
INTRODUCTION TO MPI

Message-passing interface

MPI is an application programming interface (API) for
communication between separate processes

– The most widely used approach for distributed parallel
computing

MPI programs are portable and scalable

MPI is flexible and comprehensive

– Large (hundreds of procedures)

– Concise (often only 6 procedures are needed)

MPI standardization by MPI Forum

Execution model

Parallel program is launched as set of independent,
identical processes

The same program code and instructions

Can reside in different nodes

– or even in different computers

The way to launch parallel program is implementation
dependent

– mpirun, mpiexec, srun, aprun, poe, ...

MPI ranks

MPI runtime assigns each process a rank

– identification of the processes

– ranks start from 0 and extent to N-1

Processes can perform different tasks and handle
different data basing on their rank ...

if (rank == 0) {
...
}

if (rank == 1) {
...
}

...

Data model

All variables and data structures are local to the process

Processes can exchange data by sending and receiving
messages

a = 1.0
b = 2.0

a = -1.0
b = -2.0

Messages

MPI
Process 1
(rank 0)

Process 2
(rank 1)

MPI communicator

Communicator is an object connecting a group of
processes

Initially, there is always a communicator
MPI_COMM_WORLD which contains all the processes

Most MPI functions require communicator as an
argument

Users can define own communicators

Routines of the MPI library

Information about the communicator
– number of processes

– rank of the process

Communication between processes
– sending and receiving messages between two processes

– sending and receiving messages between several
processes

Synchronization between processes

Advanced features

Programming MPI

MPI standard defines interfaces to C and Fortran
programming languages
– There are unofficial bindings to Python, Perl and Java

C call convention
rc = MPI_Xxxx(parameter,...)

– some arguments have to be passed as pointers

Fortran call convention
CALL MPI_XXXX(parameter,..., rc)

– return code in the last argument

First five MPI commands

Set up the MPI environment
MPI_Init()

Information about the communicator
MPI_Comm_size(comm, size)

MPI_Comm_rank(comm, rank)

– Parameters
comm communicator
size number of processes in the communicator
rank rank of this process

First five MPI commands

Synchronize processes
MPI_Barrier(comm)

Finalize MPI environment
MPI_Finalize()

Writing an MPI program

Include MPI header files

C: #include <mpi.h>

Fortran: use mpi

Call MPI_Init

Write the actual program

Call MPI_Finalize before exiting from the main program

Summary

In MPI, a set of independent processes is launched

– Processes are identified by ranks

– Data is always local to the process

Processes can exchange data by sending and receiving
messages

MPI library contains functions for

– Communication and synchronization between processes

– Communicator manipulation

POINT-TO-POINT COMMUNICATION

Introduction

MPI processes are independent, they
communicate to coordinate work

Point-to-point communication

– Messages are sent between two
processes

Collective communication

– Involving a number of processes at the
same time

0

2

1

4

0

2

1

4

MPI point-to-point operations

One process sends a message to another process that
receives it

Sends and receives in a program should match – one
receive per send

MPI point-to-point operations

Each message (envelope) contains

– The actual data that is to be sent

– The datatype of each element of data.

– The number of elements the data consists of

– An identification number for the message (tag)

– The ranks of the source and destination process

Presenting syntax

Slide with extra material included in
handouts

Operations presented in pseudocode,
C and Fortran bindings presented in
extra
material slides.

Note! Extra error parameter for Fortran

INPUT
arguments in
red

OUTPUT
arguments in
blue

Send operation

MPI_Send(buf, count, datatype, dest, tag, comm)

buf The data that is sent

count Number of elements in buffer

datatype Type of each element in buf (see later slides)

dest The rank of the receiver

tag An integer identifying the message

comm A communicator

error Error value; in C/C++ it’s the return value of
the function, and in Fortran an additional
output parameter

Receive operation

MPI_Recv(buf, count, datatype, source, tag, comm, status)

buf Buffer for storing received data
count Number of elements in buffer,

not the number of element that are actually received
datatype Type of each element in buf
source Sender of the message
tag Number identifying the message
comm Communicator
status Information on the received message
error As for send operation

MPI datatypes

MPI has a number of predefined datatypes to represent
data

Each C or Fortran datatype has a corresponding MPI
datatype

– C examples: MPI_INT for int and MPI_DOUBLE for double

– Fortran example: MPI_INTEGER for integer

One can also define custom datatypes

Case study: parallel sum

Array originally on process #0 (P0)

Parallel algorithm
– Scatter

 Half of the array is sent to process 1

– Compute
 P0 & P1 sum independently their

segments

– Reduction
 Partial sum on P1 sent to P0

 P0 sums the partial sums

P0 P1

Memory

Case study: parallel sum

P0 P1

Memory

P1 posts a receive to receive half of the
array from P0

Timeline

Recv

P0

P1

Step 1.1: Receive operation in
scatter

Case study: parallel sum

P0 posts a send to send the lower part
of the array to P1

Timeline

Recv

SendP0

P1

Step 1.2: Send operation in
scatter

P0 P1

Memory

Case study: parallel sum

P0 & P1 computes their parallel

sums and store them locally

Timeline

Recv Compute

Send ComputeP0

P1

Step 2: Compute the sum in
parallel

P0 P1

∑=

∑=

Memory

Case study: parallel sum

P0 posts a receive to receive

partial sum

Timeline

Recv Compute

Send Compute RP0

P1

Step 3.1: Receive operation in
reduction

P0 P1

∑=

∑=

Memory

Case study: parallel sum

P1 posts a send with partial sum

Timeline

Recv Compute S

Send Compute RP0

P1

Step 3.2: send operation in
reduction

P0 P1

∑=

∑=

Memory

Case study: parallel sum

P0 sums the partial sums

Timeline

Recv Compute

Send ComputeP0

P1

Step 4: Compute final answer

P0 P1

∑=

Memory

MORE ABOUT POINT-TO-POINT COMMUNICATION

Blocking routines & deadlocks

Blocking routines

– Completion depends on other processes

– Risk for deadlocks – the program is stuck forever

MPI_Send exits once the send buffer can be safely read
and written to

MPI_Recv exits once it has received the message in the
receive buffer

Point-to-point communication patterns

Process 0 Process 1

Pipe, a ring of processes exchanging data

Pairwise exchange

Process 2 Process 3

Process 0 Process 1 Process 2 Process 3

Combined send & receive

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest,
sendtag, recvbuf, recvcount, recvtype, source,
recvtag, comm, status)

Parameters as for MPI_Send and MPI_Recv combined

Sends one message and receives another one, with one
single command
– Reduces risk for deadlocks

Destination rank and source rank can be same or
different

Case study 2: Domain decomposition

Computation inside each domain can be carried out
independently; hence in parallel

Ghost layer at boundary represent the value of the
elements of the other process

Serial ParallelP0

P10 1 2 3
0
1
2
3
4
5

0 1 2 3

1

3

4

0 1 2 3

1
2

0

P2
0 1 2 3

1
2

6
7
8

3

0

0

3

2

Case study 2: One iteration step

Have to carefully
schedule the order
of sends and
receives in order to
avoid deadlocks

ParallelP0

P1
0 1 2 3

1
2
3

4

0 1 2 3
0
1
2
3

0

P2
0 1 2 3

0
1
2
3

P0

P1 Recv

Send Recv

Send Compute

Compute

Recv Send

P2 Send Compute

Timeline

Recv

Case study 2: MPI_Sendrecv

MPI_Sendrecv

– Sends and receives
with one command

– No risk of deadlocks

P0

P1
0 1 2 3

1
2
3

4

0 1 2 3
0
1
2
3

0

P2
0 1 2 3

0
1
2
3

P0

P1 Sendrecv

Send

Compute

Compute

P2 Compute

Sendrecv

SendRecv

Recv

Special parameter values

MPI_Send(buf, count, datatype, dest, tag, comm)

parameter value function

dest MPI_PROC_NULL Null destination, no operation takes place

comm MPI_COMM_WORLD Includes all processes

error MPI_SUCCESS Operation successful

Special parameter values

MPI_Recv(buf, count, datatype, source, tag, comm,
status)

parameter value function

source MPI_PROC_NULL No sender, no operation takes place

MPI_ANY_SOURCE Receive from any sender

tag MPI_ANY_TAG Receive messages with any tag

comm MPI_COMM_WORLD Includes all processes

status MPI_STATUS_IGNORE Do not store any status data

error MPI_SUCCESS Operation successful

Status parameter

The status parameter in MPI_Recv contains information
on how the receive succeeded

– Number and datatype of received elements

– Tag of the received message

– Rank of the sender

In C the status parameter is a struct, in Fortran it is an
integer array

Status parameter

Received elements
Use the function
MPI_Get_count(status, datatype, count)

Tag of the received message
C: status.MPI_TAG

Fortran: status(MPI_TAG)

Rank of the sender
C: status.MPI_SOURCE

Fortran: status(MPI_SOURCE)

Summary

Point-to-point communication

– Messages are sent between two processes

We discussed send and receive operations enabling any
parallel application

– MPI_Send & MPI_Recv

– MPI_Sendrecv

Special argument values

Status parameter

COLLECTIVE OPERATIONS

Outline

Introduction to collective communication

One-to-many collective operations

Many-to-one collective operations

Many-to-many collective operations

Non-blocking collective operations

User-defined communicators

Introduction

Collective communication transmits data among all
processes in a process group

– These routines must be called by all the processes in the
group

Collective communication includes

– data movement

– collective computation

– synchronization

Example
MPI_Barrier
makes each task hold
until all tasks have
called it
int MPI_Barrier(comm)
MPI_BARRIER(comm, rc)

Introduction

Collective communication outperforms normally point-to-
point communication

Code becomes more compact and easier to read:
if (my_id == 0) then

do i = 1, ntasks-1
call mpi_send(a, 1048576, &

MPI_REAL, i, tag, &
MPI_COMM_WORLD, rc)

end do
else

call mpi_recv(a, 1048576, &
MPI_REAL, 0, tag, &
MPI_COMM_WORLD, status, rc)

end if

call mpi_bcast(a, 1048576, &
MPI_REAL, 0, &
MPI_COMM_WORLD, rc)

Communicating a vector a consisting of
1M float elements from the task 0 to all
other tasks

Introduction

Amount of sent and received data must match

Non-blocking routines are available in the MPI 3 standard

– Older libraries do not support this feature

No tag arguments

– Order of execution must coincide across processes

Broadcasting

Send the same data from one process to all the other

P0

P1

P2

P3

P0

P1

P2

P3

A

A

A

A

A

This buffer may contain multiple
elements of any datatype.

BCAST

Broadcasting

With MPI_Bcast, the task root sends a buffer of data to all
other tasks

MPI_Bcast(buffer, count, datatype, root, comm)

buffer data to be distributed
count number of entries in buffer
datatype data type of buffer
root rank of broadcast root
comm communicator

Scattering

Send equal amount of data from one process to others

Segments A, B, … may contain multiple elements

P0

P1

P2

P3

P0

P1

P2

P3

A A

B

C

D

SCATTER

B C D

Scattering

MPI_Scatter: Task root sends an equal share of data
(sendbuf) to all other processes
MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf,

recvcount, recvtype, root, comm)

sendbuf send buffer (data to be scattered)
sendcount number of elements sent to each process
sendtype data type of send buffer elements
recvbuf receive buffer
recvcount number of elements in receive buffer
recvtype data type of receive buffer elements
root rank of sending process
comm communicator

One-to-all example

Assume 4 MPI tasks. What would the (full) program print?

if (my_id==0) then
do i = 1, 16

a(i) = i
end do

end if
call mpi_scatter(a,4,MPI_INTEGER, &

aloc,4,MPI_INTEGER, &
0,MPI_COMM_WORLD,rc)

if (my_id==3) print *, aloc(:)

if (my_id==0) then
do i = 1, 16

a(i) = i
end do

end if

call mpi_bcast(a,16,MPI_INTEGER,0, &
MPI_COMM_WORLD,rc)

if (my_id==3) print *, a(:)

A. 1 2 3 4
B. 13 14 15 16
C. 1 2 3 4

5 6 7 8
9 10 11 12
13 14 15 16

A. 1 2 3 4
B. 13 14 15 16
C. 1 2 3 4

5 6 7 8
9 10 11 12
13 14 15 16

Varying-sized scatter

Like MPI_Scatter, but messages can have different sizes
and displacements
MPI_Scatterv(sendbuf, sendcounts, displs, sendtype,

recvbuf, recvcount, recvtype, root, comm)

recvcount number of elements in
receive buffer

recvtype data type of receive buffer
elements

root rank of sending process
comm communicator

sendbuf send buffer
sendcounts array (of length ntasks) specifying

the number of elements to send
to each processor

displs array (of length ntasks). Entry i
specifies the displacement
(relative to sendbuf)

sendtype data type of send buffer elements
recvbuf receive buffer

if (my_id==0) then
do i = 1, 10
a(i) = i

end do
sendcnts = (/ 1, 2, 3, 4 /)
displs = (/ 0, 1, 3, 6 /)

end if

call mpi_scatterv(a, sendcnts, &
displs, MPI_INTEGER,&
aloc, 4, MPI_INTEGER, &
0, MPI_COMM_WORLD, rc)

Assume 4 MPI tasks. What are the values in
aloc in the last task (#3)?

Scatterv example

A. 1 2 3
B. 7 8 9 10
C. 1 2 3 4 5 6 7 8 9 10

Gathering

Collect data from all the process to one process

Segments A, B, … may contain multiple elements

P0

P1

P2

P3

P0

P1

P2

P3

A A

B

C

D

GATHER

B C D

Gathering

MPI_Gather: Collect equal share of data (in sendbuf) from all
processes to root
MPI_Gather(sendbuf, sendcount, sendtype, recvbuf,

recvcount, recvtype, root, comm)

sendbuf send buffer (data to be gathered)
sendcount number of elements pulled from each process
sendtype data type of send buffer elements
recvbuf receive buffer
recvcount number of elements in any single receive
recvtype data type of receive buffer elements
root rank of receiving process
comm communicator

Varying-sized gather

Like MPI_Gather, but messages can have different sizes
and displacements
MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf,

recvcounts, displs, recvtype, root, comm)

displs array relative to recvcounts,
displacement in recvbuf

recvtype data type of receive buffer
elements

root rank of receiving process
comm communicator

sendbuf send buffer
sendcount the number of elements to send
sendtype data type of send buffer elements
recvbuf receive buffer
recvcounts array (of length ntasks). Entry i

specifies how many to receive
from that process

Reduce operation

Applies an operation over set of processes and places
result in single process

P0

P1

P2

P3

P0

P1

P2

P3

Σ Ai

REDUCE

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

Σ Bi Σ Ci Σ Di

(SUM)

Reduce operation

Applies a reduction operation op to sendbuf over the set of
tasks and places the result in recvbuf on root
MPI_Reduce(sendbuf, recvbuf, count, datatype, op,

root, comm)

sendbuf send buffer
recvbuf receive buffer
count number of elements in send buffer
datatype data type of elements in send buffer
op operation
root rank of root process
comm communicator

Global reduce operation

MPI_Allreduce combines values from all processes and
distributes the result back to all processes

– Compare: MPI_Reduce + MPI_Bcast
MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)
sendbuf starting address of send buffer
recvbuf starting address of receive buffer
count number of elements in

send buffer
datatype data type of elements in

send buffer
op operation
comm communicator

P0

P1

P2

P3

P0

P1

P2

P3

Σ Ai

REDUCE

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

Σ Bi Σ Ci Σ Di

(SUM)

Σ Ai Σ Bi Σ Ci Σ Di

Σ AiΣ Bi Σ Ci Σ Di

Σ Ai Σ Bi Σ Ci Σ Di

Allreduce example: parallel dot product
> aprun -n 8 ./mpi_pdot
id= 6 local= 39.68326 global= 338.8004
id= 7 local= 39.34439 global= 338.8004
id= 1 local= 42.86630 global= 338.8004
id= 3 local= 44.16300 global= 338.8004
id= 5 local= 39.76367 global= 338.8004
id= 0 local= 42.85532 global= 338.8004
id= 2 local= 40.67361 global= 338.8004
id= 4 local= 49.45086 global= 338.8004

real :: a(1024), aloc(128)
...
if (my_id==0) then

call random_number(a)
end if
call mpi_scatter(a, 128, MPI_INTEGER, &

aloc, 128, MPI_INTEGER, &
0, MPI_COMM_WORLD, rc)

rloc = dot_product(aloc,aloc)
call mpi_allreduce(rloc, r, 1, MPI_REAL,&

MPI_SUM, MPI_COMM_WORLD,
rc)

All-to-one plus one-to-all

MPI_Allgather gathers data from each task and distributes
the resulting data to each task

– Compare: MPI_Gather + MPI_Bcast
MPI_Allgather(sendbuf, sendcount, sendtype, recvbuf ,

recvcount, recvtype, comm)

sendbuf send buffer
sendcount number of elements in send buffer
sendtype data type of send buffer elements
recvbuf receive buffer
recvcount number of elements received from

any process
recvtype data type of receive buffer

P0

P1

P2

P3

P0

P1

P2

P3

ALLGATHER

A

B

C

D

A B C D

A B C D

A B C D

A B C D

From each to every

Send a distinct message from each task to every task

”Transpose” like operation

P0

P1

P2

P3

P0

P1

P2

P3

ALL2ALL

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

From each to every

MPI_Alltoall sends a distinct message from each task to
every task

– Compare: “All scatter”

MPI_Alltoall(sendbuf, sendcount, sendtype, recvbuf,

recvcount, recvtype, comm)

sendbuf send buffer
sendcount number of elements to send to each process
sendtype data type of send buffer elements
recvbuf receive buffer
recvcount number of elements received from any process
recvtype data type of receive buffer elements
comm communicator

All-to-all example

Assume 4 MPI tasks. What will be the
values of aloc in the process #0?

if (my_id==0) then
do i = 1, 16
a(i) = i

end do
end if
call mpi_bcast(a, 16, MPI_INTEGER, 0, &

MPI_COMM_WORLD, rc)

call mpi_alltoall(a, 4, MPI_INTEGER, &
aloc, 4, MPI_INTEGER, &
MPI_COMM_WORLD, rc)

A. 1, 2, 3, 4
B. 1,...,16
C. 1, 2, 3, 4, 1, 2, 3, 4,

1, 2, 3, 4, 1, 2, 3, 4

Common mistakes with collectives

✘ Using a collective operation within one branch of an if-test
of the rank
IF (my_id == 0) CALL MPI_BCAST(...

– All processes, both the root (the sender or the gatherer) and
the rest (receivers or senders), must call the collective
routine!

✘ Assuming that all processes making a collective call would
complete at the same time

✘ Using the input buffer as the output buffer
CALL MPI_ALLREDUCE(a, a, n, MPI_REAL, MPI_SUM, ...

Summary

Collective communications involve all the processes within
a communicator

– All processes must call them

Collective operations make code more transparent and
compact

Collective routines allow optimizations by MPI library

Performance consideration:

– Alltoall is expensive operation, avoid it when possible

USER-DEFINED COMMUNICATORS

Communicators

The communicator determines the "communication
universe"

– The source and destination of a message is identified by
process rank within the communicator

So far: MPI_COMM_WORLD

Processes can be divided into subcommunicators

– Task level parallelism with process groups performing
separate tasks

– Parallel I/O

Communicators

Communicators are dynamic

A task can belong simultaneously to several
communicators

– In each of them it has a unique ID, however

– Communication is normally within the communicator

Grouping processes in communicators

0
2

1

3 5
4

7

6

MPI_COMM_WORLD

0
2

1

3

Comm 1

0

1

Comm 2

0

1

Comm 3

Creating a communicator

MPI_Comm_split creates new communicators based on
'colors' and 'keys'

MPI_Comm_split(comm, color, key, newcomm)

comm communicator handle
color control of subset assignment, processes with

the same color belong to the same new communicator
key control of rank assignment
newcomm new communicator handle If color = MPI_UNDEFINED,

a process does
not belong to any of the

new communicators

Creating a communicator

if (myid%2 == 0) {
color = 1;

} else {
color = 2;

}
MPI_Comm_split(MPI_COMM_WORLD, color, myid, &subcomm);
MPI_Comm_rank(subcomm, &mysubid);
printf ("I am rank %d in MPI_COMM_WORLD, but %d in

Comm %d.\n", myid, mysubid, color);

I am rank 2 in MPI_COMM_WORLD, but 1 in Comm 1.
I am rank 7 in MPI_COMM_WORLD, but 3 in Comm 2.
I am rank 0 in MPI_COMM_WORLD, but 0 in Comm 1.
I am rank 4 in MPI_COMM_WORLD, but 2 in Comm 1.
I am rank 6 in MPI_COMM_WORLD, but 3 in Comm 1.
I am rank 3 in MPI_COMM_WORLD, but 1 in Comm 2.
I am rank 5 in MPI_COMM_WORLD, but 2 in Comm 2.
I am rank 1 in MPI_COMM_WORLD, but 0 in Comm 2.

Communicator manipulation

MPI_Comm_size Returns number of processes in
communicator's group

MPI_Comm_rank Returns rank of calling process in
communicator's group

MPI_Comm_compare Compares two communicators

MPI_Comm_dup Duplicates a communicator

MPI_Comm_free Marks a communicator for
deallocation

Basic MPI summary

Point-to-point
communication Collective

communication

Communication
One-to-all
collectives

All-to-one
collectives

All-to-all
collectives

User-defined
communicators

Send &
Recv

Sendrecv

