prices:
print "Car is ", car
print "Price is ", prices[car]

example.py

for loop

Items in the sequence can be lists themselves

Values can be assigned to multiple loop variables

Dictionary method items() returns list of key-value pairs

for x, y in coordinates:
print "X=", x, "Y=", y

example.py

coordinates = [[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]]
for coord in coordinates:

print "X=", coord[0], "Y=", coord[1]

example.py

prices = {'Audi': 50, 'BMW' : 70, 'Lada' : 5}
for car, price in prices.items():

print "Price of", car, "is", price

example.py

break & continue

break out of the loop

continue with the next iteration of loop

x = 0
while True:

x += 1
cube = x**3
if cube > 100:

break

example.py

sum = 0
for p in prices:

sum += p
if sum > 100:

print "too much"
break

example.py

x = -5
cube = 0
while cube < 100:

x += 1
if x < 0:

continue
cube = x**3

example.py

sum = 0
for p in prices:

if p > 100:
continue

sum += p

example.py

exceptions

Exceptions allow the program to handle errors and other
”unusual” situations in a flexible and clean way

Basic concepts:

– Raising an exception. Exception can be raised by user code
or by system

– Handling an exception. Defines what to do when an
exception is raised, typically in user code.

There can be different exceptions and they can be
handled by different code

exceptions in Python

Exception is catched and handled by try - except
statements

User code can also raise an exception

my_list = [3, 4, 5]
try:

fourth = my_list[4]
except IndexError:

print "There is no fourth element"

example.py

if solver not in ['exact', 'jacobi', 'cg']:
raise RuntimeError(‘Unsupported solver’)

example.py

List comprehension

useful Python idiom for creating lists from existing ones
without explicit for loops

creates a new list by performing operations for the
elements of list:
newlist = [op(x) for x in oldlist]

a conditional statement can be included

>>> numbers = range(6)
>>> squares = [x**2 for x in numbers]
>>> squares
[0, 1, 4, 9, 16, 25]

>>> odd_squares = [x**2 for x in numbers if x % 2 == 1]
>>> odd_squares
[1, 9, 25]

FUNCTIONS AND MODULES

Functions and modules

defining functions

calling functions

importing modules

Functions

function is block of code that can be referenced from
other parts of the program

functions have arguments

functions can return values

Function definition

name of function is add

x and y are arguments

there can be any number of arguments and arguments
can be any Python objects

return value can be any Python object

def add(x, y):
result = x + y
return result

u = 3.0
v = 5.0
sum = add(u, v)

function.py

Keyword arguments

functions can also be called using keyword arguments

keyword arguments can improve readability of code

def sub(x, y):
result = x - y
return result

res1 = sub(3.0, 2.0)
res2 = sub(y=3.0, x=2.0)

function.py

Default arguments

it is possible to have default values for arguments

function can then be called with varying number of
arguments

def add(x, y=1.0):
result = x + y
return result

sum1 = add(0.0, 2.0)
sum2 = add(3.0)

function.py

Modifying function arguments

as Python variables are always references, function can
modify the objects that arguments refer to

side effects can be wanted or unwanted

>>> def switch(mylist):
... tmp = mylist[-1]
... mylist[-1] = mylist[0]
... mylist[0] = tmp
...
>>> l1 = [1,2,3,4,5]
>>> switch(l1)
>>> l1
[5, 2, 3, 4, 1]

Modules

modules are extensions that can be imported to Python
to provide additional functionality, e.g.

– new data structures and data types

– functions

Python standard library includes several modules

several third party modules

user defined modules

Importing modules

import statement

import math
x = math.exp(3.5)

import math as m
x = m.exp(3.5)

from math import exp, pi
x = exp(3.5) + pi

from math import *
x = exp(3.5) + sqrt(pi)

exp = 6.6
from math import *
x = exp + 3.2 # Won't work,

exp is now a function

example.py

Creating modules

it is possible to make imports from own modules

define a function in file mymodule.py

the function can now be imported in other .py files:

def incx(x):
return x+1

mymodule.py

import mymodule

y = mymodule.incx(1)

test.py

from mymodule import incx

y = incx(1)

test.py

Summary

functions help in reusing frequently used code blocks

functions can have default and keyword arguments

additional functionality can be imported from modules

FILE I/O AND TEXT PROCESSING

File I/O and text processing

working with files

reading and processing file contents

string formatting and writing to files

Opening and closing files

opening a file:
myfile = open(filename, mode)

– returns a handle to the file

>>> fp = open('example.txt', 'r')
>>>

Opening and closing files

file can opened for

– reading: mode='r'
(file has to exist)

– writing: mode='w'
(existing file is truncated)

– appending: mode='a'

closing a file

– myfile.close()

open file for reading
infile = open('input.dat', 'r')

open file for writing
outfile = open('output.dat', 'w')

open file for appending
appfile = open('output.dat', 'a')

close files
infile.close()

example.py

Reading from files

a single line can be read from a file with the readline() -
function

it is often convenient to iterate over all the lines in a file

>>> infile = open('inp', 'r')
>>> line = infile.readline()

>>> infile = open('inp', 'r')
>>> for line in infile:
... # process lines

Processing lines

generally, a line read from a file is just a string

a string can be split into a list of strings:

fields in a line can be assigned to variables and added to
e.g. lists or dictionaries

>>> infile = open('inp', 'r')
>>> for line in infile:
... line = line.split()

>>> for line in infile:
... line = line.split()
... x, y = float(line[1]), float(line[3])
... coords.append((x,y))

Processing lines

sometimes one wants to process only files containing
specific tags or substrings

other way to check for substrings:

– str.startswith(), str.endswith()

Python has also an extensive support for regular
expressions in re -module

>>> for line in infile:
... if “Force” in line:
... line = line.split()
... x, y, z = float(line[1]), float(line[2]), float(line[3])
... forces.append((x,y,z))

String formatting

Output is often wanted in certain format

The string object has .format method for placing
variables within string

Replacement fields surrounded by {} within the string

Possible to use also keywords:

>>> x, y = 1.6666, 2.33333
print "X is {0} and Y is {1}".format(x, y)
X is 1.6666 and Y is 2.3333
>>> print "Y is {1} and X is {0}".format(x, y)
Y is 2.3333 and X is 1.6666

>>> print "Y is {val_y} and X is {val_x}".format(val_x=x, val_y=y)
Y is 2.3333 and X is 1.6666

String formatting

Presentation of field can be specified with {i:[w][.p][t]}
w is optional minimum width
.p gives optional precision (=number of decimals)
t is the presentation type

some presentation types
s string (normally omitted)
d integer decimal
f floating point decimal
e floating point exponential

>>> print "X is {0:6.3f} and Y is {1:6.2f}".format(x, y)
X is 1.667 and Y is 2.33

Writing to a file

data can be written to a file with print statements

file objects have also a write() function

the write() does not automatically add a newline

file should be closed after writing is finished

outfile = open('out', 'w')
print >> outfile, "Header"
print >> outfile, "{0:6.3f} {0:6.3f}".format(x, y)

outfile = open('out', 'w')
outfile.write("Header\n")
outfile.write("{0:6.3f} {0:6.3f}".format(x, y))

output.py

Differences between Python 2.X and 3.X

print is a function in 3.X

in 3.X some dictionary methods return “views” instead of
lists.

– e.g. k = d.keys(); k.sort() does not work,
use k = sorted(d) instead

for more details, see
http://docs.python.org/release/3.1/whatsnew/3.0.html

print "The answer is", 2*2 # 2.X
print("The answer is", 2*2) # 3.X

print >>sys.stderr, "fatal error" # 2.X
print("fatal error", file=sys.stderr) # 3.X

differences.py

Summary

files are opened and closed with open() and close()

lines can be read by iterating over the file object

lines can be split into lists and check for existence of
specific substrings

string formatting operators can be used for obtaining
specific output

file output can be done with print or write()

Useful modules in Python standard library

math : “non-basic” mathematical operations

os : operating system services

glob : Unix-style pathname expansion

random : generate pseudorandom numbers

pickle : dump/load Python objects to/from file

time : timing information and conversions

xml.dom / xml.sax : XML parsing

+ many more
http://docs.python.org/library/

Summary

Python is dynamic programming language

flexible basic data structures

standard control structures

modular programs with functions and modules

simple and powerful test processing and file I/O

rich standard library

OBJECT ORIENTED PROGRAMMING WITH PYTHON

Object oriented programming with Python

Basic concepts

Classes in Python

Inheritance

Special methods

OOP concepts

OOP is programming paradigm

– data and functionality are wrapped inside of an “object”

– Objects provide methods which operate
on (the data of) the object

Encapsulation

– User accesses objects only through methods

– Organization of data inside the object is hidden from the
user

Examples

String as an object

– Data is the contents of string

– Methods could be lower/uppercasing the string

Two dimensional vector

– Data is the x and y components

– Method could be the norm of vector

OOP in Python

In Python everything is a object

Example: open function returns a file object

– data includes e.g. the name of the file

– methods of the file object referred by f are f.read(),
f.readlines(), f.close(), ...

Also lists and dictionaries are objects (with some special
syntax)

>>> f = open('foo', 'w')
>>> f.name
'foo'

OOP concepts

class

– defines the object, i.e. the data and the methods
belonging to the object

– there is only single definition for given object type

instance

– there can be several instances of the object

– each instance can have different data, but the methods are
the same

Class definition in Python

When defining class methods in Python the first argument to
method is always self

self refers to the particular instance of the class

self is not included when calling the class method

Data of the particular instance is handled with self

class Student:
def set_name(self, name):

self.name = name

def say_hello(self):
print “Hello, my name is ”, self.name

students.py

Class definition in Python

class Student:
def set_name(self, name):

self.name = name
def say_hello(self):

print “Hello, my name is ”, self.name

creating an instance of student
stu = Student()
calling a method of class
stu.set_name(‘Jussi’)
creating another instance of student
stu2 = Student()
stu2.set_name(‘Martti’)
the two instances contain different data
stu.say_hello()
stu2.say_hello()

students.py

Passing data to object

Data can be passed to an object at the point of creation by
defining a special method __init__

__init__ is always called when creating the instance

In Python, one can also refer directly to data attributes
>>> from students import Student
>>> stu1 = Student(‘Jussi’)
>>> stu2 = Student(‘Martti’)
>>> print stu1.name, stu2.name
’Jussi’, ’Martti’

class Student:
def __init__(self, name):

self.name = name
...

students.py

Python classes as data containers

classes can be used for C-struct or Fortran-Type like data
structures

instances can be used as items in e.g. lists

class Student:
def __init__(self, name, age):

self.name = name
self.age = age

students.py

>>> stu1 = Student('Jussi', 27)
>>> stu2 = Student('Martti', 25)
>>> student_list = [stu1, stu2]
>>> print student_list[1].age

Encapsulation in Python

Generally, OOP favours separation of internal data
structures and implementation from the interface

In some programming languages attributes and methods
can be defined to be accessible only from other methods
of the object.

In Python, everything is public. Leading underscore in a
method name can be used to suggest “privacy” for the
user

Inheritance

New classes can be derived from existing ones by
inheritance

The derived class “inherits” the attributes and methods
of parent

The derived class can define new methods

The derived class can override existing methods

Inheriting classes in Python

class Student:
...

class PhDStudent(Student):
override __init__ but use __init__ of base class!
def __init__(self, name, age, thesis_project):

self.thesis = thesis_project
Student.__init__(self, name, age)

define a new method
def get_thesis_project(self):

return self.thesis

stu = PhDStudent(‘Pekka’, 20, ‘Theory of everything’)
use a method from the base class
stu.say_hello()
use a new method
proj = stu.get_thesis_project()

inherit.py

Special methods

class can define methods with special names to
implement operations by special syntax (operator
overloading)

Examples

– __add__, __sub__, __mul__, __div__

– for arithmetic operations (+, -, *, /)

– __cmp__ for comparisons, e.g. sorting

– __setitem__, __getitem__ for list/dictionary like syntax
using []

Special methods

class Vector:
def __init__(self, x, y):

self.x = x
self.y = y

def __add__(self, other):
new_x = self.x + other.x
new_y = self.y + other.y
return Vector(new_x, new_y)

v1 = Vector(2, 4)
v2 = vector(-3, 6)
v3 = v1 + v2

special.py

class Student:
...
def __cmp__(self, other):

return cmp(self.name,
other.name)

students = [Student('Jussi', 27),
Student('Aaron', 29)]

students.sort()

special.py

Summary

Objects contain both data and functionality

class is the definition of the object

instance is a particular realization of object

class can be inherited from other class

Python provides a comprehensive support for object
oriented programming (“Everything is an object”)

