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Our Five Main Software Suites 



Agenda 

Recent Advances in Small Molecule Design 
1. Screening for covalently bound inhibitors 
2. Using water energetics to guide the optimization of Platelet Derived 

Growth Factorβ inhibitors 
3. Improving alignments for 3D ligand-based design 
 

Recent Advances in Biologics Design 
4. Computational approaches for enzyme design 
5. Predicting protein-protein binding affinity using free energy 

perturbation 
 



Part 1: Recent Advances in Small Molecule 
Design 
 



Case Study # 1: Screening for Covalently-
bound Inhibitors 
 

Toledo Warshaviak, D. et al. A Structure-Based Virtual Screening Approach for 
Discovery of Covalently Bound Ligands. J Chem Inf Model. 2014. 54(7):1941-50 

 

Tools used: Glide, Prime, CovDock 



Mechanism of Covalent Inhibition 

• A covalent bond is formed between the target and the inhibitor 

• The inhibition can be either reversible or irreversible 

 

 

EFGR protein bound Neratinib (2JIV) Hep C Virus protease bound peptide-like ligand (3OPY) 



CovDock Key Steps 

1. Initial docking (Glide) 

 

 

 

 

1. Residue sampling (Prime) 

 

 

 

1. Ligand refinement (Prime) 

 

 

 

 

 

 

 

1. Final scoring (Glide) 



CovDock Performs Very Well on Pose Prediction 

• Results from 76 Ouyang et al. complexes 

—13 Michael Addition; 63 acetylation beta-lactam 

• Additional comparison made with AutoDock and GOLD 

• RMSD is measured between the docked pose and the reference crystal 
structure 

 

 

 

 

 

 

 

 

Pose Schrödinger           
CovDock-LO 

CovalentDock* Autodock* GOLD* 

Top scoring pose 1.8  3.4 3.5 4.0 

Best of 10 lowest 
energy poses 

1.4 1.9 2.5 3.4 

*Ouyang, X. et al. (2012) Journal of Computational Chemistry, 34(4), 326–336 
 



CovDock for Virtual Screening 

• Limited VS applications/tools for covalent docking currently 
exist and process is not well automated 
– Across tools: limited auto preparation of ligands and protein, manual definition 

of reactive atoms and reaction type 

• CovDock “pose prediction” mode takes about 1-3 hours/ligand 
per CPU. Need better speed to screen thousands of ligands 
efficiently 

• The CovDock virtual screening protocol is tailored to address 
throughput needs, while retaining good pose-prediction 



Virtual Screening Results 

• Retrospective study of four targets with covalent inhibitors 

• Decoy libraries with matched physicochemical properties were generated  

Potency Range Known 
Actives 

Decoys EF 1% EF 10% BEDROC (a= 20) 

HCV NS3 Protease 2-4300 nM 25 1562 52 7 0.70 

Cathepsin K 0.13 – 460 nM 21 1562 9 8 0.48 

EGFR 0.5 – 1 uM 34 5000 46 8 0.65 

XPO1 25nM – 5 uM 21 5000 33 7 0.52 



Applying hydrogen bonding constraints improves results 

With Filters Without Filters 

EF1% EF10% EF1% EF10% 

HCV NS3 Protease 52 7.2 16 2.7 

 
Cathepsin K 9.4 8.1 4.7 1.4 

 
EGFR 46 7.7 38 6.2 

XPO1 33 6.7 33 6.7 



Covalent Docking 

• Reduce setup time by downloading pre-generated custom reaction inputs 

 

 

 

 

 

 

 

 

• Dock ligands with multiple reactions in a single experiment (command line only)  

• Supports Glide positional, H-bond and torsional constraints (command line only) 

www.schrodinger.com/CovDock/Covalent-Reactions-Repository 



Case Study # 2: Using Water Energetics to 
Guide the Optimization of Platelet Derived 
Growth Factorβ inhibitors 

Horbet, R. et al. Optimization of Potent DFG-in Inhibitors of Platelet Derived Growth 
Factorβ (PDGF-Rβ) Guided by Water Thermodynamics. J Med Chem. 2015. 58(1):170-
182. 

 

Tools used: Glide and WaterMap 



Why Is water important? 

• Water is everywhere in biology 

• Protein binding sites are mostly filled with water 

• Water is a direct competitor in ligand and substrate binding 

• Displacement of unhappy waters can lead to big potency gains 

• But…water energetics cannot be determined from structure alone 



Thrombin  
S1 pocket 

WaterMap visualization 

• WaterMap computes the 
entropy and enthalpy of 
“hydration sites” 

• These can be used to 
rationalize SAR, drive 
potency, and tune 
selectivity 
– Green = stable 
– Red = unstable 

• Provides a “map”, not a 
GPS 

Stable 
(happy) 
waters 

Unstable 
(unhappy) 
water 



Optimization of a 3,5-Diaryl-pyrazin-2(1H)-one inhibitors 
of PDGF-Rβ 

Starting compound, IC50 = 0.5uM,  
Selective for the β isoform. 

Docked pose overlaid with a VEGF-R2 
DFG-in inhibitor 



Using WaterMap, the authors predicted an unstable water to 
target for displacement, resulting in a potency boost 

• Modifications were introduced based on the WaterMap-derived hypothesis 
• Resulted in a 10x increase in potency 

Docked pose of designed analog overlaid with WaterMap results 2D Ligand Interaction Diagram 



Case Study # 3: Improving Alignments for 
3D Ligand-Based Design 

Cappel C. et al. Exploring Conformational Search Protocols for Ligand-Based Virtual 
Screening and 3-D QSAR Modeling . J Comput Aid Mol Des. 2015. 29(2):165-182. 

 

Tools used: ConfGen, MacroModel, Phase, Field-based QSAR 



The success of 3D LBDD methods is dependent on two things 

 

1. Adequate 3D conformational sampling of compounds in your 
screening library 
– Exhaustive sampling can be performed prior to initiating a screen, or 

may be during the screen to a lesser extent. 
 

 

2. Accurate alignment of conformers to the 3D conformation of 
your reference (i.e. active) compound. 

 

 

 



Study to assess the effects of alignment and conformational search algorithms 

12 series of congeneric series from literature, criteria: 
• Activity data from the same protocol from one publication 
• Share common scaffold 
• At least one co-crystallized ligand 
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Phase_Align_Core outperformed the rest 
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Example: UPA 
FAST 
Q2 = 0.14 (field) 
Q2 = 0.08 (atom) 

COMPREHENSIVE 
Q2 = 0.27 (field) 
Q2 = 0.50 (atom) 

flex_align 

Q2 = 0.35 (field) 
Q2 = 0.35 (atom) 

phase_align_core 

Q2 = 0.75 (field) 
Q2 = 0.72 (atom) 



How phase_align_core works 

Find maximum common scaffold (largest ring system) 
between alignment template and each ligand 

Change coordinates of common scaffold to the ones of 
template 

Constrain core and sample conformations of remaining 
part of the molecule 

Take conformation with maximized shape overlap 



Take home messages from this study 

• QSAR predictions sensitive to conformational search protocols 
– Best predictions obtained when core of the molecule restrained to 

core of query 
– Amongst unconstrained search methods, the most thorough one 

performed best 

• Manual refinement of alignment would likely produce better 
models 

• Overall the best conformational search and alignment protocol 
is phase_align_core 

• phase_align_core also generates good alignments for 
non-Xray alignment template 



Part 2: Recent Advances in Biologics Design 
 



Biologics Suite Features 

• Protein-protein docking 

• Antibody structure prediction from sequence 

• Antibody humanization 

• Fast homology model generation 

• Accurate long loop predictions 

• Residue scanning 

• Affinity Maturation 

• Cysteine scanning 

• Crosslink design 

• Peptide QSAR 

• Aggregation hot spot ID 



Case Study # 4: Computational 
Approaches for Enzyme Design 

Sirin, S. et al. A Computational Approach to Enzyme Design: Predicting ω-
aminotransferase activity using docking and MM-GBSA rescoring . J Chem Inf Model. 
2014. 15(8):2334-2346. 

 

Tools used: Glide, MM-GBSA, Desmond, Residue Scanning, KNIME 



Enzyme Engineering Seeks to optimize binding and/or turnover 

SUB 
 
 

Enzyme 

 
 

Enzyme 

SUB 
Mutation 

Applications: 

–Biocatalysis 

–Biosensors 

– Food and detergent additives 

 



ω-Aminotransferase example 

Wild-type w-aminotransferase chemistry 
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Structure of wild type ω-Aminotransferase  



Protonation states were examined to identify an optimal 
starting structure 

PROPKA was used to determine protonation states of active site residues and substrate 
MD analysis revealed that State 5 is the most stable reactive conformation 



Computational workflow 



Prediction of target substrate binding was carried out by 
induced fit docking and metadynamics 

Clustering of 30ns metadynamics simulation 



Retrospective analysis of predictions: ROC 

• 89 variants were analyzed, with activities measured experimentally at 4 and 24 hours. 
• 27 variants were inactive, while 62 had some activity toward the target substrate 



Automated KNIME workflow – available for use 



Case Study # 5: Predicting Protein-Protein 
Binding Affinity Using Free Energy 
Pertubation 

Unpublished data 



Free energy perturbation is the most accurate free energy calculation  

ΔGwt 

ΔGmut 

ΔGcomplex 

ΔΔG = ΔGwt – ΔGmut = ΔGcomplex – ΔGsolvent 

ΔGsolvent 

To calculate rigorous ΔΔG 
values, alchemical 
intermediates are employed. 
These intermediates allow 
gradual perturbation of the 
wild-type protein to the 
mutant protein. 
 



Overview of Study 

System PDB ID 
No. 

mutants 

CAL-PDZ/ical36 peptide  4E34 5 

TEM-1 Beta-
Lactamase/BLIP  

1JTG 16 

Barnase/Barnstar 1BRS 27 

SC Serine 
Protease/OMTKY3  

1R0R 137 

SG Protease B/OMTKY3  3SGB 140 

SG Protease B 1SGP 13 

Ribonuclease 
inhibitor/angiogenin  

1A4Y 18 

Ras/RalGDS  1LFD 19 

TPR scaffold protein/CTR 
Hsp90  

3FWV 6 

Non-charged mutations 

R2= 0.76 
Slope = 1.0 



Example 1: SG Protease B/Inhibitor (3SGB) 

Mutation type 

 

R2 Slope MUE RMSE 

Non polar 0.48 0.81 1.04 1.43 

Aromatic 0.63 0.67 1.01 1.21 

Polar 0.76 1.02 0.73 0.98 

Charged 0.46 1.46 2.17 2.81 

T17S 

ΔΔGExpt    -2.62 kcal/mol 

ΔΔGFEP       -2.23 kcal/mol 



Example 2: TPR Scaffold Protein/CTR Hsp90 (3FWV) 

R2= 0.60 
Slope = 0.95 

Peptide Sequence 
MEEVF 



Thank you! 


