
Getting started with OpenMP

OpenMP – overview

Wednesday

13:00-13:45 Introduction to OpenMP

13:45-14:30 Exercises

14:30-14:45 Coffee break

14:45-15:30 Thread synchronization

15:30-16:30 Exercises

16:30-17:00 Wrap up and further topics

BASIC CONCEPTS: PROCESS AND THREADS

Processes and threads

Process

Independent execution
units

Have their own state
information and own
address spaces

Thread

A single process may
contain multiple threads

Have their own state
information, but share the
address space of the
process

Parallel region Parallel region

Serial
region

Serial
region

Serial
region

Parallel processes

Processes and threads

Process

Long-lived: spawned when
parallel program started,
killed when program is
finished

Explicit communication
between processes

Thread

Short-lived: created when
entering a parallel region,
destroyed (joined) when
region ends

Communication through
shared memory

Parallel processes Parallel region Parallel region

Serial
region

Serial
region

Serial
region

WHAT IS OPENMP?

OpenMP

A collection of compiler directives and library routines
that can be used for multi-threaded shared memory
parallelization

Fortran 77/9X/03 and C/C++ are supported

Most recent version of the standard is 4.0 (July 2013)

– Includes support for attached devices

– Includes thread affinity support

– Not all compilers do not yet support the newest standard

Why would you want to learn OpenMP?

OpenMP parallelized program can be run on your many-
core workstation or on a node of a cluster

Enables one to parallelize one part of the program at a
time

– Get some speedup with a limited investment in time

– Efficient and well scaling code still requires effort

Serial and OpenMP versions can easily coexist

Hybrid programming

Three components of OpenMP

Compiler directives, i.e., language extensions for shared
memory parallelization

– Syntax: directive, construct, clauses
C/C++: #pragma omp parallel shared(data)
Fortran: !$omp parallel shared(data)

Runtime library routines (Intel: libiomp5, GNU: libgomp)

– Conditional compilation to build serial version

Environment variables

– Specify the number of threads, thread affinity, etc.

OpenMP directives

Sentinels precede each OpenMP directive

– C/C++: #pragma omp

– Fortran free form: !$omp

Old Fortran programs may still use fixed form formatting

– Sentinel: c$omp

– Space in sixth column begins directive

– No space depicts continuation line

Compiling an OpenMP program

Compilers that support OpenMP usually require an
option that enables the feature

– PGI: -mp[=nonuma,align,allcores,bind]

– Cray: -h omp (on by default, -h noomp disables)

– GNU: -fopenmp

– Intel: -openmp, -qopenmp

Without these options a serial version is compiled!

OpenMP conditional compilation

Conditional compilation with _OPENMP macro:

#ifdef _OPENMP

Thread specific code

#else

Serial code

#endif

Fortran free form guard sentinels: !$

– Fortran fixed form guard sentinels: !$ *$ c$

Example: Helloworld with OpenMP

program hello
use omp_lib
integer :: omp_rank

!$omp parallel private(omp_rank)
omp_rank = omp_get_thread_num()
print *, 'Hello world! by &
thread ', omp_rank

!$omp end parallel
end program hello

> ftn –h omp omp_hello.f90 -o omp
> aprun -n 1 -d 4 –e OMP_NUM_THREADS=4
./omp
Hello world! by thread 0
Hello world! by thread 2
Hello world! by thread 3
Hello world! by thread 1

#include <stdio.h>
#include <omp.h>
int main(int argc, char argv[]){
int omp_rank;

#pragma omp parallel private(omp_rank)
{
omp_rank = omp_get_thread_num();
printf("Hello world! by

thread %d", omp_rank);
}
}

> cc –h omp omp_hello.c -o omp
> aprun -n 1 -d 4 –e OMP_NUM_THREADS=4
./omp
Hello world! by thread 2
Hello world! by thread 3
Hello world! by thread 0
Hello world! by thread 1

PARALLEL REGIONS AND DATA SHARING

Parallel construct

Defines a parallel region
C/C++:
#pragma omp parallel [clauses]
Fortran:
!$omp parallel [clauses]

– Prior to it only one thread, master

– Creates a team of threads: master+slave
threads

– At end of the block is a barrier and all
shared data is synchronized

!$omp parallel

!$omp end parallel

How do the threads interact?

Because of the shared address space threads can
communicate using shared variables

Threads often need some private work space together
with shared variables

– For example the index variable of a loop

Visibility of different variables is defined using data-
sharing clauses in the parallel region definition

Default storage

Most variables are shared by default

Global variables are shared among threads

– C: static variables, file scope variables

– Fortran: SAVE and MODULE variables, COMMON blocks

– Both: dynamically allocated variables

Private by default:

– Stack variables of functions called from parallel region

– Automatic variables within a block

Default storage

int main(void) {
int B[2];

#pragma omp parallel
do_things(B);
return 0;

}

void do_things(int *var) {
double wrk[10];
static int status;
...

}

Shared between threads

Private copy on each thread

omp parallel: data-sharing clauses

private(list)

– Private variables are stored in the private stack of each
thread

– Undefined initial value

– Undefined value after parallel region

firstprivate(list)

– Same as private variable, but with an initial value that is
the same as the original objects defined outside the
parallel region

omp parallel: data-sharing clauses

shared(list)

– All threads can write to, and read from
a shared variable

– Variables are shared by default

Race condition =
a thread accesses a
variable while another
writes into it

omp parallel: data-sharing clauses

default(private/shared/none)

– Sets default for variables to be shared, private or not
defined

– In C/C++ default(private) is not allowed

– default(none) can be useful for debugging as each
variable has to be defined manually

WORK SHARING CONSTRUCTS

Work sharing

Parallel region creates an “Single Program Multiple Data”
instance where each thread executes the same code

How can one split the work between the threads of a
parallel region?

– Loop construct

– Single/Master construct

– Sections

– Task construct (in OpenMP 3.0 and above)

Loop construct

Directive instructing compiler to share the work of a loop
C/C++: #pragma omp for [clauses]
Fortran: !$omp do [clauses]

– The construct must followed by a loop construct. To be
active it must be inside a parallel region

– Combined construct with parallel:
#pragma omp parallel for / $omp parallel do

Loop index is private by default

Work sharing can be controlled with the schedule -clause

Restrictions of loop construct

For loops in C/C++ are very flexible, but loop construct
can only be used on limited set of loops of a form

for(init ; var comp a ; incr)

where

– init initializes the loop variable var using an
integer expression

– comp is one of <, <=, >, >= and a is an integer expression

– incr increments var by an integer amount standard
operator

Thread synchronization

REDUCTIONS

Race condition

Race conditions take place when multiple threads read
and write a variable simultaneously, for example

Random results depending on the order the
threads access asum

We need some mechanism to control the access

asum = 0.0d0
!$OMP PARALLEL DO SHARED(x,y,n,asum) PRIVATE(i)
do i = 1, n
asum = asum + x(i)*y(i)

end do
!$OMP END PARALLEL DO

Reductions

Summing elements of array is an example of reduction
operation

OpenMP provides support for common reductions within
parallel regions and loops with the reduction -clause

Computed by
thread 0

Computed by
thread 1

Combined result

   

























N

j

N

j

N

N
j

j

jjjj BBBAAAS
1

2

1
1

2

2

1

21

Reduction clause

reduction(operator:list)

– Performs reduction on the (scalar) variables in list

– Private reduction variable is created for each thread’s
partial result

– Private reduction variable is initialized to operator’s initial
value

– After parallel region the reduction operation is applied to
private variables and result is aggregated to the shared
variable

Fo
rt

ra
n

 o
n

ly

C
/C

+
+

o
n

ly

Reduction operators

Operator Initial value

+ 0

- 0

* 1

Operator Initial value

.AND. .true.

.OR. .false.

.NEGV. .false.

.IEOR. 0

.IOR. 0

.IAND. All bits on

.EQV. .true.

MIN max pos.

MAX min neg.

Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0

Race condition example revisited

!$OMP PARALLEL DO SHARED(x,y,n) PRIVATE(i) REDUCTION(+:asum)
do i = 1, n
asum = asum + x(i)*y(i)

end do
!$OMP END PARALLEL DO

EXECUTION CONTROLS AND SYNCHRONIZATION

Execution controls

Sometimes a part of parallel region should be executed
only by the master thread or by a single thread at time

– IO, initializations, updating global values, etc.

– Remember the synchronization!

OpenMP provides clauses for controlling the execution of
code blocks

Execution control constructs

barrier

– When a thread reaches a barrier it only continues after all the
threads in the same thread team have reached it

 Each barrier must be encountered by all threads in a team, or
none at all

 The sequence of work-sharing regions and barrier regions
encountered must be same for all threads in team

– Implicit barrier at the end of: do, parallel, sections,
single, workshare

Execution control constructs

master

– Specifies a region that should be executed only by the
master thread

– Note that there is no implicit barrier at end

single

– Specifies that a regions should be executed only by a single
(arbitrary) thread

– Other threads wait (implicit barrier)

Execution control constructs

critical[(name)]

– A section that is executed by only one thread at a time

– Optional name specifies global identifier for critical section

– Unnamed critical sections are treated as the same section

flush[(name)]

– Synchronizes the memory of all threads

– Implicit flush at

 All explicit and implicit barriers

 Entry to / exit from critical section and lock routines

Execution control constructs

atomic

– Strictly limited construct to update a single value, can not
be applied to code blocks

– Only guarantees atomic update, does not protect function
calls

– Can be faster on hardware platforms that support atomic
updates

Example: reduction using critical section

!$OMP PARALLEL SHARED(x,y,n,asum) PRIVATE(i, psum)
psum = 0.0d
!$OMP DO
do i = 1, n
psum = psum + x(i)*y(i)

end do
!$OMP END DO
!$OMP CRITICAL(dosum)
asum = asum + psum
!$OMP END CRITICAL(dosum)

!$OMP END PARALLEL DO

Example: updating global variable

int global_max = 0;
int local_max = 0;
#pragma omp parallel firstprivate(local_max) private(i)
{
#pragma omp for
for (i=0; i < 100; i++) {

local_max = MAX(local_max, a[i]);
}

#pragma omp critical(domax)
global_max = MAX(local_max, global_max);

}

OPENMP RUNTIME LIBRARY AND ENVIRONMENT
VARIABLES

OpenMP and execution environment

OpenMP provides several means to interact with the
execution environment. These operations include

– Setting the number of threads for parallel regions

– Requesting the number of CPUs

– Changing the default scheduling for work-sharing clauses

– etc.

Improves portability of OpenMP programs between
different architectures (number of CPUs, etc.)

Environment variables

OpenMP standard defines a set of environment variables
that all implementations have to support

The environment variables are set before the program
execution and they are read during program start-up

– Changing them during the execution has no effect

We have already used OMP_NUM_THREADS

Runtime functions

Runtime functions can be used either to read the settings
or to set (override) the values

Function definitions are in

– C/C++ header file omp.h

– omp_lib Fortran module (omp_lib.h header in some
implementations)

Two useful routines for distributing work load:

– omp_get_num_threads()

– omp_get_thread_num()

Parallelizing a loop with library functions

#pragma omp parallel private(i,nthrds,thr_id)
{
nthrds = omp_get_num_threads();
thrd_id = omp_get_thrd_num();
for (i=thrd_id; i<n; i+=nthrds) {

…
}

}

FURTHER TOPICS

OpenMP programming best practices

Maximize parallel regions

– Reduce fork-join overhead, e.g. combine multiple parallel
loops into one large parallel region

– Potential for better cache re-usage

Parallelize outermost loops if possible

– Move PARALLEL DO construct outside of inner loops

Reduce access to shared data

– Possibly make small arrays private

Things that we did not cover

Other work-sharing clauses

– task

– sections, workshare, simd (OpenMP 4.0)

– teams, distribute (both OpenMP 4.0)

More advanced ways to reduce synchronization
overhead with nowait and flush

threadprivate, copyin, cancel

Support for attached devices with OpenMP 4.0 target

OpenMP summary

OpenMP is an API for thread-based parallelization

– Compiler directives, runtime API, environment variables

– Relatively easy to get started but specially efficient and/or
real-world parallelization non-trivial

Features touched in this intro

– Parallel regions, data-sharing attributes

– Work-sharing and scheduling directives

OpenMP summary

Data visibility
Synchronization

Threads
Reduction

Critical
section

Single/
Master

SharedPrivate

Work sharing Parallel do/for

Web resources

OpenMP homepage

http://openmp.org/

Good online tutorial:
https://computing.llnl.gov/tutorials/openMP/

More online tutorials:
http://openmp.org/wp/resources/#Tutorials

