
PARALLEL PROGRAMMING WITH PYTHON USING 
MPI4PY



Outline

Brief introduction to message passing interface (MPI)

Python interface to MPI – mpi4py

Performance considerations



Message passing interface

MPI is an application programming interface (API) for communication 
between separate processes

The most widely used approach for distributed parallel computing

MPI programs are portable and scalable

– the same program can run on different types of computers, from PC's 
to supercomputers

MPI is flexible and comprehensive

– large (over 120 procedures)

– concise (often only 6 procedures are needed)

MPI standard defines C and Fortran interfaces

mpi4py provides (an unofficial) Python interface



Execution model in MPI

Parallel program is launched as set of independent, identical processes

All the processes contain the same program code and instructions

Processes can reside in different nodes or even in different computers

The way to launch parallel program is implementation dependent

– mpirun, mpiexec, aprun, poe, ...

When using Python, one launches N Python interpreters

– mpirun -np 32 python parallel_script.py

Parallel program

Process 1

...

Process 2

Process N



MPI Concepts

rank: id number given to process

– it is possible to query for rank

– processes can perform different tasks 
based on their rank

if (rank == 0):
# do something

elif (rank == 1):
# do something else

else:
# all other processes do something different

mpi.py



MPI Concepts

Communicator: group containing process

– in mpi4py the basic object whose
methods are called

– MPI_COMM_WORLD contains all the 
process (MPI.COMM_WORLD in mpi4py)



Data model

All variables and data structures are local to the process

Processes can exchange data by sending and receiving 
messages

Process 1 (rank 0) 

a = 1.0

b = 2.0

Process N (rank N-1) 

a = 6.0

b = 5.0

Process 2 (rank 1) 

a = -1.0

b = -2.0

MPI messages

...



Using mpi4py

Basic methods of communicator object

– Get_size()
Number of processes in communicator

– Get_rank()
rank of this process

from mpi4py import MPI

comm = MPI.COMM_WORLD  # communicator object containing all processes
size = comm.Get_size()
rank = comm.Get_rank()

print "I am rank %d in group of %d processes" % (rank, size)

mpi.py



Sending and receiving data

Sending and receiving a dictionary

from mpi4py import MPI

comm = MPI.COMM_WORLD  # communicator object containing all processes
rank = comm.Get_rank()

if rank == 0:
data = {'a': 7, 'b': 3.14}
comm.send(data, dest=1, tag=11)

elif rank == 1:
data = comm.recv(source=0, tag=11)

mpi.py



Sending and receiving data

Arbitrary Python objects can be communicated with
the send and receive methods of communicator

send(data, dest, tag)

– data Python object to send

– dest destination rank

– tag id given to the message

recv(source, tag)

– source source rank

– tag id given to the message

– data is provided as return value

Destination and source ranks as well as tags have to match



Communicating NumPy arrays

Arbitrary Python objects are converted to byte streams when 
sending

Byte stream is converted back to Python object when receiving

Conversions give overhead to communication

(Contiguous) NumPy arrays can be communicated with very little 
overhead with upper case methods:

Send(data, dest, tag)

Recv(data, source, tag)

– Note the difference in receiving: the data array has to exist in 
the time of call



Communicating NumPy arrays

Sending and receiving a NumPy array

Note the difference between upper/lower case!

– send/recv: general Python objects, slow

– Send/Recv: continuous arrays, fast

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
data = numpy.arange(100, dtype=numpy.float)
comm.Send(data, dest=1, tag=13)

elif rank == 1:
data = numpy.empty(100, dtype=numpy.float)
comm.Recv(data, source=0, tag=13)

mpi.py



mpi4py performance

Ping-pong test



Summary

mpi4py provides Python interface to MPI

MPI calls via communicator object

Possible to communicate arbitrary Python objects

NumPy arrays can be communicated with nearly same 
speed as from C/Fortran


