
CSC BioWeek 2016: Using Taito cluster for high throughput data
analysis

3. 2. 2016

Working with files in command line

A note on typography:

Some command lines are too long to fit a line in printed form. These are indicated by a backslash “\”
at the end of line. It should not be included when typing in the command.

For example

example command \

continues \

and continues

Should be typed in as:

example command continues and continues

Exercise 1: Working with data columns

Login to taito-shell.csc.fi

cd $WRKDIR

mkdir ex1

cd ex1

Copy exercise data to your own directory:
cp /wrk/trng52/0302/ex1.zip .

Open zip package:
unzip ex1.zip

The files include a result file from a BLAST search (pb_blast_results)

You can try re-runnig the BLAST search if you wish, using these commands:

module load biokit

1

pb blastn -query R.fasta -dbnuc NC_009656.fna -out pb_blast_results -outfmt 7

By running command:
head -50 pb_blast_results

You can see that the result file contains columns, where the query sequences are in the first
column and the hit sequences in the second column. You can now check, how many hits each
query sequence got with command:
awk '{print $1}' pb_blast_results | grep -v "#" | sort | uniq -c | sort -k1n

Study how this command works by executing it step by step:
awk '{print $1}' pb_blast_results

awk '{print $1}' pb_blast_results | grep -v "#"

awk '{print $1}' pb_blast_results | grep -v "#" | sort

awk '{print $1}' pb_blast_results | grep -v "#" | sort | uniq -c

awk '{print $1}' pb_blast_results | grep -v "#" | sort | uniq -c | sort -k1n

You can check the number of query sequences in the input file with command:
grep -c ">" R.fasta

Alternative ways to count number of sequences with EMBOSS:
module load emboss

seqcount R.fasta

infoseq_summary R.fasta

If you compare that to the number query sequences in the result file:
awk '{print $1}' pb_blast_results | grep -v "#" | sort | uniq -c | wc -l

You can notice that the command used above shows no information for those query sequences
that did not get any matches.

2

Excercise 2:

Often it is necessary to change files slightly to use them in different analysis programs. This
exercise simulates some typical changes you need to do.

Copy a file “hsa.gff3” to your own directory:

cp /wrk/trng52/0302/hsa.gff3 .

Now do the following changes to the data:

1. Remove comment lines (lines starting with #)
2. Remove all lines that include tag ‘miRNA_primary_transcript’
3. Change chromosome names from format chr1, chr2, .. to format 1, 2,...
4. The 9. column is now format:

ID=MI0006363_1;Alias=MI0006363;Name=hsa-mir-1302-2
Change it to format:
gene_id “MI0006363_1”
You can omit the Alias and Name entries.

5. Sort the file by chromosome and by miRNA start position (4. column). Make sure to sort
the chromosomes in numerical order, not in alphabetical (i.e 1,2,3... not 1,10,11..)

6. Output result to a file
7. Make another file that only has entries from chromosome 2

It’s possible to do the above in single command line, but you can use temporary files if you wish.

Extra exercise:

In Exercise 1 we only looked at sequences that did produce a match.

Use linux commands to generate a list of those query sequences that did not produce any hits.

There is no single right way to do this task. You probably need several commands and temporary
files to get the result. You can use for example grep or diff commands.

3

