
import sys, os
try:

from Bio.PDB import PDBParser
__biopython_installed__ = True

except ImportError:
__biopython_installed__ = False

__default_bfactor__ = 0.0     # default B-factor
__default_occupancy__ = 1.0   # default occupancy level
__default_segid__ = ''        # empty segment ID

class EOF(Exception):
def __init__(self): pass

class FileCrawler:
"""
Crawl through a file reading back and forth without loading
anything to memory.
"""
def __init__(self, filename):

try:
self.__fp__ = open(filename)

except IOError:
raise ValueError, "Couldn't open file '%s' for reading." % filename

self.tell = self.__fp__.tell
self.seek = self.__fp__.seek

def prevline(self):
try:

self.prev()

Exercises for Python in HPC

Jussi Enkovaara
Harri Hämäläinen

January 27-29, 2015
PRACE Advanced Training Centre
CSC – IT Center for Science Ltd, Finland



All material (C) 2015 by the authors.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 
Unported License, http://creativecommons.org/licenses/by-nc-sa/3.0/



EXERCISE ASSIGNMENTS





Practicalities

Computing servers
We will use either the classroom computers or CSC’s computing servers (taito, sisu) for the 
exercises. To log in to one of the computing servers (e.g. Taito), use the provided tnrgXX
username and password, e.g.

% ssh –X trng10@vtaito.csc.fi 

For editing files you can use e.g. nano editor:
nano example.py

Also other popular editors (vim, emacs) are available.

Python environment at CSC
Python is available on all computing servers (taito, sisu). Use the module command to load it for 
use: 

% module load python (Sisu) or module load python-env (Taito)

The default version is 2.6 and has the following modules available: 

• Numpy

• Scipy

• Matplotlib

• Mpi4py

The classroom computers have a similar environment.

General exercise instructions
Simple exercises can be carried out directly in the interactive interpreter. For more complex ones 
it is recommended to write the program into a .py file. Still, it is useful to keep an interactive 
interpreter open for testing!

Some exercises contain references to functions/modules which are not addressed in actual 
lectures. In these cases Python's interactive help (and google) are useful, e.g.

>>> help(numpy)

It is not necessary to complete all the exercises, instead you may leave some for further study at 
home. Also, some Bonus exercises are provided in the end of exercise sheet.





Exercise 1: Playing with the interactive 
interpreter

1. Start the interpreter by typing “python” on the command 
prompt

2. Try to execute some simple statements and expressions e.g.
print “Hello! ”
1j**2
1 / 2
my_tuple = (1, 2, 3)
my_tuple[0] = 1
2.3**4.5

3. Many Python modules and functions provide interactive 
help with a help command. Try to execute the following 
commands
import math
help(math)
help(math.sin)



Exercise 2: Python syntax and code structure:

1. Are the following valid statements?
names = ['Antti', 'Jussi']
x2y = 22
3time = 33
my-name = “Jussi”
next = my-name
open = 13
in = “first”

2. Are the following pieces of code valid Python?

numbers = [4, 5, 6, 9, 11]
sum = 0
for n in numbers:

sum += n
print "Sum is now", sum 

ex2_1.py

x = 11
test(x)

def test(a):
if a < 0:
print "negative number"

ex2_2.py



Exercise 3: Working with lists and dictionaries

1. Create a list with the following fruit names: 
“pineapple”, “strawberry”,  “banana”

Append “orange” to the list. List objects have a sort()
function, use that for sorting the list alphabetically (e.g. 
fruits.sort() ). What is now the first item of the list?

Remove the first item from the list.

2. Create a list of integers up to 10 using the range() function.

Use slicing to extract first all  the even numbers and then all 
the odd numbers. 

Next, extract the last three odd integers of the original list.

Combine the even and odd integer lists to reproduce the 
original list of all integers up to 10.

3. Create a two dimensional list of (x,y) value pairs, i.e. 
arbitrary long list whose elements are two element lists.

4. Create a dictionary whose keys are the fruits “pineapple”, 
“strawberry”, and “banana”. As values use numbers 
representing e.g. prices.

Add “orange” to the dictionary and then remove “banana” 
from the dictionary. Investigate the contents of dictionary 
and pay attention to the order of key-value pairs.



Exercise 4: Control structures

1. Write a for loop which iterates  over the list of fruit names 
and prints out the name.

Write a for loop which determines the squares of the odd 
integers up to 10. Use the range() function

Write a for loop which sums up to the prices of the fruits of 
the Exercise 3.4.

2. Fibonacci numbers are a sequence of integers defined by 
the recurrence relation

F[n] = F[n-1] + F[n-2]
with the initial values F[0]=0, F[1]=1. Create a list of 
Fibonacci numbers F[n] < 100 using a while loop.

3. Write a control structure which checks whether an integer is 
negative, zero, or belongs to the prime numbers 3,5,7,11,17 
and perform e.g. corresponding print statement.

Keyword in can be used for checking whether a value 
belongs to a list:

>>> 2 in [1,2,3,4]
True



4. Go back to the two dimensional list of (x,y) pairs of Exercise 
3.3. Sort the list according to y values. (Hint: you may need 
to create a temporary list). 

Create a new list containing only the sorted y values.

Next, create a new list consisting of  sums of the (x,y) pairs

Finally, create a new list consisting of  sums of the (x,y) pairs 
where both x and y are positive.

5. Take the  fruit price dictionary of Ex. 3.4. Try to access  fruit 
that is not in the dictionary, e.g. print fruits[’kiwi’]. What 
exception do you get?

Try to catch the exception and  handle it e.g. with your own 
print statement. Hint: for this exercise it is  better to use a 
.py file and not the interactive interpreter.

6. Function raw_input() can be used for obtaining input from
terminal. Write an infinite while loop which asks user for 
input and prints it out. Quit the loop when user enters q.

Hit CTRL-D when asked for input, what happens? Try to 
handle the corresponding exception.



Exercise 5: Modules and functions

1. Standard Python module sys has list argv which contains the 
command line arguments to he script.

Investigate the content of sys.argv with different command 
line arguments, e.g.
“python ex5_1.py 2.2”, “python ex5_1.py 1.2  foo”, …

2. Write a function that calculates the area of a circle based on 
the radius given as command line argument.

Note that sys.argv contains the arguments as strings, use 
explicit type conversion with float() in order to obtain 
floating point numbers.

3. Write a function which calculates the arithmetic mean from 
a list of numbers.

4. Write a function that converts a polar coordinate 
representation (r, φ) into cartesian representation (x,y). 
Write also a function which does the reverse transformation. 
The important formulas are:
x = r cos(φ)    y = r sin (φ)       φ = atan(y/x)       r2 = x2 + y2

Use the math module.

Implement the coordinate transformation functions in their 
own module polar.py and use them from a main script.

import sys
print sys.argv

ex5_1.py



Exercise 6: Working with files

1. The file “exercise6_1.dat” contains list of (x, y) value pairs. 
Read the values into two lists  x and y.

2. The file “exercise6_2.txt” contains output from a simulation 
run where the geometry of CO molecule is optimized. One 
part of the output is the free energy during geometry 
optimization. Free energies are in the lines of type:

Free Energy:    -16.47537

Read the free energies from the file and print out how much 
each energy differs from the final value.

3. The file “CH4.pdb” contains the coordinates of methane 
molecule in a PDB format. The file consists of header 
followed by record lines which contain the following fields: 

record name(=ATOM), atom serial number, atom name, 
x-,y-,z-coordinates, occupancy and temperature factor. 

Convert the file into XYZ format: first line contains the 
number of atoms, second line is title string, and the 
following lines contain the atomic symbols and x-, y-, z-
coordinates, all separated by white space. Write the  
coordinates with 6 decimals.



Exercise 7: Steering a simulation with Python

1. Write a Python program which does loop over different 
values of x (use e.g. a self-specified list). At each iteration, 
write an “input file” of the form (here x=4.5):

2. As a “simulation program” use bash and execute the input 
file at each iteration with the help of os module:

3. Read (x,y) pairs from the “output file” output.dat and save 
them for later processing.

#!/bin/bash
x=4.500000
res=`echo "$x^2" | bc`
echo "Power 2 of $x is $res"

input.dat

>>> os.system(‘bash input.dat > output.dat')



Exercise 8: Object oriented programming and 
classes

1. Define a class for storing information about an element. 
Store the following information:

name, symbol, atomic number, atomic weight

Use e.g. the following data for creating instances of a few 
elements:

Store the instances as values of dictionary whose keys are 
the element names.

2. Define a class Circle that requires the radius as input data 
when creating an instance. Define methods for obtaining the 
area and circumference of the circle.

3. Define a class Sphere, inheriting from Circle. Define methods 
for obtaining the volume and area of the sphere.

Raise an exception if one tries  to obtain circumference of a 
sphere.

Element symbol atomic number atomic weight

Hydrogen H 1 1.01

Iron Fe 26 55.85

Silver Ag 47 107.87



Exercise 9: Simple NumPy usage

1. Investigate the behavior of the statements below by looking 
at the values of the arrays a and b after assignments:
a = np.arange(5)
b = a
b[2] = -1
b = a[:]
b[1] = -1
b = a.copy()
b[0] = -1 

2. Generate a 1D NumPy array containing numbers from -2 to 2 
in increments of 0.2. Use optional start and step arguments
of  np.arange() function.

Generate another 1D NumPy array containing 11 equally
spaced values between 0.5 and 1.5. Extract every second
element of the array

3. Create a 4x4 array with arbitrary values.

Extract every element from the second row

Extract every element from the third column

Assign a value of 0.21 to upper left 2x2 subarray.



4. Read an 2D array from the file exercise9_4.dat. You can use 
the function np.loadtxt():

data = np.loadtxt(‘exercise9_4.dat’)

Split the array into four subblocks (upper left, upper right, 
lower left, lower right) using np.split(). Construct then the 
full array again with np.concatenate(). You can visualize the 
various arrays with matplotlib’s imshow(), i.e.

import pylab
pylab.imshow(data)



Exercise 10: Numerical computations with 
NumPy

1. Derivatives can be calculated numerically with the finite-
difference method as:

Construct 1D Numpy array containing the values of xi in the 
interval [0,π/2] with spacing Δx=0.1. Evaluate numerically 
the derivative of sin in this interval (excluding the end 
points) using the above formula. Try to avoid for loops. 
Compare the result to function cos in the same interval.

2. A simple method for evaluating integrals numerically is by 
the middle Riemann sum

with x’i = (xi + xi-1)/2. Use the same interval as in the first 
exercise and investigate how much the Riemann sum of sin
differs from 1.0. Avoid for loops. Investigate also how the 
results changes with the choice of Δx.



Exercise 11: NumPy tools

1. File "exercise11_1.dat" contains a list of (x,y) value pairs. 
Read the data with numpy.loadtxt() and fit a second order 
polynomial to data using numpy.polyfit().

2. Generate a 10x10 array whose elements are uniformly 
distributed random numbers using numpy.random module.

Calculate the mean and standard deviation of the array 
using numpy.mean() and numpy.std().

Choose some other random distribution and calculate its 
mean and standard deviation.

3. Construct two symmetric 2x2 matrices A and B.
(hint: a symmetric matrix can be constructed easily as Asym = A + AT)

Calculate the matrix product C=A*B using numpy.dot().

Calculate the eigenvalues of matrix C with 
numpy.linalg.eigvals().



Exercise 12: Simple plotting

1. Plot to the same graph sin and cos functions in the interval 
[-π/2, -π/2]. Use Θ as x-label and insert also legends. Save 
the figure in .png format.

2. The file “csc_usage.dat” contains the usage of CSC servers 
by different disciplines. Plot a pie chart about the resource 
usage.

3. The file “contour_data.dat” contains cross section of 
electron density of benzene molecule as a 2D data. Make a 
contour plot of the data. Try both contour lines and filled 
contours (matplotlib functions contour and contourf). Use 
numpy.loadtxt for reading the data.



Exercise 13: Using SciPy

1. The integrate module (scipy.integrate) contains tools for 
numerical integration. Use the module for evaluating the 
integrals

and

Try to give the function both as samples (use simps) and as a 
function object (use quad).

2. Try to find the minimum of the function

using the scipy.optimize module. Try e.g. downhill simplex 
algorithm (fmin) and simulated annealing (anneal) with 
different initial guesses (try first 4 and -4).



Exercise 14: Extending Python with C

1. Compile the ”Hello World” extension contained in the file
”hello.c” into a shared library ”hello.so”. (Use the provided
script ”include_paths.py” for finding out proper –I options)

Import the extension in Python and execute the world
function.

2. Create a C-extension for evaluating second derivative with 
finite differences. Input is provided by one dimensional 
NumPy array.
The core of the C-extension is provided in the file fidi.c

Compare the performance of pure NumPy version (fidi.py or 
your implementation in the solution of Poisson equation).



Exercise 15: Parallel computing with Python

1. Create a parallel Python program which prints out the 
number of processes and rank of each process

2. Send a dictionary from one process to another and print out 
part of the contents in the receiving process

3. Send a NumPy array from one process to another using the 
uppercase Send/Receive methods





BONUS EXERCISES



Exercise B1: Working with lists and dictionaries

1. Create a new “fruits” dictionary where the values are also 
dictionaries containing key-value pairs for color and weight, 
e.g.

Change the color of “apple” from green to red.

2. It is often useful idiom to create empty lists or dictionaries 
and add contents little by little.

Create first an empty dictionary for a mid-term grades of 
students. Then, add a key-value pairs where the keys are 
student names and the values are empty lists. Finally, add 
values to the lists and investigate the contents of the 
dictionary.

>>> fruits['apple'] = {'color':'green', 
'weight': 120}



Exercise B2: More on control structures

1. List comprehension is useful Python idiom which can be 
sometimes used instead of explicit for loops

Familiarize yourself with list comprehensions e.g. at
http://docs.python.org/tutorial/datastructures.html#list-
comprehensions

Do Exercise 4.4 using list comprehension instead of explicit 
for loops.



Exercise B3: Solving Poisson equation with 
Python

1. Poisson equation in one dimension is

where φ is the potential and ρ is the source. The equation 
can be discretized on uniform  grid, and the second 
derivative can be approximated by the finite differences as

where h is the spacing between grid points.

Using the finite difference representation, the Poisson 
equation can be written as

The potential can be calculated iteratively by making an 
initial guess and then solving the above equation for φ(xi) 
repeatedly until the differences between two successive 
iterations are small (this is the so called Jacobi method).

Use

as a source together with boundary conditions φ(0)=0 and 
φ(1)=0 and solve the Poisson equation in the interval [0,1].



Exercise B3: Solving Poisson equation with 
Python

Compare the numerical solution to the analytic solution:

Note! In reality, pure Python is not the best solution for this 
kind of problems.



Exercise B4: Working with files

1. The file “exercise_b4_1.txt” contains a short piece of text. 
Determine the frequency of words in the file, i.e. how many 
times each word appears. Print out the ten most frequent 
words

Read the file line by line and use the split() function for 
separating a line into words.

The frequencies are stored most conveniently into a 
dictionary. The dictionary method setdefault can be useful 
here.  For sorting, convert the dictionary into a list of (key, 
value) pairs with the items() function:

>>> words = {"foo" : 1, "bar" : 2}
>>> words.items()
[('foo', 1), ('bar', 2)]



Exercise B5: Object-oriented programming with 
Python

1. Define a class for three dimensional (x,y,z) vector. use  
operator overloading for implementing element-wise 
addition and multiplication with  + and * operators.

Define functions calculating dot and cross products of two 
vectors

2. The file “solvents.dat” contains some information about 
different solvents. Define a class for storing the information. 
Define the following methods for the class:

read - given a file object, reads a single line from the file and 
parses the information for solvent

mass - given volume, return the mass of solvent

Construct a list of solvents, sort it according to density and 
print out the names.



Exercise B6: Numerical computations with 
NumPy

1. Bonus exercise B3 introduced the 1D Poisson equation. 
Solve the exercise B3 using NumPy instead of pure Python 
and do not use any for loops. Note: you can work on this
exercise even if Ex. B3 was skipped.

2. The Poisson equation of can be solved more efficiently with 
the conjugate gradient method, which is a general method 
for the solution of linear systems of type:

Ax = b.

Interpret the Poisson equation as a linear system and write a 
function which evaluates the second order derivative (i.e. 
the matrix – vector product Ax). You can assume that the 
boundary values are zero.

Solve the Poisson equation with the conjugate gradient 
method and compare its performance to the Jacobi method. 

See next page for the pseudo-code for the conjugate 
gradient method.



Conjugate gradient algorithm



Exercise B7: Game of Life

1. Game of life is a cellular automaton devised by John Conway 
in 70's: 

http://en.wikipedia.org/wiki/Conway's_Game_of_Life.

The game consists of two dimensional orthogonal grid of 
cells. Cells are in two possible states, alive or dead. Each cell 
interacts with its eight neighbours, and at each time step the 
following transitions occur:

- Any live cell with fewer than two live neighbours dies, as if 
caused by underpopulation

- Any live cell with more than three live neighbours dies, as if 
by overcrowding

- Any live cell with two or three live neighbours lives on to 
the next generation

- Any dead cell with exactly three live neighbours becomes a 
live cell

The initial pattern constitutes the seed of the system, and 
the system is left to evolve according to rules. Deads and 
births happen simultaneously.



Exercise B7: Game of Life (cont.)

Implement the Game of Life using Numpy, and visualize the 
evolution with Matplotlib (e.g. imshow). Try first 32x32 
square grid and cross-shaped initial pattern:

Try also other grids and initial patterns (e.g. random 
pattern). Try to avoid for loops.



Exercise B8: Advanced SciPy and matplotlib

1. Solve the Poisson equation using Scipy. Define a sparse 
linear operator which evaluates matrix–vector product Ax
and  e.g. Scipy's conjugate gradient solver.

2. The file “atomization_energies.dat” contains atomization 
energies for a set of molecules, calculated with different 
approximations. Make a plot where the molecules are in x-
axis and different energies in the y-axis. Use the molecule 
names as tick marks for the x-axis

3. Game of Life can be interpreted also as an convolution 
problem. Look for the convolution formulation (e.g. with 
Google) and use SciPy for solving the Game of Life.

No solution provided! The exercise should be possible to 
solve with ~10 lines of code.



Exercise B9: Parallel computing with Python

1. Try to parallelize Game of Life with mpi4py by distributing 
the grid along one dimension to different processors.


