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BioLuminate Features 

• Protein-protein docking 

• Antibody structure prediction from sequence 

• Antibody humanization 

• Fast homology model generation 

• Accurate long loop predictions 

• Residue scanning 

• Affinity Maturation 

• Cysteine scanning 

• Crosslink design 

• Peptide QSAR 

• Aggregation hot spot ID 

• Free energy perturbation 



• Starting point: 
– Sequence of antibody 

• FAB13B5 
– Crystal structure of known antigen (unbound) 

• HIV-1 Capsid Protein (P24) (Dimerization Domain) 

• 1A43 

• Can we use computational methods to  
predict structure of antibody/antigen 
complex? 
– Epitope ID 

 

 

 

Using BioLuminate to Go From Sequence to Model of  
Antibody/Antigen Complex 



Recognizes & colors chains and CDRs 

Antibody Modeling Using BioLuminate… 

L1 L2 

H3 
H1 

H2 

L3 

• Detects and labels CDR loops 

• Multiple numbering schemes 

Workspace: Sequence Viewer: 

Antibody Aware Environment 



Antibody Modeling – CDR Prediction: Input & Framework 

• Antibody-specific workflow 

• Search public or in-house structures for 

templates 

• Framework selection: 

– Separate control over L/H chain framework 
templates 

– Control over framework used to align chains 

 



Program <L1> <L2> <L3> <H1> <H2> <H3> # Best # Worst 

Accelrys 1.2 0.7 1.4 1.1 1.6 3.0 1 3 

CCG/MOE 0.7 0.5 1.5 1.3 1.1 3.6 1 1 

PIGS server 1.0 0.4 1.4 1.1 0.8 3.2 3 0 

Rosetta 1.0 0.5 1.6 1.7 1.1 3.3 0 2 

BioLuminate 1.0 0.5 1.2 1.1 1.1 2.2 3 0 

H3 Antibody Loop Prediction Remains Difficult  
Using Homology Methods 

- Worst average RMSD for loop 

Red 

Gray 

- Best average RMSD for loop 

Use de novo approach to predict H3 



• Licensed from Vajda group at Boston University 

– Kozakov et al. (2006) Proteins: Struct, Funct, Bioinf 65 392-406 

• #1 server in most recent CAPRI competition 

– Competitive with human groups 

CAPRI rankings  
(Nir London, Rosetta Design 
Group, 2010) 
 
Piper/Cluspro:  

• #1 group 
• #1 server 

Protein-Protein Docking: How do Two Proteins Best Fit Together? 



Antibody Prediction Using BioLuminate 

Predicted CDR region FAB13B5 versus experiment (1E6J, light green) 



Antibody/Antigen Complex: Predicted Versus Experiment 

Modeled FAB13B5 CDR docked with crystal structure of unbound antigen P24 (orange) versus x-ray complex 
1E6J. 3rd ranked complex shown. 



Antibody Modeling – Humanization 

• Easy to use 

• Automatically IDs clashing residues for 
back mutation 

CDR-Grafting (Framework Replacement) Homology-based suggestions 

Compare to human 
sequences 

• Degree of 
variability 

• 3D information 



Aggregation Prediction 

• Aggregation can be viewed as recognition by a large sphere 
– Roll large probe sphere 
– Detect patches of exposed hydrophobic residues 

• Reference: SAP (Spatial Aggregation Propensity) 
– Validated through collaboration with Novartis 
– Chennamsetty et al. (2009) PNAS 106 11937 

 

 
 

 

Color surface red to reflect hydrophobicity of contributing residues 
Red hydrophobic “hot spots” are likely aggregation regions 

Normal surface uses water 
probe 

Much larger effective 
“protein” probe 



Aggregation Surface Analysis 



Protein Stability Thermodynamics 

But what does the unfolded state really look like? 

Folding/unfolding 
equilibrium 



Schematic Thermodynamic Cycle 

 • Simulate the (non-physical) 
protein side chain transformation 

 

• Standard approach in FEP 

 

• All non-physical terms cancel in 
the final result 

DDGstability  = DG1 – DG2 
    = DGA – DGB 

 

A 

B 

1 2 

TRP ALA 

ALA TRP 



Setting up a Cycle 

Unfolded state is modeled by capped peptide 

DDG = DGunfold1 - DGunfold2 = DGprotein - DGpeptide

DGprotein

DGpeptide

DGunfold1 DGunfold2



Current Results, Part of the Fold-X Test Set 

System PDB ID # Mutations R2-value MUE RMSE ΔΔG Sign correct 

T4-Lysozyme 2LZM 66 0.67 1.2 1.6 92% 

Human 
Lysozyme 

1REX 45 0.66 1.3 1.8 80% 

Peptostrept. 
Magn. Prot. L 

1HZ6 44 0.59 1.1 1.3 89% 

B1 IG binding 
protein G 

1PGA 24 0.37 1.1 1.4 79% 

Fibronectin II 
domain 

1TEN 32 0.60 1.4 1.7 91% 

FK506 BP 1FKB 27 0.4 1.6 4.9* 85% 

All 238 0.55 1.2 1.7 87% 

Errors in kcal/mol 
*Result strongly influenced by some outliers Note: No charge changes in this set! 



Correlation Plot 

Blue: 
Outliers of more than   
3x MUE 

Slope = 1.3 
Offset = -0.2 



Comparison to Other Tools 

• FEP+ performs well, but comparable to other tools 

• For FEP+, no parameterisation was necessary, so results are more 
transferable 

 
Software R2-value achieved* Stabilizing/destabilizing  

% correct 
MUE  

[kcal/mol] 

CC/PBSA 0.31 79% 1.0 

EGAD 0.35 71% 1.0 

FoldX 0.25 70% 1.3 

Hunter 0.20 69% 1.1 

I-Mutant2.0 0.29 78% 1.1 

Rosetta 0.07 73% 1.7 

FEP+ (smaller data set!) 0.55 87% 1.2 

* Calculated from R-values given in Tab I of Potapov, 2009, Prot. Eng. Des. Sel., 22, 553 
 



The development of peptide therapeutics 

Lead 
Identification 

• Literature search 

• Library screening 

Hit to Lead 

• Affinity and 
selectivity 
optimization 

• Property 
Optimization  

Lead 
Optimization 

• Half-life 
extension 



Computational tools can accelerate each step 

Lead 
Identification 

• Peptide docking 

Hit to Lead 

• Residue Scanning 

• Affinity 
Maturation 

• Peptide 
QSAR/QSAM 

Lead 
Optimization 

• Peptide 
QSAR/QSAM 



Peptide Modeling with the Biologics Suite 



Lead Identification 
Peptide Docking 



Polypeptide docking and Glide 

• Several brute force sampling methods performs well in polypeptide 
docking but require hundreds or thousands of CPU hours per polypeptide 
docking 
– Rosetta FlexPepDock ab-initio (Raveh et al., PloS one 2011, 6, e18934) 
– DynaDock (Antes, Proteins, 2010, 78, 1084) 
– HADDOCK (Trellet et al., PloS one 2013, 8, e58769) 

• Small molecule docking programs such as Glide are comparatively fast and 
accurate for docking of small molecules   

 

Question:  Can Glide SP dock 4-11 residue polypeptides well? 

 

 

 
Raveh B et al. PloS one. 2011; 6: e18934. 



Performance tested on a dataset from Raveh et al. 

Raveh B et al. PloS One. 2011; 6: e18934. 



Regular Glide Performance is Poor 

• Metric of success: iRMSD of any of top 10 poses < 2.0 Å 

 iRMSD: RMSD of peptide backbone atoms within 8 Å of protein  

 

  
• Only 21% of systems have an accurate pose (iRMSD ≤ 2.0 Å) within top 10 

ranked poses by Glide SP (as compared to 63% with Rosetta FlexPepDock) 
 
 

• α-helical polypeptides not considered (ConfGen does not generate such 
conformations)  

 

 



Optimized SP-PEP parameters improve results  

Parameters ConfGen Rough Scoring Refinement Minimization Final Pose 

Glide Default 17 10 9 5 4 

SP-PEP 17 11 10 8 7 

24 experiments 

SP-PEP Parameters:  10 conformers generated using ConfGen, dock 
each conformer using Glide SP     

Number of systems with at least one iRMSD < 2.0 Å pose 

Tubert-Brohman I et al. Chem. Inf. Model. 2013; 53(7): 1689-99  



Classification of Complexes Based on Accuracy  

PDB Highest ranking of 
accurate pose 

1N7F 2 

1NLN 1 

1NVR 1 

1TW6 1 

2FNT 1 

3D1E 1 

Easy 

PDB Highest ranking of 
accurate pose 

1AWR 1 

1ER8 5 

1SSH 1 

1W9E 18 

1P1K 9 

1VJ0 14 

PDB Highest ranking of 
accurate pose 

2J6F 321 

2O9V 13 

PDB Highest ranking of 
accurate pose 

1QKZ 92 

1RXZ - 

1Z9O - 

2C3I - 

2FGR - 

Medium Hard Very Hard 



Conclusions 

 

• ConfGen performed well finding <2Å RMSD pose in 100% of cases 

 

• α-helical peptides cannot be docked with Glide 

 

• Performance best on short, extended, non-ionizable peptides 

 

• More work is needed to achieve small-molecule like accuracy 

 

Standard SP SP-PEP SP-PEP + MMGBSA Rosetta FlexPepDock 

% cases where top 10 iRMSD < 2Å 21% 41% 58% 63% (but 100x slower) 



Hit to Lead 
Residue Scanning, Affinity Maturation 



Residue Scanning: Overview 

Measure Δ 
 
Affinity 
Stability 
pKa 
Etc. 

• Used to determine what effect 
specific amino acid positions 
have on properties such as 
binding, stability, etc.   
 

• Tells us what mutations may be 
beneficial, and what may be 
harmful 
 

• Can be a very laborious and 
difficult task to do in the lab.   

 

 



Residue Scanning in BioLuminate 

• Select any protein residues to be mutated  

• Run time ~30sec/mutation 

• See how properties change 

– Affinity, stability, hydrophobicity, SASA, etc. 
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• 2 mutation locations 
– Glu107 
– Ser124 

• 25 mutations made and 
tested experimentally 

• Only 3 mutations lead 
to increased thermal 
stability 
– E107D 
– S124K 
– S124R 

• Residue scanning IDs 
these 3 mutations 

3 best scoring predictions are the only 

stabilizing mutations 

Experimental Δ Tm  

Prospective Example: Thermal Stability of SH3 Domain Mutants 



From Residue Scanning to Affinity Maturation 

Protein 1 

Protein 2 

Protein 1 

Protein 2 

Protein 1 

Protein 2 

Protein 1 

Protein 2 

Residue Scanning (single mutations): 

Affinity Maturation/Protein Design (multiple simultaneous mutations): 



• Search multiple residue 
pos simultaneously for 
changes 

• Use to suggest new 
sequences, or to influence 
random library design 

Affinity Maturation in BioLuminate 



Lead Optimization 
Peptide QSAR 



What is QSAM modeling? 

• In traditional QSAR modeling, structural features of 
biomolecules are used to develop models for activity 

– i.e. Activity = f (molecular structure) 
 

• QSAM stands for Quantitative Sequence Activity Modeling: 
– As compared to small molecule QSAR approaches, QSAM models 

sequence information directly using sequence descriptors 

– i.e. Activity = f (peptide sequence) 

 



Sequence descriptors are similar to molecular descriptors 

• They are based on physicochemical properties of the individual 
amino acids that comprise the sequence 
– i.e. size, shape, charge, etc 

• Three Examples: 
– Zvalue: derived from principle components analysis (PCA) of 29 physicochemical 

properties of the 20 natural AAs 
• Hellberg et al. J Med Chem. 1987; 30: 1126-1135. 

– EZvalue: derived from principle components analysis (PCA) of 29 physicochemical 
properties for 87 AAs (natural and modified) 
• Sandberg et al. J Med Chem. 1998; 41: 2481-2491 

– DPPS: 10 score vectors derived from PCA of 109 properties of the 20 natural Aas 
• Properties include 23 electronic properties, 37 steric properties, 54 hydrophobic properties and 5 hydrogen 

bond properties  

• Tian et al. Amino Acids. 2009; 36: 535-554 



QSAM Modelling: Pros and Cons 
• Pros: 

– Very quick calculation 

• There is no need for any sort of 3D-structure 

–And certainly no requirement for alignment/docking 

• Can be used to filter through large lists of sequences very rapidly 

• Cons: 
– Immediate interpretation is difficult 

• The underlying amino-acid descriptors do have physical interpretability 

– Theoretically it is possible to understand what residues are required at 
each position* 

– Success depends on having descriptors for each amino acid present 

• Handling un-natural amino-acids can be difficult 

 
 

* This is as much a limitation of the underlying Canvas PLS implementation as it is of QSAM and the Bioluminate panel. More 
advanced PLS tools (e.g. Umetric’s SIMCA package) would enable a more detailed analysis to be performed.  



Example: Modeling antigenic peptide binding to MHC 

Tian et al. Amino Acids. 2009; 36: 535-554 



The model performs very well 

• The model was derived using the DPPS descriptor on a dataset of 
152 sequences 

• Partial least squares (PLS) regression was used to generate the 
model 

Tian et al. Amino Acids. 2009; 36: 535-554 



But physical interpretation of the model is tricky … 

Tian et al. Amino Acids. 2009; 36: 535-554 

• Standardized coefficients of 40 selected variables from the model. 
• Each variable corresponds to a peptide sequence position. 
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