

OpenMP exercises

1. Parallel region and data clauses
Take a look at the exercise skeleton exercises/ex1_variables.c (or

ex1_variables.f90). Add an OpenMP parallel region around the block where the

variables Var1 and Var2 are printed and manipulated. What results do you get when

you define the variables as shared, private or firstprivate? Explain why do

you get different results.

2. Work sharing for a simple loop
The file exercises/ex2_sum(.c|.f90) implements a skeleton for the simple

summation of two vectors C=A+B. Add the computation loop and add the parallel

region with work sharing directives so that the vector addition is executed in parallel.

3. Dot product and race condition
The file exercises/ex3_dotprod(.c|.f90) implements a simple dot product of

two vectors. Try to parallelize the code by using omp parallel or omp for

pragmas. Are you able to get same results with different number of threads and in

different runs? Explain why the program does not work correctly in parallel. What is

needed for correct computation?

4. Reduction and critical
Continue with the previous dot product example and use reduction clause to

compute the sum correctly. Implement also an alternative version where each

thread computes its own part to a private variable and then use a critical section

after the loop to compute the global sum. Try to compile and run your code also

without OpenMP. Do you get exactly same results in all cases?

5. Using the OpenMP library functions
Write a simple program that uses omp_get_num_threads and

omp_get_thread_num library functions and prints out the total number of active

threads as well as the id of each thread.

6. (Bonus *) Heat equation solver parallelized with
OpenMP

a) Parallelize the serial heat equation solver with OpenMP by parallelizing the loops

for data initialization and time evolution.

b) Improve the OpenMP parallelization so that the parallel region is opened and

closed only once during the program execution.

MPI I: Introduction to MPI

1. Parallel “Hello World”
a) Write a simple program that prints out i.e. “Hello” from multiple processes.

Include the MPI headers (C) or use the MPI module (Fortran) and call appropriate

initialization and finalization routines.

b) Modify the program so that each process also prints out its rank, and have the

rank 0 to print out the total number of MPI processes as well.

2. Simple message exchange
a) Write a simple program where two processes send and receive a message

to/from each other using MPI_Send and MPI_Recv. The message content is an

integer array, where each element is initialized to the rank of the process. After

receiving a message, each process should print out the rank of the process and

the first element in the received array. You may start from scratch or use as a

starting point one of the files

exercises/ex2_ms_exchange(.c|.f90).

b) Increase the message size to 100 000 and investigate what happens when

reordering the send and receive calls in one of the processes.

3. Message chain
Write a simple program where every processor sends data to the next one. Let

ntasks be the number of the tasks, and myid the rank of the current process. Your

program should work as follows:

 Every task with a rank less than ntasks-1 sends a message to task myid+1.

For example, task 0 sends a message to task 1.

 The message content is an integer array where each element is initialized to myid.

 The message tag is the receiver’s id number.

 The sender prints out the number of elements it sends and the tag number.

 All tasks with rank ≥ 1 receive messages.

 Each receiver prints out their myid, and the first element in the received array.

a) Implement the program described above using MPI_Send and MPI_Recv. You

may start from scratch or use as a starting point on of the files

exercises/ex3_msg_chain(.c|.f90).

b) (Bonus *) Use the status parameter to find out how much data was received, and

print out this piece of information for all receivers

c) (Bonus *) Use MPI_ANY_TAG when receiving. Print out the tag of the received

message based on the status message.

d) Use MPI_ANY_SOURCE and use the status information to find out the sender.

Print out this piece of information.

e) Can the code be simplified using MPI_PROC_NULL?

f) Use MPI_Sendrecv instead of MPI_Send and MPI_Recv.

4. Parallel heat equation
Parallelize the whole heat equation program with MPI, by dividing the grid in

columns (for Fortran – for C substitute row in place of each mention of a column) and

assigning one column block to one task. A domain decomposition, that is.

The tasks are able to update the grid independently everywhere else than on the

column boundaries – there the communication of a single column with the nearest

neighbor is needed. This is realized by having additional ghost layers that contain the

boundary data of the neighboring tasks. As the system is aperiodic, the outermost

ranks communicate with single neighbor, and the inner ranks with the two

neighbors.

Insert the proper MPI routines into skeleton codes available at

ex4_heat_mpi(.c|.f90) and ex4_main(.c|.f90) (search for“TODO”s). You

may use the provided Makefile_ex4 for building the code.

A schematic representation of column-wise decomposition looks like:

portion grid

Rank #0 Rank #1 Rank #2 Rank #3

Local of the

Each rank has additional columns in

both ends of the local grid

(coloured columns).

The first actual column of Rank #2 is

communicated to “rightmost”

ghostlayer of Rank #1.

Remember to update all ghost layers at each iteration.

MPI II: Collective operations &
communicators

5. Collective operations
In this exercise we test different routines for collective communication. First, write a

program where rank 0 sends and array containing numbers from 0 to 7 to all the

other ranks using collective communication.

Next, let us continue with four processes with following data vectors:

Task 0: 0 1 2 3 4 5 6 7

Task 1: 8 9 10 11 12 13 14 15

Task 2: 16 17 18 19 20 21 22 23

Task 3: 24 25 26 27 28 29 30 31

In addition, each task has a receive buffer for eight elements and the values in the

buffer are initialized to -1. Implement a program that sends and receives values from

the data vectors to receive buffers using a single collective communication routine

for each case, so that the receive buffers will have the following values:

a)

Task 0: 0 1 -1 -1 -1 -1 -1 -1

Task 1: 2 3 -1 -1 -1 -1 -1 -1

Task 2: 4 5 -1 -1 -1 -1 -1 -1

Task 3: 6 7 -1 -1 -1 -1 -1 -1
b)

Task 0: -1 -1 -1 -1 -1 -1 -1 -1

Task 1: 0 8 16 17 24 25 26 27

Task 2: -1 -1 -1 -1 -1 -1 -1 -1

Task 3: -1 -1 -1 -1 -1 -1 -1 -1
c)

Task 0: 8 10 12 14 16 18 20 22

Task 1: -1 -1 -1 -1 -1 -1 -1 -1

Task 2: 40 42 44 46 48 50 52 54

Task 3: -1 -1 -1 -1 -1 -1 -1 -1

You can start from scratch or use a skeleton file

exercises/ex5_collectives.(c|f90).

Tip: you might

want to create

two

communicators

MPI III: Non-blocking communication &
user-defined datatypes

6. Non-blocking communication
a) Go back to the exercise 3 “Message chain” and implement it using non-

blocking communication.

b) Revisit the exercise 5 “Collective operations” where you replace the

operations with their non-blocking counterparts.

7. Non-blocking communication in heat equation
Implement the halo exchange in heat equation using non-blocking communication.

8. Vector datatype
Write a program that sends a non-contiguous data structure, such as a row (in

Fortran) or a column (in C) of an array from one process to another by using your

own datatype. A skeleton code is provided in

exercises/ex8_vector_type(.c|.f90).

9. Subarray datatype
Write a program that sends a sub-block of a matrix from one process to another by

using the subarray datatype. A skeleton code is provided in

exercises/ex9_subarray_type(.c|.f90).

MPI IV: Communication topologies &
one-sided communication

10. Testing Cartesian process topologies
Create a one-dimensional Cartesian process topology for the message chain.

11. Two dimensional heat equation
Create a two dimensional Cartesian process topology for the halo exchange in the

heat equation. Parallelize the heat equation in two dimensions and utilize user

defined datatypes in the halo exchange during the time evolution. MPI contains also

a contiguous datatype MPI_Type_contiguous which can be used in order to use user

defined datatypes both in x- and y-directions in the halo exchange. A skeleton code is

provided in exercises/ex11_heat_2d(.c|.f90).Utilize user-defined datatypes

also in the I/O related communication.

12. Single-sided message chain
Starting from the Exercise 3 ”message chain”, implement a similar communication

pattern but use now one-sided communication.

13. One-sided communication in the heat equation
solver

Rewrite the halo exchange of the heat equation program using one-sided

communication.

