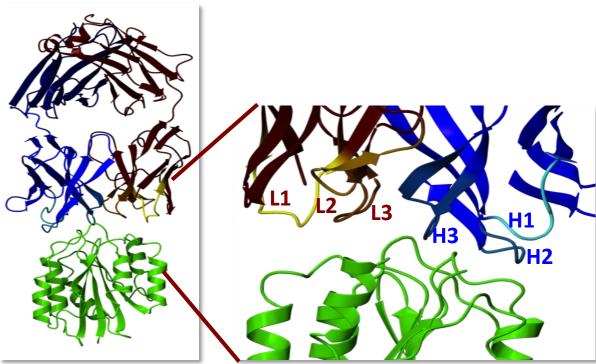
Biologics Modelling Proteins & Peptides

Annette Höglund, Jianxin Duan Helsingfors November 12, 2015

BioLuminate Features

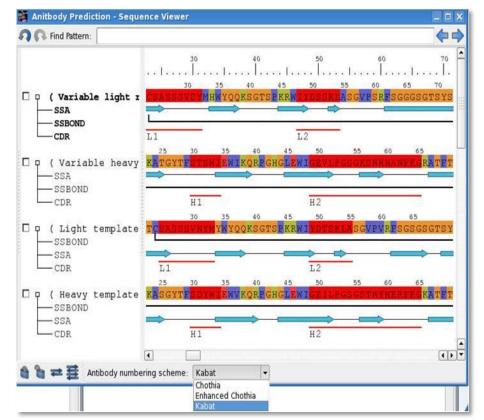
- Protein-protein docking
- Antibody structure prediction from sequence
- Antibody humanization
- Fast homology model generation
- Accurate long loop predictions
- Residue scanning
- Affinity Maturation
- Cysteine scanning
- Crosslink design
- Peptide QSAR
- Aggregation hot spot ID
- Free energy perturbation


Using BioLuminate to Go From Sequence to Model of Antibody/Antigen Complex

K-RAY

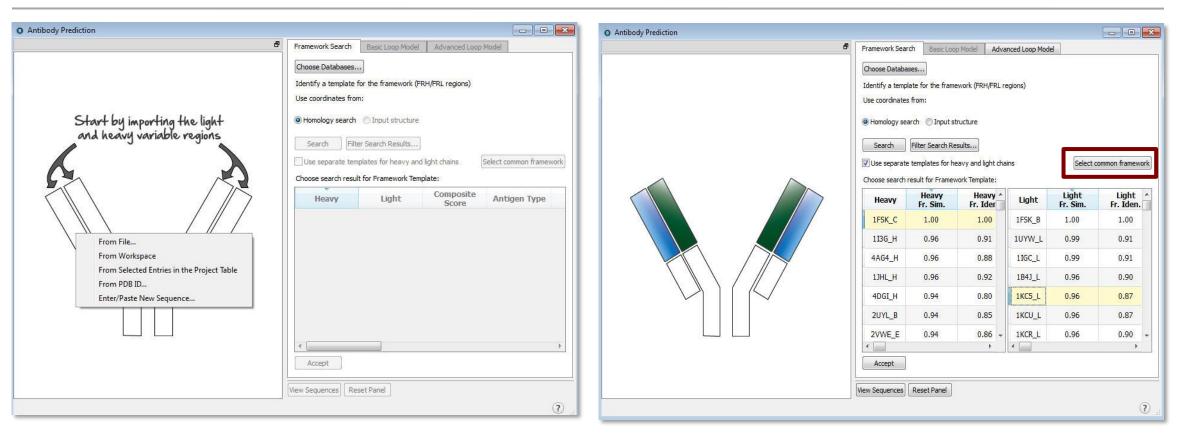
- Starting point:
 - Sequence of antibody
 - FAB13B5
 - Crystal structure of known antigen (unbound)
 - HIV-1 Capsid Protein (P24) (Dimerization Domain)
 - 1A43
- Can we use computational methods to predict structure of antibody/antigen complex? PROTEIN PROTEIN DOCKING
 - Epitope ID -ared a standing the second s

Antibody Modeling Using BioLuminate...


Workspace:

Recognizes & colors chains and CDRs

Antibody Aware Environment


Sequence Viewer:

- Detects and labels CDR loops
- Multiple numbering schemes

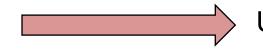
SCHRÖDINGER.

Antibody Modeling – CDR Prediction: Input & Framework

- Antibody-specific workflow
- Search public or in-house structures for templates

- Framework selection:
 - Separate control over L/H chain framework templates
 - Control over framework used to align chains

SCHRÖDINGER.


H3 Antibody Loop Prediction Remains Difficult Using Homology Methods

						\frown		
Program	<l1></l1>	<l2></l2>	<l3></l3>	<h1></h1>	<h2></h2>	<h3></h3>	# Best	# Worst
Accelrys	1.2	0.7	1.4	1.1	1.6	3.0	1	3
CCG/MOE	0.7	0.5	1.5	1.3	1.1	3.6	1	1
PIGS server	1.0	0.4	1.4	1.1	0.8	3.2	3	0
Rosetta	1.0	0.5	1.6	1.7	1.1	3.3	0	2
BioLuminate	1.0	0.5	1.2	1.1	1.1	2.2	3	0
Red - R	est average		rloon					

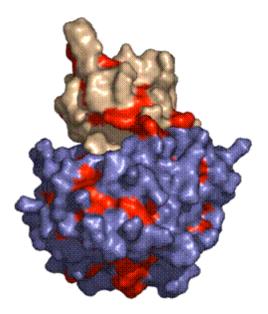
Red- Best average RMSD for loop

Gray

- Worst average RMSD for loop

Use *de novo* approach to predict H3

Protein-Protein Docking: How do Two Proteins Best Fit Together?


- Licensed from Vajda group at Boston University
 - Kozakov et al. (2006) Proteins: Struct, Funct, Bioinf 65 392-406
- #1 server in most recent CAPRI competition
 - Competitive with human groups

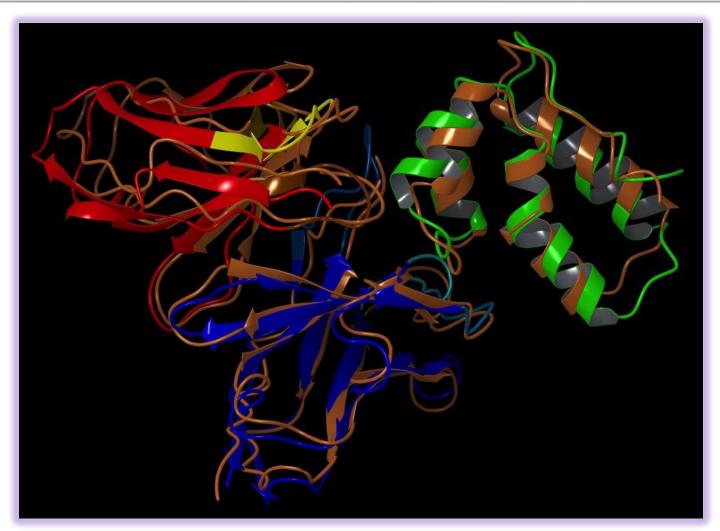
#	Human groups:	Automatic Servers:
1	Sandor Vajda	CLUSPRO
2	Martin Zacharias	HADDOCK
3	Xiaoqin Zou	GRAMM-X
4	Haim Wolfson, Miriam Eisenstein	SKE-DOCK
5	Huan-Xiang Zhou, Zhiping Weng	PatchDock, FireDock, FiberDock
6	Alexandre Bonvin	TOP-DOWN
7	Juan Fernandez-Recio	
8	Jeffrey Gray	

CAPRI rankings (Nir London, Rosetta Design Group, 2010)

Piper/Cluspro:
 #1 group

• #1 server

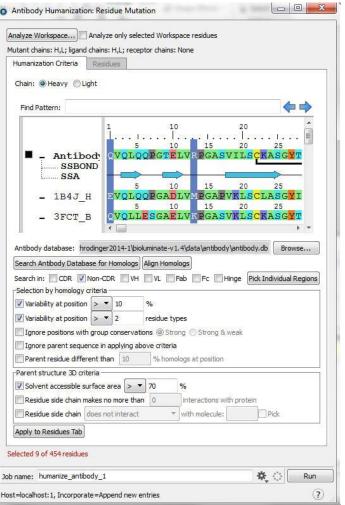
SCHRÖDINGER.


Antibody Prediction Using BioLuminate

Predicted CDR region FAB13B5 versus experiment (1E6J, light green)

Antibody/Antigen Complex: Predicted Versus Experiment

Modeled FAB13B5 CDR docked with crystal structure of unbound antigen P24 (orange) versus x-ray complex 1E6J. 3rd ranked complex shown.

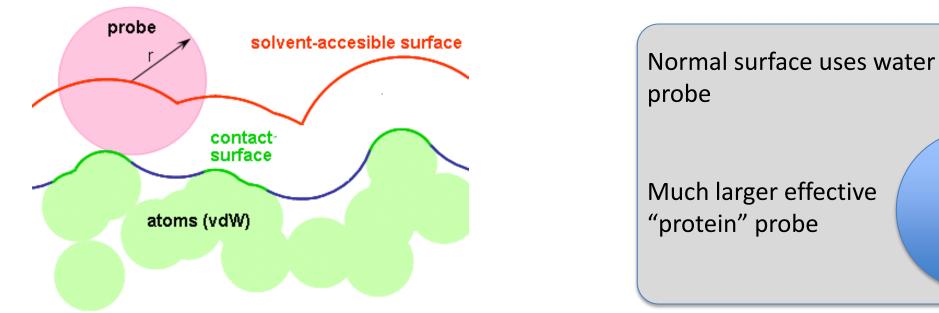

Antibody Modeling – Humanization

CDR-Grafting (Framework Replacement)

tibody struct	ure successfi	ully imported							
	ment framew								
nport framew	vork from:	Database	Framework Structure	Framework Sequen	ce				
Heavy	Light	Structur	e Composite Score	Heavy Sim.	Light Sim.	CDR Stem Geom		inted +Sim	ŕ
3DRO_B	3DRO_A	Model	0.71	0.57	0.85	1.45	0.	87	
знмх_н	3HMX_L	Model	0.82	0.76	0.87	1.96	1.	07	
4G6J_H	4G6J_L	Model	0.77	0.70	0.85	1.97	1.	10	
1 TO 4 D	1 704 4	Madal	0.97	0.07	0.97	2.00	4	11	+
eight option	5								
place Framev	vork								
		numan framewo /framework vd		w residues within 3	.0 Â 🚖 of CDR	sidechain			
Resid	lue	Dist to CDR	CDR Clash	Mutations				Clear Mut	ations
H:1 (ARG)	2.25 Å	x	Query (GLN)			=	Mutate to	Query
H:24 (PH	E)	2.34 Å	x	Query (ALA)				Pick res	idue
H:71 (LY	5)	1.82 Å	x	Query (VAL)			-		
	mutations								

- Easy to use
- Automatically IDs clashing residues for back mutation

Homology-based suggestions

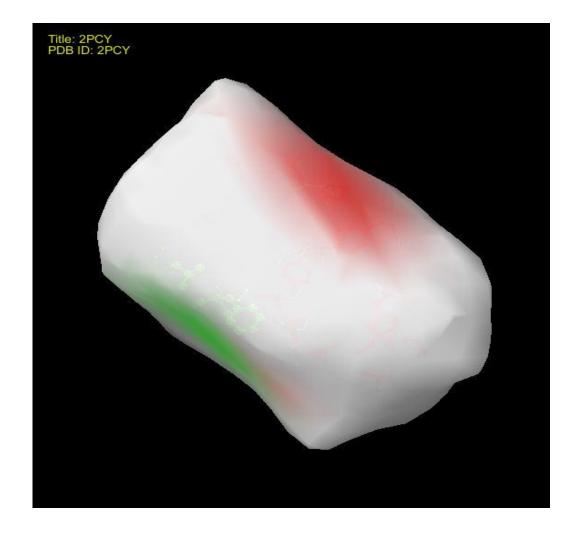


Compare to human sequences

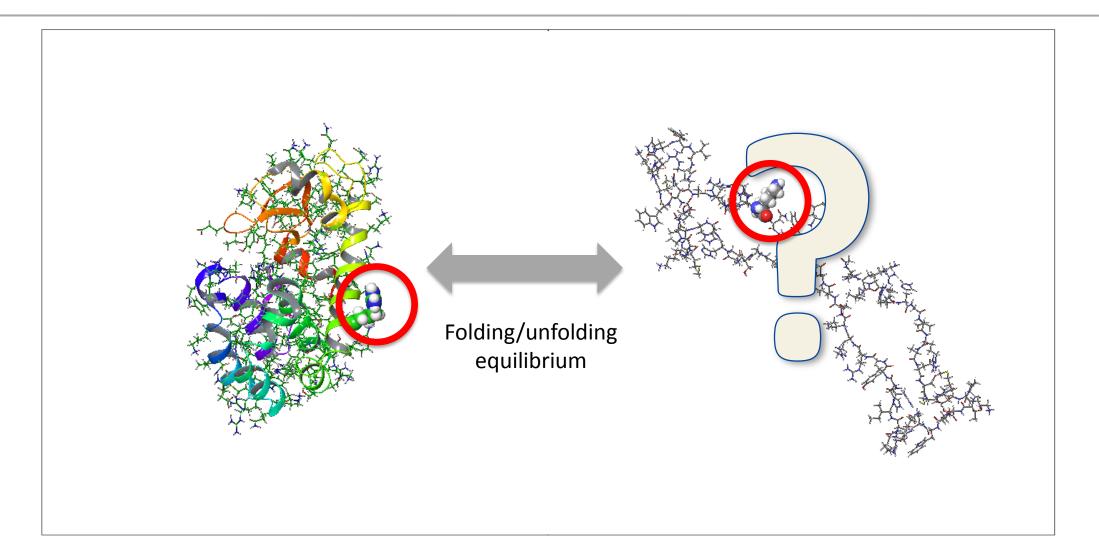
- Degree of variability
- 3D information

Aggregation Prediction

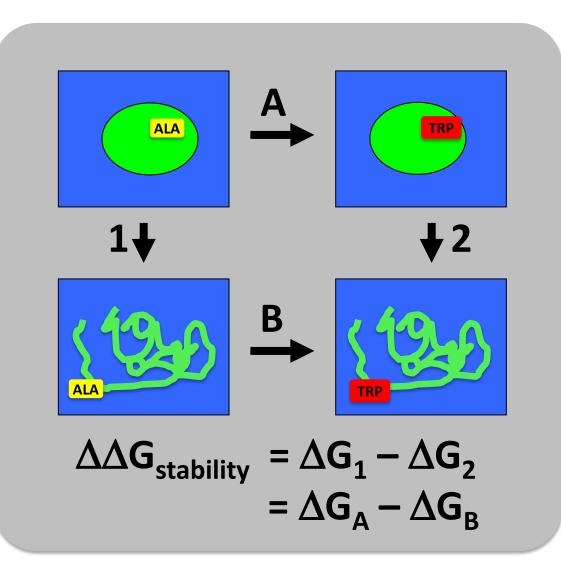
- Aggregation can be viewed as recognition by a large sphere
 - Roll large probe sphere
 - Detect patches of exposed hydrophobic residues
- Reference: SAP (Spatial Aggregation Propensity)
 - Validated through collaboration with Novartis
 - Chennamsetty et al. (2009) PNAS 106 11937



Color surface red to reflect hydrophobicity of contributing residues Red hydrophobic "hot spots" are likely aggregation regions

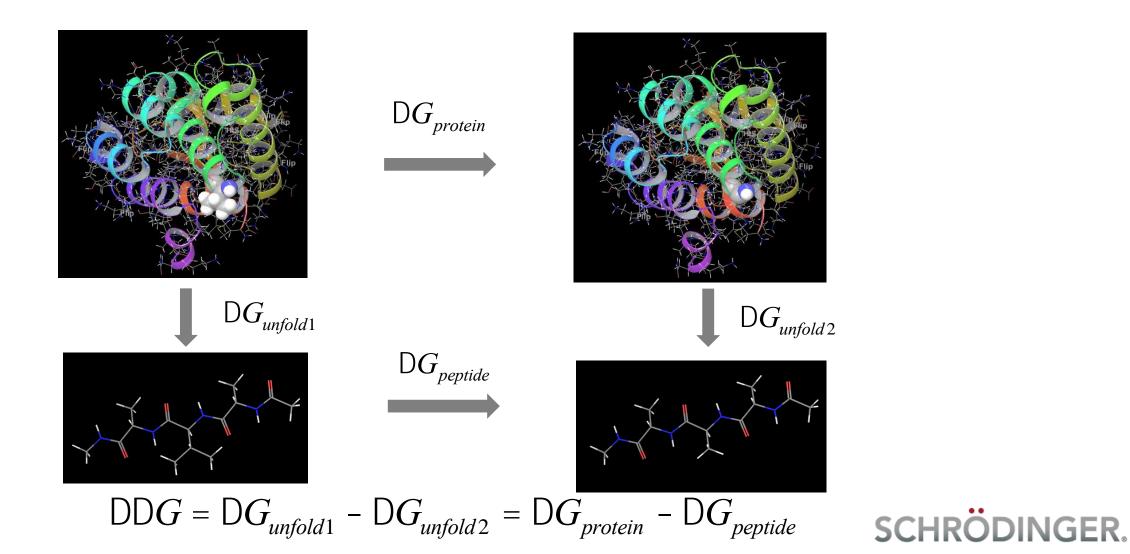

Aggregation Surface Analysis

Create	Analyz	e			
Surface:	Aggregati	ion Prediction Entry	:2 🔻	Analyze	
Res	idue	Contribution		Group	-
A:70 PHE		7	1		
A:63 LEU		3	1		111
A:57 MET	1	2	1		
A:15 VAL		7	2		
A: 16 PRC)	6	2		
A:1 ILE		5	2		-
Select gro	oup: 1 Tot	tal Contribution = 1	2 🔻		
	ALL AND ALL AN	een Reset Aggreg	1	olors	


Protein Stability Thermodynamics

But what does the unfolded state really look like?

Schematic Thermodynamic Cycle



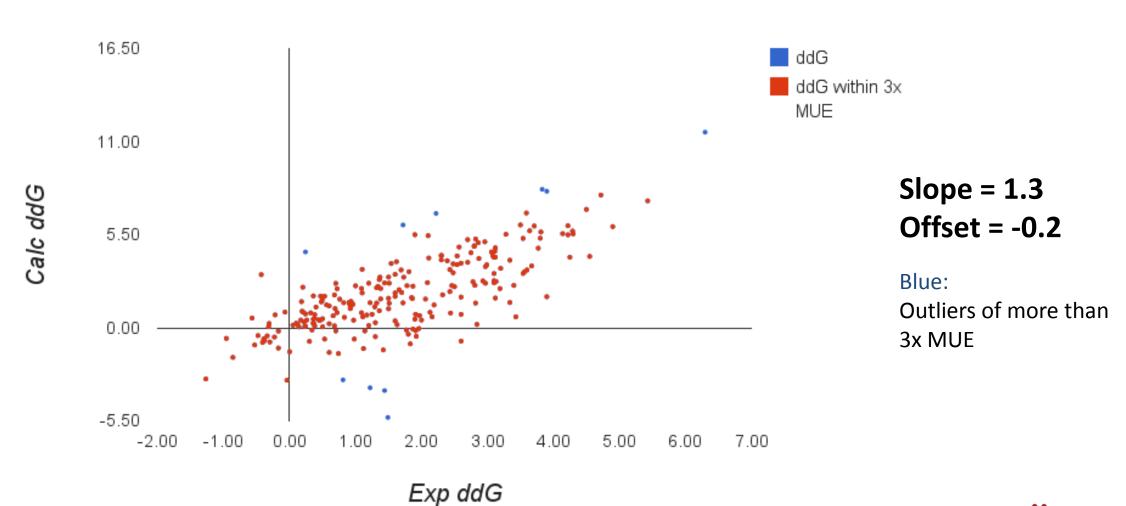
- Simulate the (non-physical) protein side chain transformation
- Standard approach in FEP
- All non-physical terms cancel in the final result

Setting up a Cycle

Unfolded state is modeled by capped peptide

Current Results, Part of the Fold-X Test Set

System	PDB ID	# Mutations	R ² -value	MUE	RMSE	$\Delta\Delta$ G Sign correct
T4-Lysozyme	2LZM	66	0.67	1.2	1.6	92%
Human Lysozyme	1REX	45	0.66	1.3	1.8	80%
Peptostrept. Magn. Prot. L	1HZ6	44	0.59	1.1	1.3	89%
B1 IG binding protein G	1PGA	24	0.37	1.1	1.4	79%
Fibronectin II domain	1TEN	32	0.60	1.4	1.7	91%
FK506 BP	1FKB	27	0.4	1.6	4.9*	85%
All		238	0.55	1.2	1.7	87%


Errors in kcal/mol

Note: No charge changes in this set!

*Result strongly influenced by some outliers

Correlation Plot

SCHRÖDINGER.

Comparison to Other Tools

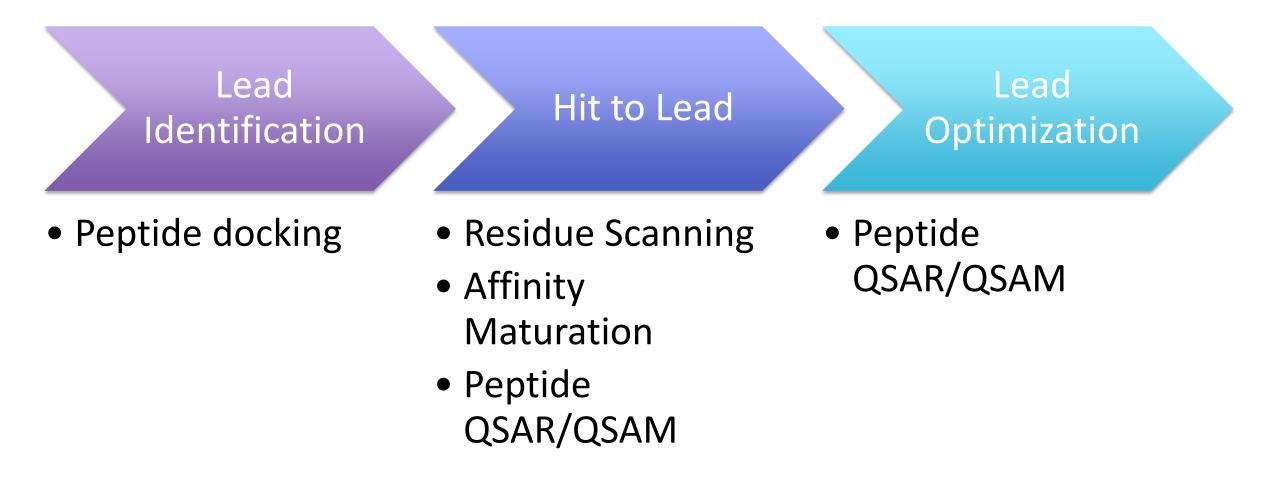
- FEP+ performs well, but comparable to other tools
- For FEP+, no parameterisation was necessary, so results are more transferable

Software	R ² -value achieved*	Stabilizing/destabilizing % correct	MUE [kcal/mol]
CC/PBSA	0.31	79%	1.0
EGAD	0.35	71%	1.0
FoldX	0.25	70%	1.3
Hunter	0.20	69%	1.1
I-Mutant2.0	0.29	78%	1.1
Rosetta	0.07	73%	1.7
FEP+ (smaller data set!)	0.55	87%	1.2

SCF

* Calculated from R-values given in Tab I of Potapov, 2009, Prot. Eng. Des. Sel., 22, 553

The development of peptide therapeutics


optimization

Optimization

Property

Computational tools can accelerate each step

Peptide Modeling with the Biologics Suite

asks Workflows Scripts	Window	Help 🍓 🛇 🔟 💷 🔒 📀 🕴 🛜 🖣
Show Tree	ЖR	
Application View		
Show Favorites Only		
ADME/Tox	•	
Align Structures	•	
Binding Energy Estimation	•	
Biologics	•	Homology Modeling
Calculate Energy	•	Antibody Modeling
Conformational Search	•	Residue Scanning 🕨 🕨
Coordinate Scan	•	Affinity Maturation
Core Hopping	•	Cysteine Mutation
Docking	•	Loop + Sidechain Prediction
Free Energy Calculations	•	Implicit Solvent Refinement + Analysis
Homology Modeling		Protoin Protoin Dealting
Library Design	•	Protein-Protein Docking
Ligand Preparation		Protein Interaction Analysis
Ligand Properties		Peptide Docking
Materials	•	Low Normal Mode Analysis
Minimization	•	Residue and Loop Mutation
Molecular Dynamics	•	Peptide Alpha Helicity
Pharmacophore Modeling	•	Residue Analysis
pKa Prediction	•	Peptide QSAR
Protein Analysis	•	Aggregation Surface
Protein Preparation	-	
Protein Refinement	•	Protein Structure Assessment
Protein X-Ray Refinement		Consensus Viewer
QSAR	•	Reactive Residues
Quantum Mechanics	•	Crosslink Proteins
Shape Screening		Chimeric Model Generation

Ta

Lead Identification

Peptide Docking

Polypeptide docking and Glide

- Several brute force sampling methods performs well in polypeptide docking but require hundreds or thousands of CPU hours per polypeptide docking
 - Rosetta FlexPepDock *ab-initio* (Raveh et al., *PloS one* **2011**, *6*, e18934)
 - DynaDock (Antes, Proteins, 2010, 78, 1084)
 - HADDOCK (Trellet et al., *PloS one* 2013, 8, e58769)
- Small molecule docking programs such as Glide are comparatively fast and accurate for docking of small molecules

Question: Can Glide SP dock 4-11 residue polypeptides well?

Performance tested on a dataset from Raveh et al.

PDB ID Holo/Apo	Sequence	Atoms	Rotatable Bonds	Residues	Secondary Structure
1AWR/2ALF	HAGPIA	80	19	6	С
1ER8	HPFHLLVY	145	35	8	C
1N7F/1N7E	AVTRTYSC	124	39	8	b+C
1NLN	QVQSLKRRRCF	198	62	11	b+C
1NVR/2QHN	ASVSA	61	18	5	b+C
1QKZ	ANGGASGQVK	124	40	10	C
1RXZ/1RWZ	KSTQATLERWF	193	58	11	b+C
1SSH/10OT	GP PPAMPARP T	154	36	11	C
1TW6	AVPI	62	12	4	C
1W9E/1RJ6	NEFYF	92	25	5	b+C
1Z9O	EDEFYDALS	137	44	9	C
2C3I/2J2I	KRRRHPSG	147	44	8	C
2FGR/2FGQ	DNWQNGTS	116	37	8	С
2FNT	RQVNFLG	120	34	7	C
2J6F	PPKPRPRR	152	38	8	C
209V/209S	VPPPVPPPS	144	25	10	С
2P1K	SATSAKATQTD	148	50	11	b+C
2VJ0/1B9K	FEDNFVP	106	27	7	С
3D1E	GQLGLF	91	25	6	С

SCHRÖDINGER.

Regular Glide Performance is Poor

Metric of success: iRMSD of any of top 10 poses < 2.0 Å
 iRMSD: RMSD of peptide backbone atoms within 8 Å of protein

Only 21% of systems have an accurate pose (iRMSD ≤ 2.0 Å) within top 10 ranked poses by Glide SP (as compared to 63% with Rosetta FlexPepDock)

α-helical polypeptides not considered (ConfGen does not generate such conformations)

Optimized SP-PEP parameters improve results

Parameters	ConfGen	Rough Scoring	Refinement	Minimization	Final Pose
Glide Default	17	10	9	5	4
			24 experime	nts	
SP-PEP	17	11	10	8	7

Number of systems with at least one iRMSD < 2.0 Å pose

SP-PEP Parameters: 10 conformers generated using ConfGen, dock each conformer using Glide SP

Tubert-Brohman I et al. Chem. Inf. Model. 2013; 53(7): 1689-99

Classification of Complexes Based on Accuracy

PDB	Highest ranking of accurate pose						
1N7F	2	1AWR	1	2J6F	321	1QKZ	92
1NLN	1	1ER8	5	209V	13	1RXZ	-
1NVR	1	1SSH	1			1Z9O	-
1TW6	1	1W9E	18			2C3I	-
2FNT	1	1P1K	9			2FGR	-
3D1E	1	1VJ0	14				
	Easy		Medium		Hard		Very Hard

Conclusions

	Standard SP	SP-PEP	SP-PEP + MMGBSA	Rosetta FlexPepDock
% cases where top 10 iRMSD < 2Å	21%	41%	58%	63% (but 100x slower)

- ConfGen performed well finding <2Å RMSD pose in 100% of cases
- α-helical peptides cannot be docked with Glide
- Performance best on short, extended, non-ionizable peptides

• More work is needed to achieve small-molecule like accuracy

Hit to Lead

Residue Scanning, Affinity Maturation

Residue Scanning: Overview

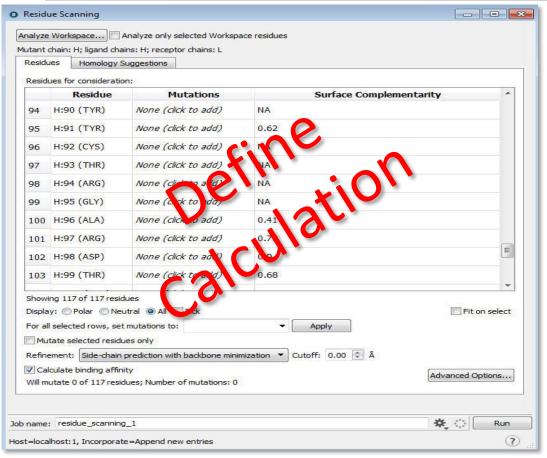
Measure Δ

Affinity

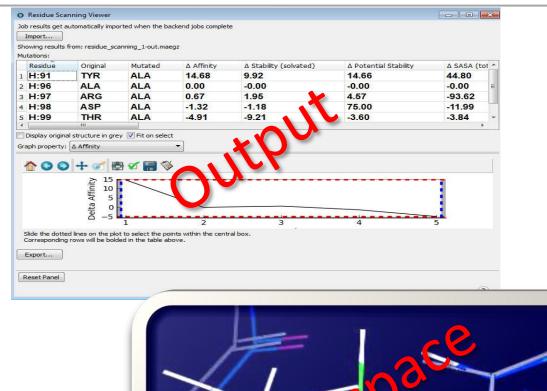
Stability

рКа

Etc.

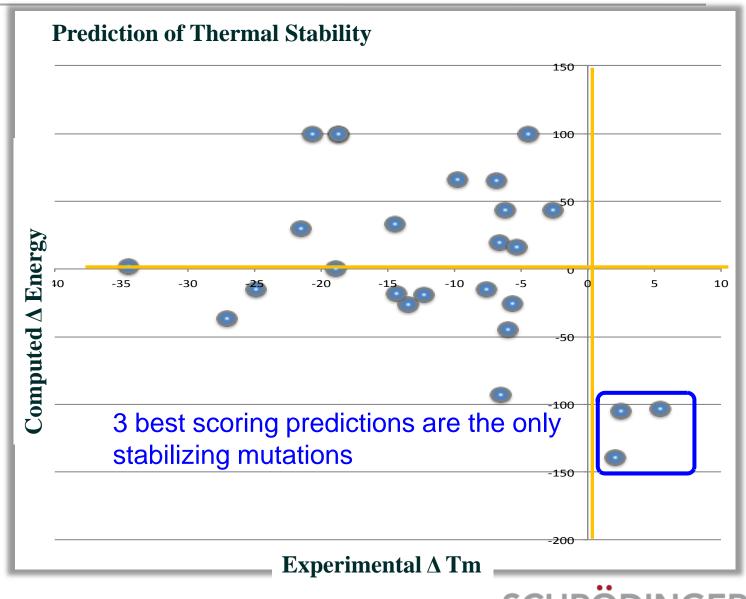


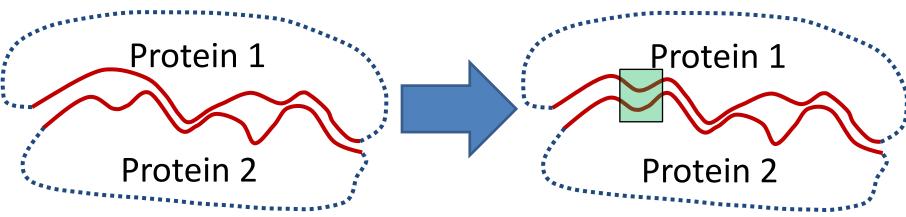
- Used to determine what effect specific amino acid positions have on properties such as binding, stability, etc.
- Tells us what mutations may be beneficial, and what may be harmful
 - Can be a very laborious and difficult task to do in the lab.



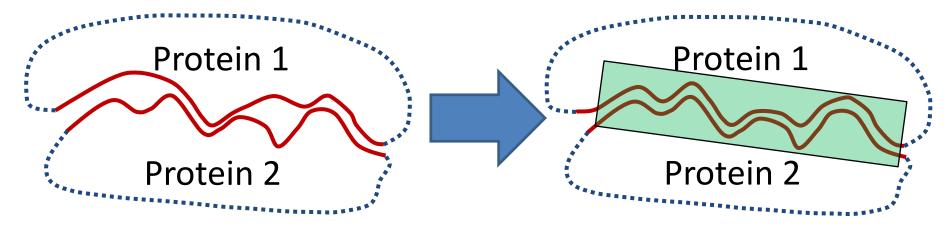
Analogs

Residue Scanning in BioLuminate


- Select any protein residues to be mutated
- Run time ~30sec/mutation
- See how properties change
 - Affinity, stability, hydrophobicity, SASA, etc.

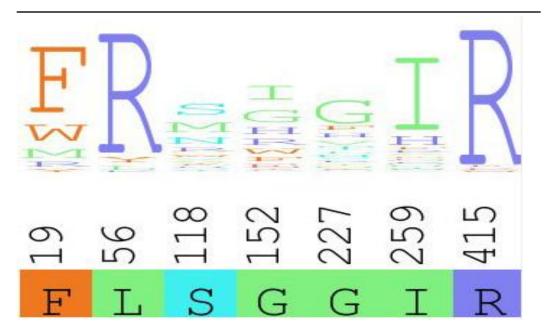

Prospective Example: Thermal Stability of SH3 Domain Mutants

- 2 mutation locations
 - Glu107
 - Ser124
- 25 mutations made and tested experimentally
- Only 3 mutations lead to increased thermal stability
 - E107D
 - S124K
 - S124R
- Residue scanning IDs these 3 mutations



From Residue Scanning to Affinity Maturation

Residue Scanning (single mutations):


Affinity Maturation/Protein Design (multiple simultaneous mutations):

Affinity Maturation in BioLuminate

- Search multiple residue pos simultaneously for changes
- Use to suggest new sequences, or to influence random library design

Resid	ues Homology S	Suggestions		
Resid	dues for consideration	on:		
	Residue	Mutations	Surface Complementarity	^
52	A:54 (ASP)	None (click to add)	NA	
53	A:55 (ILE)	GLN, GLY, GLU, CYS, AS	0.18	
54	A:56 (PHE)	None (click to add)	0.7	
55	A:57 (SER)	None (click to add)	NA	
56	A:58 (ASN)	ILE, GLN, GLY, GLU, CY	0.09	
57	A:59 (ARG)	ILE, GLN, GLY, GLU, CY	0.88	
58 Show Displa	A:60 (GLU) ving 195 of 195 resid ay: Polar Ne	ILE, GLN, GLY, CYS, ASP	0.8	
58 Show Displa For a Mu Optir Optir Optir Br Max Prop Max	A:60 (GLU) ving 195 of 195 resident ay: Polar Ne ving selected rows, se utate selected resident mization options:	ILE, GLN, GLY, CYS, ASP dues utral All Pick t mutations to: , MET, LEU, ARG, ues only tion Maximum steps: 2000 ve search (slow)	0.8 □ Fit on , TYR Apply	

S

(1

Lead Optimization

Peptide QSAR

What is QSAM modeling?

- In traditional QSAR modeling, structural features of biomolecules are used to develop models for activity

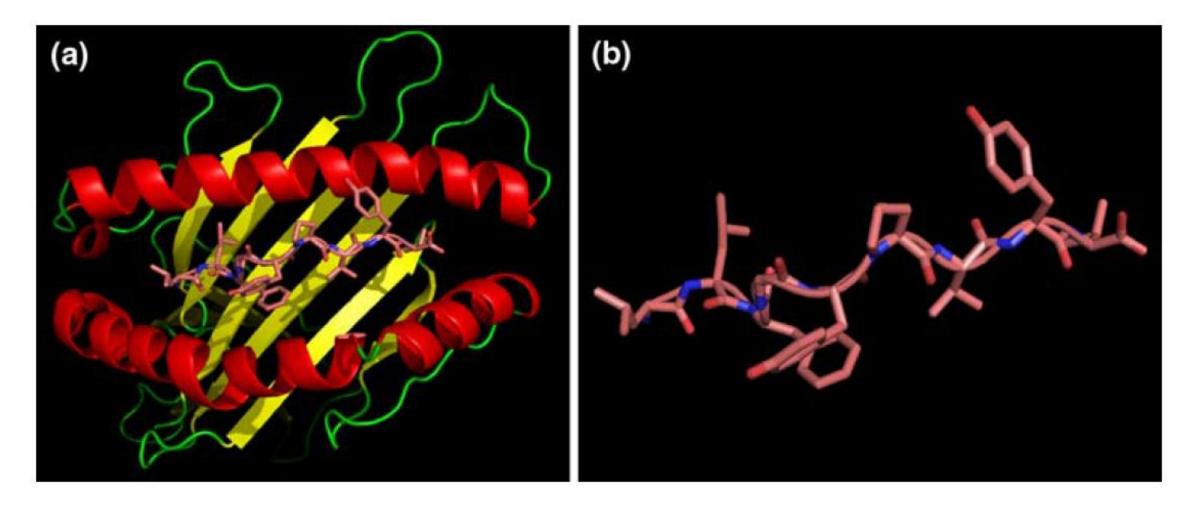
 i.e. Activity = f (molecular structure)
- QSAM stands for Quantitative Sequence Activity Modeling:

 As compared to small molecule QSAR approaches, QSAM models
 sequence information directly using sequence descriptors

- i.e. Activity = **f** (peptide sequence)

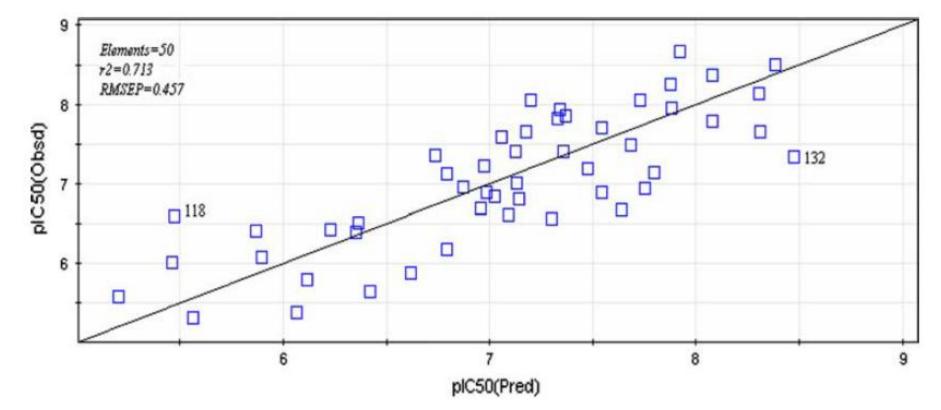
Sequence descriptors are similar to molecular descriptors

- They are based on physicochemical properties of the individual amino acids that comprise the sequence
 - i.e. size, shape, charge, etc
- Three Examples:
 - Zvalue: derived from principle components analysis (PCA) of 29 physicochemical properties of the 20 natural AAs
 - Hellberg et al. J Med Chem. 1987; 30: 1126-1135.
 - EZvalue: derived from principle components analysis (PCA) of 29 physicochemical properties for 87 AAs (natural and modified)
 - Sandberg et al. J *Med Chem*. 1998; 41: 2481-2491
 - DPPS: 10 score vectors derived from PCA of 109 properties of the 20 natural Aas
 - Properties include 23 electronic properties, 37 steric properties, 54 hydrophobic properties and 5 hydrogen bond properties
 - Tian et al. *Amino Acids*. 2009; 36: 535-554


QSAM Modelling: Pros and Cons

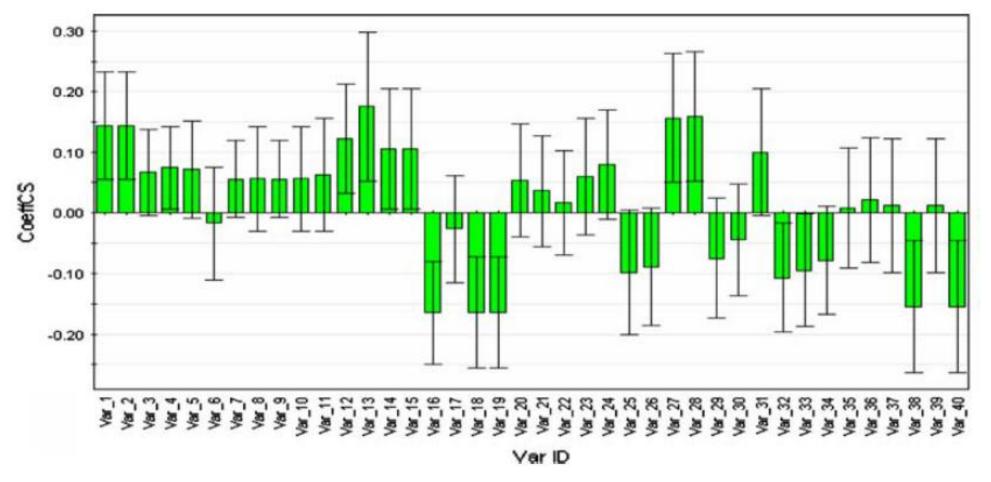
- Pros:
 - Very quick calculation
 - There is no need for any sort of 3D-structure
 - And certainly no requirement for alignment/docking
 - Can be used to filter through large lists of sequences very rapidly
- Cons:
 - Immediate interpretation is difficult
 - The underlying amino-acid descriptors do have physical interpretability
 - Theoretically it is possible to understand what residues are required at each position*
 - Success depends on having descriptors for each amino acid present
 - Handling un-natural amino-acids can be difficult

* This is as much a limitation of the underlying Canvas PLS implementation as it is of QSAM and the Bioluminate panel. More advanced PLS tools (e.g. Umetric's SIMCA package) would enable a more detailed analysis to be performed.


Example: Modeling antigenic peptide binding to MHC

Tian et al. Amino Acids. 2009; 36: 535-554

The model performs very well



- The model was derived using the DPPS descriptor on a dataset of 152 sequences
- Partial least squares (PLS) regression was used to generate the model

Tian et al. Amino Acids. 2009; 36: 535-554

SCHR

But physical interpretation of the model is tricky ...

• Standardized coefficients of 40 selected variables from the model.

SC

• Each variable corresponds to a peptide sequence position.

Tian et al. *Amino Acids*. 2009; 36: 535-554

Acknowledgement

- David Pearlman
- Kai Zhu
- Johannes Maier
- Eric Feyfant
- Thijs Beuming
- Thomas Steinbrecher

