
NON-BLOCKING COMMUNICATION

Non-blocking communication

Non-blocking sends and receives

– MPI_Isend & MPI_Irecv

– returns immediately and sends/receives in background

Enables some computing concurrently with
communication

Avoids many common dead-lock situations

Also non-blocking collective operations in MPI 3.0

Non-blocking communication

Have to finalize send/receive operations

– MPI_Wait, MPI_Waitall,…

 Waits for the communication started with MPI_Isend or
MPI_Irecv to finish (blocking)

– MPI_Test,…

 Tests if the communication has finished (non-blocking)

You can mix non-blocking and blocking p2p routines

– e.g., receive MPI_Isend with MPI_Recv

Typical usage pattern

MPI_Irecv(ghost_data)

MPI_Isend(border_data)

Compute(ghost_independent_data)

MPI_Waitall

Compute(border_data)
P0

P1

P2

Non-blocking send

MPI_Isend(buf, count, datatype, dest, tag,
comm, request)

Parameters

Similar to MPI_Send but has an additional request parameter

buf send buffer that must not be written to until
one has checked that the operation is over

request a handle that is used when checking if the
operation has finished (integer in Fortran,
MPI_Request in C)

Order of sends

Sends done in the specified order even for non-blocking
routines

Beware of badly ordered sends!

Non-blocking receive

MPI_Irecv(buf, count, datatype, source, tag,
comm, request)

parameters similar to MPI_Recv but has no status
parameter

buf receive buffer guaranteed to contain the data only
after one has checked that the operation is over

request a handle that is used when checking if the
operation has finished

Wait for non-blocking operation

MPI_Wait(request, status)

Parameters
request handle of the non-blocking communication
status status of the completed communication,

see MPI_Recv

A call to MPI_WAIT returns when the operation
identified by request is complete

Wait for non-blocking operations

MPI_Waitall(count, requests, status)

Parameters
count number of requests
requests array of requests
status array of statuses for the operations that are

waited for

A call to MPI_Waitall returns when all operations
identified by the array of requests are complete

Additional completion operations

other useful routines:
– MPI_Waitany
– MPI_Waitsome
– MPI_Test
– MPI_Testall
– MPI_Testany
– MPI_Testsome
– MPI_Probe

Wait for non-blocking operations

MPI_Waitany(count, requests, index, status)

Parameters
count number of requests
requests array of requests
index index of request that completed
status status for the completed operations

A call to MPI_Waitany returns when one operation
identified by the array of requests is complete

Wait for non-blocking operations

MPI_Waitsome(count, requests, done, index, status)

Parameters
count number of requests
requests array of requests
done number of completed requests
index array of indexes of completed requests
status array of statuses of completed requests

A call to MPI_Waitsome returns when one or more
operation identified by the array of requests is complete

Non-blocking test for non-blocking operations

MPI_Test(request, flag, status)

Parameters
request request
flag True if operation has completed
status status for the completed operations

A call to MPI_Test is non-blocking. It allows one to
schedule alternative activities while periodically checking
for completion.

Example: Non-blocking broadcasting

MPI_Ibcast(buffer, count, datatype, root, comm, request)

buffer data to be distributed
count number of entries in buffer
datatype data type of buffer
root rank of broadcast root
comm communicator
request a handle that is used when checking if the operation has finished

Typical usage pattern

MPI_Ibcast(data,...,request)

! Do any kind of work not involving data

! ...

MPI_Wait(request)

Summary

Non-blocking communication is usually the smarter way
to do point-to-point communication in MPI

Non-blocking communication realization

– MPI_Isend

– MPI_Irecv

– MPI_Wait(all)

MPI-3 contains also non-blocking collectives

USER-DEFINED DATATYPES

MPI datatypes

MPI datatypes are used for communication purposes

– Datatype tells MPI where to take the data when sending or
where to put data when receiving

Elementary datatypes (MPI_INT, MPI_REAL, ...)

– Different types in Fortran and C, correspond to languages
basic types

– Enable communication using contiguous memory
sequence of identical elements (e.g. vector or matrix)

Sending a matrix row (Fortran)

Row of a matrix is not contiguous in memory in Fortran

Several options for sending a row:

– Use several send commands for each element of a row

– Copy data to temporary buffer and send that with one
send command

– Create a matching
datatype and send
all data with one
send command

Logical layout

a b c

Physical layout

a cb

User-defined datatypes

Use elementary datatypes as building blocks

Enable communication of
– Non-contiguous data with a single MPI call, e.g. rows or

columns of a matrix

– Heterogeneous data (structs in C, types in Fortran)

Provide higher level of programming & efficiency
– Code is more compact and maintainable

– Communication of non-contiguous data is more efficient

Needed for getting the most out of MPI I/O

User-defined datatypes

User-defined datatypes can be used both in point-to-
point communication and collective communication

The datatype instructs where to take the data when
sending or where to put data when receiving

– Non-contiguous data in sending process can be received as
contiguous or vice versa

Using user-defined datatypes

A new datatype is created from existing ones with a
datatype constructor

– Several routines for different special cases

A new datatype must be committed before using it
MPI_Type_commit(newtype)

newtype the new datatype to commit

A type should be freed after it is no longer needed
MPI_Type_free(newtype)

newtype the datatype for decommision

Datatype constructors

MPI_Type_contiguous contiguous datatypes

MPI_Type_vector regularly spaced datatype

MPI_Type_indexed variably spaced datatype

MPI_Type_create_subarray subarray within a multi-dimensional array

MPI_Type_create_hvector like vector, but uses bytes for spacings

MPI_Type_create_hindexed like index, but uses bytes for spacings

MPI_Type_create_struct fully general datatype

MPI_TYPE_VECTOR

Creates a new type from equally spaced identical block
MPI_Type_vector(count, blocklen, stride, oldtype,

newtype)

count number of blocks
blocklen number of elements in each block
stride displacement between the blocks

oldtype

newtype

MPI_Type_vector(3, 2, 3, oldtype, newtype)

STRIDE=3

BLOCKLEN=2

Example: sending rows of matrix in Fortran

integer, parameter :: n=3, m=3
real, dimension(n,m) :: a
integer :: rowtype
! create a derived type
call mpi_type_vector(m, 1, n, mpi_real, rowtype, ierr)
call mpi_type_commit(rowtype, ierr)
! send a row
call mpi_send(a, 1, rowtype, dest, tag, comm, ierr)
! free the type after it is not needed
call mpi_type_free(rowtype, ierr)

Logical layout

a b c

Physical layout

a cb

MPI_TYPE_INDEXED

Creates a new type from blocks comprising identical
elements

– The size and displacements of the blocks may vary
MPI_Type_indexed(count, blocklens, displs,

oldtype, newtype)

count number of blocks
blocklens lengths of the blocks (array)
displs displacements (array) in extent of oldtypes

count = 3

blocklens = (/2,3,1/)
disps = (/0,3,8/)

oldtype

newtype

Example: an upper triangular matrix

/* Upper triangular matrix */
double a[100][100];
int disp[100], blocklen[100], int i;
MPI_Datatype upper;
/* compute start and size of rows */
for (i=0;i<100;i++)
{
disp[i]=100*i+i;
blocklen[i]=100-i;

}
/* create a datatype for upper triangular matrix */
MPI_Type_indexed(100,blocklen,disp,MPI_DOUBLE,&upper);
MPI_Type_commit(&upper);
/* ... send it ... */
MPI_Send(a,1,upper,dest, tag, MPI_COMM_WORLD);
MPI_Type_free(&upper);

MPI_TYPE_CREATE_SUBARRAY

Creates a type describing an N-dimensional subarray
within an N-dimensional array
MPI_Type_create_subarray(ndims, sizes, subsizes,

offsets, order, oldtype, newtype)

ndims number of array dimensions
sizes number of array elements in each dimension (array)
subsizes number of subarray elements in each dimension (array)
offsets starting point of subarray in each dimension (array)
order storage order of the array. Either

MPI_ORDER_C or MPI_ORDER_FORTRAN

Example: subarray
int array_size[2] = {5,5};
int subarray_size[2] = {2,2};
int subarray_start[2] = {1,1};
MPI_Datatype subtype;
double **array

for (i=0; i<array_size[0]; i++)
for (j=0; j<array_size[1]; j++)
array[i][j] = rank;

MPI_Type_create_subarray(2, array_size, subarray_size, subarray_start,
MPI_ORDER_C, MPI_DOUBLE, &subtype);

MPI_Type_commit(&subtype);
if (rank==0)
MPI_Recv(array[0], 1, subtype, 1, 123, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

if (rank==1)
MPI_Send(array[0], 1, subtype, 0, 123, MPI_COMM_WORLD);

Rank 0: original array
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

Rank 0: array after receive
0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.0 0.0 0.0
0.0 1.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

Example: halo exchange with user defined types

Two-dimensional grid with two-element ghost layers

int array_size[2] = {512 + 2+2, 512 + 2+2};
int x_size[2] = {512,2};
int offset[2] = {0,0};
MPI_Type_create_subarray(2, array_size, x_size,

offset, MPI_ORDER_C, MPI_DOUBLE,
&x_boundary);

int y_size[2] = {2,512};
MPI_Type_create_subarray(2, array_size, y_size,

offset, MPI_ORDER_C, MPI_DOUBLE,
&y_boundary);...

...

512 x 512 (+ halo)

Example: halo exchange with user defined types
MPI_Sendrecv(array(2,2), 1, x_boundary, left, tag_left,

array(2,0), 1, x_boundary, right, tag_right,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(array(2,2), 1, y_boundary, down, tag_down,
array(0,2), 1, y_boundary, up, tag_up,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

...

...

...

...

...

From non-contiguous to contiguous data

if (myid == 0)
MPI_Type_vector(n, 1, 2,

MPI_FLOAT, &newtype)
...
MPI_Send(A, 1, newtype, 1, ...)

else
MPI_Recv(B, n, MPI_FLOAT, 0, ...)

if (myid == 0)
MPI_Send(A, n, MPI_FLOAT, 1, ...)

else
MPI_Type_vector(n, 1, 2, MPI_FLOAT,

&newtype)
...
MPI_Recv(B, 1, newtype, 0, ...)

Process 0 Process 1

... ...

Process 0 Process 1

... ...

Performance

Performance depends on the datatype - more
general datatypes are often slower

Overhead is potentially reduced by:

– Sending one long message instead of many small
messages

– Avoiding the need to pack data in temporary buffers

Performance should be tested on target platforms

Performance

Example: Sending a row (in C) of 512x512
matrix on Cray XC30

– Several sends: 10 ms

– Manual packing: 1.1 ms

– User defined type: 0.6 ms

Summary

Derived types enable communication of non-
contiguous or heterogenous data with single MPI
calls
– Improves maintainability of program

– Allows optimizations by the system

– Performance is implementation dependent

Life cycle of derived type: create, commit, free

MPI provides constructors for several specific types

COMMUNICATION TOPOLOGIES

Process topologies

MPI process topologies allow for simple referencing scheme of
processes
– Process topology defines a new communicator

– We focus on Cartesian topologies,
although graph topologies are also supported

MPI topologies are virtual
– No relation to the physical structure of the computer

– Data mapping "more natural" only to the programmer

Usually no performance benefits
– But code becomes more compact and readable

Creating a communicator ordered in Cartesian grid

MPI_Cart_create(oldcomm, ndims, dims, periods, reorder,
newcomm)

oldcomm communicator

ndims dimension of the Cartesian topology

dims integer array (size ndims) that defines
the number of processes in each dimension

periods array that defines the periodicity of each
dimension

reorder is MPI allowed to renumber the ranks

newcomm new Cartesian communicator

Translating rank to coordinates

MPI_Cart_coords(comm, rank, maxdim, coords)

comm Cartesian communicator

rank rank to convert

maxdim dimension of coords

coords coordinates in Cartesian topology that
corresponds to rank

Checking the Cartesian communication topology
coordinates for a specific rank

Translating coordinates to rank

MPI_Cart_rank(comm, coords, rank)

comm Cartesian communicator

coords array of coordinates

rank a rank corresponding to coords

Checking the rank of the process at specific Cartesian
communication topology coordinates

Creating a Cartesian communication topology

dims(1)=4

dims(2)=4

period=(/ .true., .true. /)

call mpi_cart_create(mpi_comm_world, 2, &
dims, period, .true., comm2d, rc)

call mpi_comm_rank(comm2d, my_id, rc)

call mpi_cart_coords(comm2d, my_id, 2, &
coords, rc)

1
(0,1)

2
(0,2)

3
(0,3)

0
(0,0)

5
(1,1)

6
(1,2)

7
(1,3)

4
(1,0)

9
(2,1)

10
(2,2)

11
(2,3)

8
(2,0)

13
(3,1)

14
(3,2)

15
(3,3)

12
(3,0)

How to communicate in a topology

MPI_Cart_shift(comm, direction, displ, source, dest)

comm Cartesian communicator

direction shift direction (0 or 1 in 2D)

displ shift displacement (1 for next
cell etc, < 0 for source from
"down"/"right“ directions)

source rank of source process

dest rank of destination process

We shift the grid to define
sources/destinations

Note that both source
and dest are output

parameters. The
coordinates of the calling

task is implicit input.

With a non-periodic grid,
source or dest can land

outside of the grid; then
MPI_PROC_NULL is

returned.

Halo exchange
dims(1)=4

dims(2)=4

period =(/ .true. , .true. /)

call mpi_cart_create(mpi_comm_world, 2,&
dims, period, .true., comm2d, rc)

call mpi_cart_shift(comm2d,0,1,nbr_up,nbr_down,rc)

call mpi_cart_shift(comm2d,1,1,nbr_left,nbr_right,rc)
...
call mpi_sendrecv(hor_send, msglen, mpi_double_precision, nbr_left,&

tag_left, hor_recv, msglen, mpi_double_precision, nbr_right,&
tag_left, comm2d, mpi_status_ignore, rc)

...
call mpi_sendrecv(vert_send, msglen, mpi_double_precision, nbr_up,&

tag_up, vert_recv, msglen, mpi_double_precision, nbr_down,&
tag_up, comm2d, mpi_status_ignore, rc)

...

1
(0,1)

2
(0,2)

3
(0,3)

0
(0,0)

5
(1,1)

6
(1,2)

7
(1,3)

4
(1,0)

9
(2,1)

10
(2,2)

11
(2,3)

8
(2,0)

13
(3,1)

14
(3,2)

15
(3,3)

12
(3,0)

ONE-SIDED COMMUNICATION

Communication in MPI

Two components of message-passing: sending and
receiving

One-sided communication

– Only single process calls data movement functions (put or
get) – remote memory access (RMA)

– Communication patterns specified by only a single process

– Always non-blocking

Why one-sided communication?

Certain algorithms featuring unstrucutred
communication easier to implement

Potentially reduced overhead and improved scalability

Hardware support for remote memory access has been
restored in most current-generation architectures

Origin and target

Origin process: a process which calls data movement
function

Target process: a process whose memory is accessed

Remote memory access window

Window is a region in process’s memory which is made
available for remote operations

Windows are created by collective calls

Windows may be different in different processes
Process 0 Process 1

Memory space Memory space

Process 0 gets data from 1

Process 1 puts data to 0

Data movement operations in MPI

PUT data to the memory in target process

– From local buffer in origin to the window in target

GET data from the memory of target process

– From the window in target to the local buffer in origin

ACCUMULATE data in target process

– Use local buffer in origin and update the data (e.g. add the
data from origin) in the window in target

– One-sided reduction

Synchronization

Communication takes place within epochs

– Synchronization calls start and end an epoch

– There can be multiple data movement calls within an
epoch

– An epoch is specific to a particular window

Active synchronization:

– Both origin and target perform synchronization calls

Passive synchronization:

– No MPI calls at target process

One-sided communication in a nutshell

Define a memory window

Start an epoch

– Target: exposure epoch

– Origin: access epoch

GET, PUT, and/or ACCUMULATE
data

Complete the communications by
ending the epoch

Process 0 Process 1

epoch start

put

put

epoch end

get

Creating a window

MPI_Win_create(base, size, disp_unit, info, comm, win)

base (pointer to) local memory to expose for RMA
size size of a window in bytes
disp_unit local unit size for displacements in bytes
info hints for implementation
comm communicator

win handle to window

The window object is deallocated with
MPI_Win_free(win)

Starting and ending an epoch

MPI_Win_fence(assert, win)

assert optimize for specific usage. Valid values are
”0”, MPI_MODE_NOSTORE, MPI_MODE_NOPUT,
MPI_MODE_NOPRECEDE, MPI_MODE_NOSUCCEED

win window handle

Used both for starting and ending an epoch

– Should both precede and follow data movement calls

Collective, barrier-like operation

Data movement: Put

MPI_Put(origin, origin_count, origin_datatype,
target_rank, target_disp, target_count,
target_datatype, win)

origin (pointer to) local data to be
send to target

origin_count number of elements to put
origin_datatype MPI datatype for local data
target_rank rank of the target task
target_disp starting point in target window
target_count number of elements in target

target_datatype MPI datatype for remote data
win RMA window

Data movement: Get

MPI_Get(origin, origin_count, origin_datatype,
target_rank, target_disp, target_count,
target_datatype, win)

origin (pointer to) local buffer in which to
receive the data

origin_count number of elements to get
origin_datatype MPI datatype for local data
target_rank rank of the target task
target_disp starting point in target window
target_count number of elements from target

target_datatype MPI datatype for remote data
win RMA window

Data movement: Accumulate

MPI_Accumulate(origin, origin_count, origin_datatype,
target_rank, target_disp, target_count,
target_datatype, op, win)

origin (pointer to) local data to be accumulated
origin_count number of elements to put
origin_datatype MPI datatype for local data
target_rank rank of the target task
target_disp starting point in target window
target_count number of elements for target

target_datatype MPI datatype for remote data
op accumulation operation (as in MPI_Reduce)

win RMA window

Simple example: Put

...
int data;
MPI_Win window;

data = rank;
// Create window
MPI_Win_create(&data, sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &window);
...
MPI_Win_fence(0, window);
if (rank == 0)

MPI_Put(&data, 1, MPI_INT, 1, 0, 1, MPI_INT, window);
MPI_Win_fence(0, window);
...
MPI_Win_free(&window);

Limitations for data access

Compatibility of local and remote operations when
multiple processes access a window during an epoch

Local/
remote

Load Store Get Put Acc

Load

Store

Get

Put

Acc

No limitations

Operations on non-overlapping parts of window allowed

Not allowed

Advanced synchronization

Assert arguments for MPI_Win_fence:
MPI_MODE_NOSTORE
The local window was not updated by local stores (or local get or receive
calls) since last synchronization
MPI_MODE_NOPUT
The local window will not be updated by put or accumulate calls after the
fence call, until the ensuing (fence) synchronization
MPI_MODE_NOPRECEDE
The fence does not complete any sequence of locally issued RMA calls
MPI_MODE_NOSUCCEED
The fence does not start any sequence of locally issued RMA calls

Advanced synchronization

More control on epochs can be obtained by starting and
ending the exposure and access epochs separately

Target: Exposure epoch

– Start: MPI_Win_post

– End: MPI_Win_wait

Origin: Access epoch

– Start: MPI_Win_start

– End: MPI_Win_compete

Enhancements in MPI-3

New window creation function: MPI_Win_allocate

– Allocate memory and create a window at the same time

Dynamic windows: MPI_Win_create_dynamic,
MPI_Win_attach, MPI_Win_detach

– Non-collective exposure of memory

Enhancements in MPI-3

New data movement operations:
MPI_Get_accumulate, MPI_Fetch_and_op,
MPI_Compare_and_swap

New memory model
MPI_Win_allocate_shared

– Allocate memory which is shared between MPI tasks

Enhancements for passive target synchronization

Performance considerations

Performance of the one-sided approach is highly
implementation-dependent

Maximize the amount of operations within an epoch

Provide the assert parameters for MPI_Win_fence

Summary

One-sided communication allows communication
patterns to be specified from a single process

Can reduce synchronization overheads and provide
better performance especially on recent hardware

Basic concepts:

– Creation of the memory window

– Communication epoch

– Data movement operations (MPI_Put, MPI_Get etc)

