csc

‘ (
‘ IIUH)H)](H]]]()]:
1010101011110101070

)10
I[»Immn

)1 ¢

)L)\ AR

@, Ge

®) INg starteqda wi

13:00-13:45
13:45-14:30
14:30-14:45
14:45-15:30
15:30-16:30
16:30-17:00

Introduction to OpenMP
Exercises

Coffee break

Thread synchronization
Exercises

Wrap up and further topics

BASIC CONCEPTS: PROCESS AND THREADS

o
>
o
>
o
>
o

Parallel processes

Process

W

Independent execution
units

Have their own state
information and own
address spaces

Serial

region

Serial
region

Serial
region

Parallel region Parallel region

Thread

v A single process may
contain multiple threads

v Have their own state
information, but share the
address space of the
process

o
>
o
>
o
>
o

Parallel processes

Process

v Long-lived: spawned when
parallel program started,

killed when program is
finished

v Explicit communication
between processes

Serial

region

Serial
region

Serial
region

Parallel region Parallel region

Thread

@ Short-lived: created when
entering a parallel region,
destroyed (joined) when
region ends

v Communication through
shared memory

WHAT IS OPENMP?

v A collection of compiler directives and library routines

that can be used for multi-threaded shared memory
parallelization

@ Fortran 77/9X/03 and C/C++ are supported

v Most recent version of the standard is 4.0 (July 2013)
— Includes support for attached devices

— Includes thread affinity support

— Not all compilers do not yet support the newest standard

v OpenMP parallelized program can be run on your many-
core workstation or on a node of a cluster

v Enables one to parallelize one part of the program at a
time
— Get some speedup with a limited investment in time
— Efficient and well scaling code still requires effort
e Serial and OpenMP versions can easily coexist

v Hybrid programming

v Compiler directives, i.e., language extensions for shared
memory parallelization

— Syntax: directive, construct, clauses
C/C++: #pragma omp parallel shared(data)
Fortran: !$omp parallel shared(data)

@ Runtime library routines (Intel: libiomp5, GNU: libgomp)
— Conditional compilation to build serial version

v Environment variables
— Specify the number of threads, thread affinity, etc.

v Sentinels precede each OpenMP directive
— C/C++: #pragma omp
— Fortran free form: ! $omp
v Old Fortran programs may still use fixed form formatting
— Sentinel: c$omp
— Space in sixth column begins directive
— No space depicts continuation line

v Compilers that support OpenMP usually require an
option that enables the feature

— PGl: -mp[=nonuma,align,allcores,bind]
— Cray: -h omp (on by default, -h noomp disables)
— GNU: -fopenmp
— Intel: -openmp, -gqopenmp
v Without these options a serial version is compiled!

v Conditional compilation with _OPENMP macro:
#ifdef _OPENMP
Thread specific code
#else
Serial code
#endif
@ Fortran free form guard sentinels: !'$
— Fortran fixed form guard sentinels: 1$ *$ c$

program hello
use omp_lib
integer :: omp_rank

I$omp parallel private(omp_rank)
omp_rank = omp_get thread_num()
print *, 'Hello world! by &

thread ', omp_rank
I$omp end parallel
end program hello

> ftn -h omp omp_hello.f90 -o omp
> aprun -n 1 -d 4 -e OMP_NUM_THREADS=4
./omp

Hello world! by thread
Hello world! by thread
Hello world! by thread
Hello world! by thread

R WNO

#include <stdio.h>
#include <omp.h>
int main(int argc, char argv[]){
int omp_rank;
#pragma omp parallel private(omp_rank)
{
omp_rank = omp_get thread num();
printf("Hello world! by
thread %d", omp_rank);

> cc -h omp omp_hello.c -o omp
> aprun -n 1 -d 4 -e OMP_NUM_THREADS=4
./omp

Hello world! by thread
Hello world! by thread
Hello world! by thread
Hello world! by thread

RO WN

PARALLEL REGIONS AND DATA SHARING

v Defines a parallel region

C/C++:
#pragma omp parallel [clauses]
Fortran: I$omp parallel
I$omp parallel [clauses] | l l l
— Prior to it only one thread, master
1$omp end parallel
— Creates a team of threads: master+slave
threads l

— At end of the block is a barrier and all
shared data is synchronized

v Because of the shared address space threads can
communicate using shared variables
v Threads often need some private work space together
with shared variables
— For example the index variable of a loop

v Visibility of different variables is defined using data-
sharing clauses in the parallel region definition

v Most variables are shared by default

v Global variables are shared among threads
— C: static variables, file scope variables
— Fortran: SAVE and MODULE variables, COMMON blocks
— Both: dynamically allocated variables

v Private by default:
— Stack variables of functions called from parallel region
— Automatic variables within a block

Default storage

int main(void) { V°idd335§213§i§13§.*var) {
/V int B[Z]; ; : > :
#pragma omp parallel {,——b-statlc int status;
do_things(B);
return 0; }

} o

/ Private copy on each thread
Shared between threads

private(list)
— Private variables are stored in the private stack of each
thread
— Undefined initial value
— Undefined value after parallel region
firstprivate(list)
— Same as private variable, but with an initial value that is

the same as the original objects defined outside the
parallel region

omp parallel: data-sharing clauses

shared(list)
— All threads can write to, and read from
a shared variable

— Variables are shared by default

Race condition =
a thread accesses a

variable while another
writes into it

default(private/shared/none)

— Sets default for variables to be shared, private or not
defined

— In C/C++ default(private) is not allowed

— default(none) can be useful for debugging as each
variable has to be defined manually

WORK SHARING CONSTRUCTS

v Parallel region creates an “Single Program Multiple Data”
instance where each thread executes the same code

@ How can one split the work between the threads of a
parallel region?
— Loop construct
— Single/Master construct
— Sections
— Task construct (in OpenMP 3.0 and above)

v Directive instructing compiler to share the work of a loop
C/C++: #pragma omp for [clauses]
Fortran: !$omp do [clauses]

— The construct must followed by a loop construct. To be
active it must be inside a parallel region

— Combined construct with parallel:
#pragma omp parallel for / $omp parallel do

v Loop index is private by default
@ Work sharing can be controlled with the schedule -clause

@ For loops in C/C++ are very flexible, but loop construct
can only be used on limited set of loops of a form

for(init ; var comp a ; incr)
where

— init initializes the loop variable var using an
Integer expression

— comp is one of €, <=, >, >=and a is an integer expression

— incr increments var by an integer amount standard
operator

csc

‘ 010
H()H)H)]()lll]()l()
1010101011110101070

)10
I[»Immn

)1 ¢

)\)\ AR

REDUCTIONS

@ Race conditions take place when multiple threads read
and write a variable simultaneously, for example

asum = 0.0d0e
I$OMP PARALLEL DO SHARED(X,y,n,asum) PRIVATE(i)
doi=1, n
asum = asum + x(i)*y(i)
end do
1$OMP END PARALLEL DO

@ Random results depending on the order the
threads access asum

@ We need some mechanism to control the access

v Summing elements of array is an example of reduction

Operatlon Computed by Computed by
thread 0 thread 1

{ } / Combined result

2

N‘Z

v OpenMP provides support for common reductions within
parallel regions and loops with the reduction -clause

reduction(operator:list)
— Performs reduction on the (scalar) variables in list

— Private reduction variable is created for each thread’s
partial result

— Private reduction variable is initialized to operator’s initial
value

— After parallel region the reduction operation is applied to
private variables and result is aggregated to the shared
variable

Reduction operators

+ 0 AND. true.
i 0 .OR. false.
* 1
.NEGV. false.
1EOR :
& ~0 IOR. 0
| 0 All bits on
A 0 true.
&& 1 Mmax pos.

min neg.

Race condition example revisited

1$OMP PARALLEL DO SHARED(x,y,n) PRIVATE(i) REDUCTION(+:asum)
doi=1,n
asum = asum + x(i)*y(i)
end do
1$OMP END PARALLEL DO

EXECUTION CONTROLS AND SYNCHRONIZATION

v Sometimes a part of parallel region should be executed
only by the master thread or by a single thread at time

— |10, initializations, updating global values, etc.

— Remember the synchronization!

v OpenMP provides clauses for controlling the execution of
code blocks

barrier
— When a thread reaches a barrier it only continues after all the
threads in the same thread team have reached it

= Each barrier must be encountered by all threads in a team, or
none at all

= The sequence of work-sharing regions and barrier regions
encountered must be same for all threads in team

— Implicit barrier at the end of: do, parallel, sections,
single, workshare

master

— Specifies a region that should be executed only by the
master thread

— Note that there is no implicit barrier at end
single
— Specifies that a regions should be executed only by a single
(arbitrary) thread
— Other threads wait (implicit barrier)

critical[(name)]
— A section that is executed by only one thread at a time
— Optional name specifies global identifier for critical section
— Unnamed critical sections are treated as the same section

flush[(name)]

— Synchronizes the memory of all threads

— Implicit flush at
= All explicit and implicit barriers
= Entry to / exit from critical section and lock routines

atomic

— Strictly limited construct to update a single value, can not
be applied to code blocks

— Only guarantees atomic update, does not protect function
calls

— Can be faster on hardware platforms that support atomic
updates

Example: reduction using critical section

I$OMP PARALLEL SHARED(X,y,n,asum) PRIVATE(i, psum)
psum = 0.0d
1$0MP DO
doi=1,n
psum = psum + x(i)*y(1i)
end do
1$OMP END DO
I$OMP CRITICAL(dosum)
asum = asum + psum
1$OMP END CRITICAL(dosum)
1$OMP END PARALLEL DO

int global_max = O;
int local max = ©;
#pragma omp parallel firstprivate(local max) private(i)
{
#pragma omp for

for (i=0; i < 100; i++) {

local _max = MAX(local _max, a[i]);

}
#pragma omp critical(domax)

global max = MAX(local max, global max);

}

OPENMP RUNTIME LIBRARY AND ENVIRONMENT
VARIABLES

v OpenMP provides several means to interact with the
execution environment. These operations include

— Setting the number of threads for parallel regions

— Requesting the number of CPUs

— Changing the default scheduling for work-sharing clauses
— etc.

v Improves portability of OpenMP programs between
different architectures (hnumber of CPUs, etc.)

v OpenMP standard defines a set of environment variables
that all implementations have to support

v The environment variables are set before the program
execution and they are read during program start-up

— Changing them during the execution has no effect
¢ We have already used OMP_NUM_THREADS

@ Runtime functions can be used either to read the settings
or to set (override) the values

@ Function definitions are in
— C/C++ header file omp . h

— omp_1ib Fortran module (omp_1ib.h header in some
implementations)

v Two useful routines for distributing work load:

— omp_get _num_threads()
— omp_get _thread num()

Parallelizing a loop with library functions

#pragma omp parallel private(i,nthrds,thr_id)
{
nthrds = omp_get _num_threads();

thrd_id = omp_get_thrd_num();
for (i=thrd_id; i<n; i+=nthrds) {

"
}

FURTHER TOPICS

@ Maximize parallel regions

— Reduce fork-join overhead, e.g. combine multiple parallel
loops into one large parallel region

— Potential for better cache re-usage
v Parallelize outermost loops if possible

— Move PARALLEL DO construct outside of inner loops
@ Reduce access to shared data

— Possibly make small arrays private

v Other work-sharing clauses
— task
— sections, workshare, simd (OpenMP 4.0)
— teams, distribute (both OpenMP 4.0)

v More advanced ways to reduce synchronization
overhead with nowait and flush

¢ threadprivate, copyin, cancel
v Support for attached devices with OpenMP 4.0 target

@ OpenMP is an API for thread-based parallelization
— Compiler directives, runtime API, environment variables

— Relatively easy to get started but specially efficient and/or
real-world parallelization non-trivial

v Features touched in this intro
— Parallel regions, data-sharing attributes
— Work-sharing and scheduling directives

OpenMP summary

Work sharing — Parallel do/for

Reduction
Threads

Data visibility

Synchronization Critical

section

Single/

Private Shared
Master

Web resources

v OpenMP homepage

http://openmp.org/
v Good online tutorial:
https://computing.lInl.gov/tutorials/openMP/

@ More online tutorials:
http://openmp.org/wp/resources/#Tutorials

