
Kimmo Mattila
Ari-Matti Sarén

CSC BioWeek 2016

Using Taito cluster for high throughput data analysis

3.-4. 2. 2016
1

CSC Environment

2

Sisu

Ø Cray XC40 Massively Parallel Processor (MPP) supercomputer
• 3376 12-core 2.6-GHz Intel Haswell 64-bit processors
• 40512 cores
• 2,67 GB memory/core
• Aires interconnects

Ø Meant for jobs that parallelize well
• Normally 64-4096 cores/job (MPI)
• can be increased for Grand Challenge projects

Ø Modest selection of bioinformatics tools
l Molecular dynamics codes: gromacs, namd, Amber

Ø Sisu user’s guide
• http://research.csc.fi/sisu-user-guide

3

Taito

Intel Sandy Bridge

Infiniband FDR

HP Apollo 6000 XL230a/SL230s Supercluster

Ø New nodes: 2 x 12 core 2.6 GHz Intel Haswell processors
● 397 nodes with 128 GB memory (5,3 GB/core)
● 10 nodes with 256 GB memory (10,7 GB/core)
● Total of 9768 Haswell cores

Ø Old nodes: 2 x 8-core 2.6 GHz Intel Sandy Bridge processors
● 496 nodes with 64 GB memory (4 GB/core)
● 16 nodes with 256 GB memory (16 GB/core)
● 2 nodes with 1,5 TB memory and 32 cores (47 GB/core)
● 4 login nodes with 64 GB memory (4 GB/core)
● Total of 9344 Sandy bridge cores

Ø Also GPU and MIC nodes available

Ø Meant for serial and mid-size parallel jobs

Ø 1-448 cores/job (more posible after scalability tests)

Ø Maximum of 896 simultaneous jobs/user

Ø Taito user’s guide: http://research.csc.fi/taito-users-guide
4

Taito-shell.csc.fi

Ø Service for interactive computing

Ø Direct access to an interactive batch queue in Taito
cluster

Ø Limits: 4 cores, 128 GB of memory, unlimited runtime.
Ø When you log out, all processes will be terminated

ssh taito-shell.csc.fi

Ø User’s guide: https://research.csc.fi/taito-shell-user-guide

5

core

core

core

core

core

core

core

core

CPU

core

core

core

core

core

core

core

core

CPU

M
em

ory
64,256

or1500
G

B

core

core

core

core

core

core

core

core

CPU

core

core

core

core

core

core

core

core

CPU

M
em

ory
64

G
B

SLURM
batch
job

system

Login nodes (2)
Computing nodes (989)

Taito cluster

6

File systems and directories

http://research.csc.fi/csc-guide-directories-and-data-storage-at-csc

Directory Intended use Default
quota/user

Storage time Backup

$HOME
Initialization scripts, source codes,
small data files.
Not for running programs or researchdata.

50 GB permanent Yes

$USERAPPL
Location for users' own application
software installations

50 GB permanent Yes

$TMPDIR
Run-time temporary files. ~ 2 days No

$WRKDIR
Temporary data files. 5 TB Until further

notice. No

project
Common storage for project members.
A project can consist of one or more
user accounts.

On request permanent Yes

HPC-Archive Long term storage 2 TB permanent Yes

7

File system (Sisu and Taito)

login
nodes

compute
nodes

$TMPDIR$TMPDIR$TMPDIR$TMPDIR $TMPDIR

login
nodes

compute
nodes

$TMPDIR

$HOME

$WRKDIR

iRODS
based

archive serverData transport with iRODS client

taito.csc.fi sisu.csc.fi

$USERAPPL$USERAPPL

8

Connecting to the Servers of CSC

Ø Terminal connections (ssh, PuTTY, SUI)
l usage through typed commands
l Graphics requires Xterm connection

Ø Scientist's User Interface
• Usage through web interface
• Mostly used for managing your account and files
• No bioscience applications

Ø NoMachine/FreeNX virtual desktop
l requires local client installation
l Norman terminal connections can be used
l Enables using grapical interfaces and

displaying images

http://research.csc.fi/csc-guide-connecting-the-servers-of-csc
9

Managing files in unix command line
http://research.csc.fi/csc-guide-linux-basics-for-csc

10

Unix/linux commands

Basic syntax:

comand -option argument
ls
ls -l
ls -l myDirectory

Use man command to get information about
possible options

man ls

11

Commands for directories:

cd change directory
ls list the contents of a directory
pwd print (=show) working directory
mkdir make directory
rmdir remove directory

12

Commands for files:

cat print file to screen
cp copy
less view text file
rm remove
mv move/rename a file
head show beginning of a file
tail show end of a file
grep find lines containing given text
wc count number of words or lines
file check the type of the file

13

Special characters:

*(asterisk), wild card, means any text
ls *.fasta

| (pipe) guides output of a command to an input of another commands
ls *.fasta | less

> Writes output to a new file
ls > files_of_the_directory.txt

~ (tilde) means your home directory as does $HOME
cp test.txt ~/file.txt

cp text.txt $HOME

& runs command in background
gzip my_big_file.tar &

\ (backslash) escape, used to tell the system to ignore special meanings
cp this\ filename\ has\ spaces.txt $WRKDIR

14

Piping

Ø It is also possible to ”pipe” output of one command to another
command using ”|” characters

Ø This can be faster that using files as there is no disk I/O

ls –l | less

cat myfile.txt | sort | uniq

15

Redirection

Ø It is often useful to redirect the output (stdout) of a command to a file
Ø ”>” will overwrite the contents

Ø Try:
ls > filelist

cat filelist

Ø Depending on your bash settings, may cause error if target file exists

Ø ”>>” will append to a file
Ø Try:

echo ”one” > test

echo ”two” > test

echo ”three” >> test

cat test

Ø Sometimes it’s necessary to capture stderr as well
command > out.file 2> err.file

16

Redirection

Ø Redirection can also be done in the other direction

Ø Redirect the contents of the file to the standard input (stdin) of a command
cmd < file

Ø Redirect a bunch of lines to the stdin. If 'EOL' is quoted, text is treated literally.
cmd << EOL

line1

line2

EOL

Ø Redirect a single line of text to the stdin of a command
cmd <<< "string"

17

Variables and arrays

To set a variable:
variable=value

To use a variable
$variable

var1="Hello"

var2="World"

echo $var1 $var2

To set an array
array=(value1 value2 valueN)

To use a value in an array (note: zero based)
${array[n]}

array=(a b c)

echo ${array[1]}

18

Variables and arrays

Sometimes it is necessary to separate variable name from rest of the
command:

This would not work:
sed -n $SLURM_ARRAY_TASK_IDp namelist

So instead we can use:

sed -n ${SLURM_ARRAY_TASK_ID}p namelist

or

sed -n ”$SLURM_ARRAY_TASK_ID”p namelist

19

Environment variables

Ø Normal variables only visible to the process that set them

Ø To make a variable visible also to any child processes (e.g. any
programs run from a shell), you must use export command:
export PATH=${PATH}:${USERAPPL}/mcl/version-12-068/bin

Ø Typical examples are the system variables that point to different file
system locations: $HOME, $USERAPPL, $WRKDIR etc

Ø SLURM has it own set of useful system variables:
$SLURM_CPUS_PER_TASK, $SLURM_ARRAY_TASK_ID etc

20

Quotes

Ø Different quotes have different fuctionalities

’’ Take text enclosed within quotes literally
` ` Take text enclosed within quotes as command and

replace with output
”” Take text within quotes literally after substituting any variables

Ø Compare the results of these commands:
var=”test”; echo ’echo $var’
var=”test”; echo `echo $var`
var=”test”; echo ”echo $var”

21

Some useful commands for parsing lines

Try these to see what they do!

sed
echo "one this two this three" | sed s/this/that/
echo "one this two this three" | sed s/this/that/g

awk
echo ”one two three” | awk ’{print $2}’
echo ”one;two;three” | awk –F”;” ’{print $2 $3}’

cut
echo ”123456789” | cut –c 4
echo ”123456789” | cut –c -4
echo ”123456789” | cut –c 4-
echo ”123456789” | cut –c 4-7
echo ”one_two_three” | cut –d ”_” –f 2

All of these have much more options. See man pages for details.

22

Some useful commands for parsing lines

grep is a powerful tool for finding regular expressions in files

grep pattern file returns the lines from file containing the pattern

grep –c pattern file returns the count of lines containing the pattern

grep –v pattern file reverses output, i.e. returns lines not containing
the pattern

grep –w pattern file returns only complete word matches

grep –f file1 file2 returns lines in file2 that also exist in file1

grep ”^pattern” file ^ matches beginning of line

grep ”pattern$” file $ matches end of line

It’s good to remember that grep operates line by line, i.e. matches separated into two
lines are not found.

23

Data handling

24

Some brief generalizations:
Ø Directories containing tens of thousands of files are
often problematic (use subdirectories and/or aggregation)

Ø It’s usually faster to move one large file than many small ones

Ø On the other hand you should avoid too large files
• it’s nicer to re-send one 100 GB chunk than the whole 1 TB file

Ø Consider compression

Ø Prefer file formats that have checksums or other verification
mechanisms

Ø Data should be packaged for saving in Archive server or IDA

25

Ø tar
• concatenates a set of files into one file. Does not compress by

default
• preserves directory structure

many compression programs don’t handle directories well/at
all

answer: first tar, then compress
• making a tar package:

tar cf myfolder.tar myfolder

• opening a tar package:
tar xf myfolder.tar

• checking tar file contents
tar tf myfolder.tar

• Tar can automatically use gzip (z) and bzip2 (j) compression
tar zcf myfolder.tgz myfolder

http://research.csc.fi/csc-guide-packing-and-compression-tools#2.6.1

26

File compression

Ø File compression/decompression takes time, but
saves storage space and time on upload/download

• net gain depends on data size
Ø Files used in bioinformatics (sequences, pedigree files

etc) are often text-based and compress well (to ~30%
of original size)

Ø Compressed file formats typically include checksums
• if you can uncompress the file without error messages you

know your data is intact
Ø Commonly used compression programs:

• zip
• gzip
• bzip2

http://research.csc.fi/csc-guide-packing-and-compression-tools

27

Ø zip
• compressing

zip myfiles.zip file1 file2

• uncompressing
unzip myfiles.zip

• leaves origan file intact

Ø gzip
• compressing

gzip myfile

• uncompressing
gunzip myfile.gz

• replaces original file with the compressed file

Ø bzip2
• slightly better compression ratio than zip/gzip
• mostly linux spesific
• compressing

bzip2 myfile

• uncompressing
bunzip2 myfile.bz2

• replaces original file with the compressed file

28

Ø Linux
• tar, zip, gzip, bzip2 part of most standard distributions

Ø Windows
• 7-Zip
free
makes and opens tar, zip, gzip, bzip2
http://www.7-zip.org/

Ø Mac
• tar, zip, gzip available on standard installation

29

Moving data
to and from CSC

http://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment

30

IDA
Long term
storage

HPC
archive

CSC
Computing
environment

FUNET
File sender

Your computer

Your colleague

Moving data to and from CSC

SUI
Scp, rsync
WinSCP

Web sites

Browser

SUI

iRODS
SUI
WebDAV

wget

wget Browser
wget

iRODS

iRODS

iRODS
SUI
WebDAV

Browser
wget

AVAA

31

IDA
Long term
storage

HPC
archive

CSC
Computing
environment

FUNET
File sender

Your computer

Your colleague

Scientist's User Interface

SUI

Web sites

Browser

SUI

SUI

SUI

32

Ø SUI Scientist’s User Interface
• WWW based interface for CSC
• MyFiles tool can be used for file upload and download

• Uploading files larger than 2 GB works on some browsers (Chrome, Safari)

• GSI-SSH Console based SFTP for larger files

http://research.csc.fi/csc-guide-data-transport-with-scientist-s-user-interface

33

IDA
Long term
storage

CSC
archive

CSC
Computing
environment

FUNET
File sender

Your computer

Your colleague

Traditional data transport tools

SUI
scp, rsync
WinSCP
Remote disk mounts

Web sites

34

Ø scp is a standard tool and works well
scp myfiles.tar.gz ’user1@hippu3.csc.fi:$WRKDIR’

scp ’user1@hippu3.csc.fi:$WRKDIR/myfiles.tar.gz’

Ø rsync can be used for data mirroring and moving very large files and
directories

rsync -avz -e ssh my_data kkayttaj@hippu4.csc.fi:/wrk/kkayttaj

Ø Several graphical file transport tools exisits
- e.g. Fugu for mac

File transport tools for Linux and Mac

http://research.csc.fi/csc-guide-copying-files-from-linux-and-mac-osx-machines-with-scp

http://research.csc.fi/csc-guide-using-rsync-for-data-transfer-and-synchronization

35

Ø most commercial ssh programs have graphical file moving
interfaces

Ø commonly used PuTTY does not (it does have command line
based scp and sftp)

Ø winSCP is good free option

http://winscp.net/eng/index.php

File transport tools for Windows

36

Remote disc mounts

Ø Fuse (linux) OSXFUSE (Mac) allow
you to mount you disk areas at CSC to
your local computer

Ø With this arrangement you can use
locally installed tools to work with data
that locates at CSC

Ø Can be used in to link CSC directories
to virtual machines (linux) running in
cPouta cloud service

http://www.csc.fi/english/pages/data-services/transport/remote_mounts
37

IDA
Long term
storage

CSC
archive

CSC
Computing
environment

FUNET
File sender

Your computer

Your colleague

Wget and curl: command line tools for
downloading files

Web sites

wget
curl

wget
curl

wget
curl

Browser
wget

Browser
wget

38

wget and curl: command line tools for
downloading files

l wget and curl are a simple command line tools to download data from a
given ULR
lhandy tools to move a file from internet to the servers of CSC

Syntax:
wget URL
curl URL > file

For example:

wget ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/chrY.fa.gz

Use your local browser to locate the file you need and then download it directly
to CSC by using wget or curl command in Sisu or Taito.

39

Bioinformatics specific tools

l wget and curl are general purpose tools for data download.

Some data sources can be used through source specific tools in Taito

l Ensemblfetch: download genomes form ensembl:

ensemblfetch pseudomonas_aeruginosa_pa7

l Edirect package to download data from NCBI:

esearch -db nucleotide -query "NC_009656" | \
efetch -format fasta > NC_009656.edirect.fna

l SRA-toolkit to download data from SRA databases:

sam-dump SRR490207 > SRR490207.sam

40

IDA
Long term
storage

CSC
archive

CSC
Computing
environment

FUNET
File sender

Your computer

Your colleague

FUNET File Sender

Web sites

Browser

wget Browser
wget

41

Funet FileSender
https://filesender.funet.fi/

Ø DropBox like service provided by CSC
Ø Intented to be used as a replacement

for e-mail attachments
Ø Browser based, no need for client

installations
Ø Maximum file size 200 GB
Ø Storage time 14 days
Ø Uploaded data is readable to anybody

(who knows the link)
Ø Can be accessed from CSC too with

wget and curl.

42

HPC-Archive and IDA storage services
Based on iRODS technology

(Integrated Rule-Oriented Data System)

http://www.tdata.fi/ida

43

IDA
Long term
storage

HPC-
archive

CSC
Computing
environment

FUNET
File sender

Your computer

Your colleague

HPC archive

Web sites

SUI

iRODS

44

IDA
Long term
storage

HPC-
archive

CSC
Computing
environment

FUNET
File sender

Your computer

Your colleague

IDA storage service

Web sites

iRODS
SUI
WebDAV

iRODS
iRODS
SUI
WebDAV

AVAA

45

Using archive servers

Ø Storage service – not a mounted disk
• very large capacity
• for stabile datasets only
• retrieving the files may take a few minutes
– Speed: about 2 GB/min at the servers of CSC (1 TB takes ~ 1,5 days!)

Ø Can be accessed with SUI and iRODS commands: iput, iget etc.
• Visible to Sisu and Taito

Ø You have to reconfigure your iRODS connection when you want
start using another archive server.

Ø Avoid archiving small individual files on the servers
If you have to archive small files, you should first combine them to tar format and compress

http://research.csc.fi/csc-guide-archiving-data-to-the-archive-server

46

IDA storage service
l iRODS based storage system for storing, archiving and sharing

scientific data
l The service was launched 2012. Guaranteed until 2017.
l Usage through personal accounts and projects
l Each project has a shared directory
l Speed: about 2 GB/min at the servers of CSC (1 TB takes ~ 1,5

days!)
l CSC host's the service but universities and academy of Finland

allocate the storage space

Three interfaces:
l WWW interface in Scientists' User Interface
l network directory interface for Mac and Windows
l command line tools (i-commands are available at CSC)

47

HPC Archive and IDA interfaces at CSC

Some iRODS commands
l iput file move file to IDA
l iget file retrieve file from IDA
l ils list the current IDA directory
l icd dir change the IDA directory
l irm file remove file from IDA
l imv file file move file inside IDA
l irsync synchronize the local copy

with the copy in IDA
l imkdir create a directory to IDA
l iinit Initialize your IDA account
l imeta command manage metadata

IDA In Scientist's User Interface

48

IDA HPC-archive
l Part of ATT, you need to

apply for a storage quota.
l Quotas granted by

universities and Academy of
Finland

l Several interfaces
(WWW/SUI, network disk, i-
commands)

l Internet accessible
l Project based structure
l Data can be made public

through Etsin (metadata)
and AVAA (data)

l http://avointiede.fi/ida

l Part of CSC computing environment

l 2,5 TB default quotas for CSC users

l Usage with i-commands

l Visible only to CSC environment
l Personal storage area

l https://research.csc.fi/csc-guide-
archiving-data-to-the-archive-
servers

49

EUDAT https://eudat.eu/

B2DROP

l Secure and trusted data exchange service for researchers and scientists to keep their
research data synchronized and up-to-date and to exchange with other researchers

B2SHARE

l A user-friendly, reliable and trustworthy way for researchers, scientific communities and
citizen scientists to store and share small-scale research data from diverse contexts.

B2SAFE

l A robust, safe and highly available service which allows community and departmental
repositories to implement data management policies on their research data across multiple
administrative domains in a trustworthy manner

50

Module system on Taito

51

● Different software packages have different, possibly
conflicting, requirements.

● LMOD module system is used to manage software
and programming environments

● module load biokit sets up most of the bioinformatics
tools (but not all the tools)
● See software web pages for details

Module system

52

Most commonly used module commands:

module load modulename Loads the given environment module
module load modulename/version

module list List the loaded modules
module avail List modules that are available to be loaded

(i.e. compatible with your current environment)
module spider List all existing modules
module spider name Searches the entire list of existing modules

module swap module1 module2 Replaces a module with a another module and
tries to re-load compatible versions of other
loaded modules

module unload modulename Unloads the given environment module
module purge Unloads all modules

53

Running jobs on CSC servers

54

Types of jobs

Ø Serial jobs
Ø Use only one core
Ø Many older bioinformatics tools

Ø Embarrassingly parallel tasks:
Ø Job can be split to numerous sub jobs
Ø You can use array jobs and splitting utilizing tools like pb blast,

cluster_interproscan, trinity, miso.

55

Types of jobs

Ø Threads/ OpenMP based parallelization
Ø Many bioinformatics tools use this approach. Bowtie2, BWA, Tophat,
Ø All the parallel processes must see the same memory -> all processes must run

within one node -> can utilize max 16/24 cores
Ø Applications rarely benefit from more than 4-8 cores

56

Types of jobs

Ø MPI parallelization.
Ø Each task has own memory -> can utilize several nodes
Ø Check scaling before launching big jobs
Ø Using too many cores can actually make your job run slower

57

Parallel jobs

Ø Only applicable if your program supports parallel running

Ø Check application documentation on number of cores to use
• Speed-up is often not linear
• Maximum number of cores can be limited by the algorithms
• Using too many cores can actually make your job run slower

58

Interactive vs. Batch jobs

Ø Typical interactive jobs
Ø Short jobs
Ø Serial jobs (or small shared memory parallel jobs)
Ø Software with GUI

Ø Typical batch jobs
Ø Long jobs
Ø Parallel jobs
Ø Jobs that need specific resources (e.g. hugemem nodes, GPU

nodes etc.)

59

Interactive jobs in Taito-shell

Ø Interactive jobs are best run on Taito-shell
• Login to: taito-shell.csc.fi
• Resources reserved automatically

• Currently 4 cores/128 GB memory

• no time limit on jobs
• Note: screen/nohup will not work!

• When you log out/disconnect all jobs will be killed

• https://research.csc.fi/taito-shell-user-guide

Ø If the job:
• Takes long
• Can be run in batch mode
• Can use more than one core

you should consider running it as a batch job
60

Interactive jobs in Taito

Ø Only very small tasks should be done on the login nodes

Ø Any ”real” jobs should be run on Taito-shell
Ø You can use command sinteractive to start taito-shell session in

Taito

Ø Bigger interactive jobs can be run on Taito by reserving
resources through the batch job system
Ø Mainly necessary if you need specific resources (e.g. more memory or

cores than in Taito-shell)

Ø https://research.csc.fi/taito-interactive-batch-jobs

61

Interactive jobs in Taito

• Example using srun

srun –n 1 -mem=256000 -t02:00:00 --x11=first --pty $SHELL

module load myprog

myprog

Here the option "--x11=first" sets up the x11 connection so that graphical user
interfaces can be used, and option "--pty $SHELL" runs the default command
shell

• Example using salloc

salloc -n 32 --ntasks-per-node=16 --mem-per-cpu=1000 -t00:30:00 -p parallel

srun mdrun_mpi -s topol1 -dlb yes

srun mdrun_mpi -s topol2 -dlb yes

exit

62

screen
Ø screen is a virtual window manager

• available on Taito
• your session stays ”as is” even if you disconnect

Ø Basic commands
• open a new screen

screen

• list open screens
screen –ls

• re-attach to a screen (if only one open)
screen –r

• re-attach to screen with id 12345 (as shown by screen –ls)
screen –r 12345

• detach from screen
screen -d

• screen exits when all processes (including the shell) exit. Or type
Ctrl+a Shift+k

63

screen

Ø Using screen with Taito-shell

Open a connection to Taito:
ssh taito.csc.fi

Take note of the login node. Let's assume taito-login3.

Open a screen session using command:
screen -R

In the screen session, open a taito-shell session with command:
sinteractive

When you want to leave the session running in the background, detach from screen using Ctrl-a d.

Now you can logout from Taito, but your screen session in taito-login3 and the Taito-shell session within it is preserved.

To reattach to your session, connect first to the Taito login node where you have your screen session running. For example:

ssh taito-login3.csc.fi

Then, reattach the screen session with command

screen -R

64

Batch jobs
Ø Steps for running a batch job

1. Write a batch job script
• Script format depends on server, check the user guides, e.g:

http://research.csc.fi/taito-user-guide
http://research.csc.fi/sisu-user-guide

• You can use the Batch Job Script Wizard in Scientist’s User Interface:
https://sui.csc.fi/group/sui/batch-job-script-wizard

2. Make sure you have all the necessary input files where the
program can find them
• Usually best to use $WRKDIR
• $HOME has limited space
• Login $TMPDIR is not available in compute nodes

3. Submit your job
sbatch myscript

65

Batch jobs
Ø User has to specify necessary resources

• Can be added to the batch job script or given as command line
options for sbatch (or a combination of script and command line
options)

Ø Resources need to be adequate for the job
• Too small memory reservation will cause the job to use swap disk

(very slow) or even fail
• When the time reservation ends, the job will be terminated whether

finished or not

Ø But: Requested resources can affect the time the job
spends in the queue
• Especially core number and memory reservation

Ø So: Realistic resource request give best results
• Not always easy to know beforehand
• Usually best to try with smaller tasks first and check the used

resources
66

Batch Job Script wizard in Scientist’s User Interface

67

Batch Job Script wizard in Scientist’s User Interface

68

Submitting a Batch Job Scientist’s User Interface

Ø Go to My Files
Ø Select a file
Ø From the pop-up menu select ”Submit batch job”

69

#!/bin/bash -l
#SBATCH -J bowtie2
#SBATCH -o output_%j.txt
#SBATCH -e errors_%j.txt
#SBATCH -t 02:00:00
#SBATCH -n 1
#SBATCH --nodes=1
#SBATCH --cpus-per-task=6
#SBATCH --mem=6000
#SBATCH -p serial
#

module load biokit
bowtie2-build chr_18.fa chr_18
bowtie2-align -p $SLURM_CPUS_PER_TASK chr_18 reads.fq > out.sam

Example serial batch job script on Taito:

70

#!/bin/bash -l

Ø Tells the computer this is a script that should be run
using bash shell

Ø Everything starting with ”#SBATCH” is passed on to
the batch job system

Ø Everything starting with ”# ” is considered a comment

Ø Everything else is executed as a command

#!/bin/bash -l

#SBATCH -J bowtie2

#SBATCH -o output_%j.txt

#SBATCH -e errors_%j.txt

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH --nodes=1

#SBATCH --cpus-per-task=6

#SBATCH --mem=6000

#SBATCH -p serial

#

module load biokit

bowtie2-build chr_18.fa chr_18

bowtie2-align -p $SLURM_CPUS_PER_TASK
chr_18 reads.fq > out.sam71

#SBATCH -J bowtie2

Ø Sets the name of the job

Ø Job names can be used to manage jobs, but unlike jobids
they are not necessarily unique, so care should be taken
• E.g

scancel –n bowtie2

Ø When listing jobs e.g. with squeue, only 14 first
characters of job name are displayed.

#!/bin/bash -l

#SBATCH -J bowtie2

#SBATCH -o output_%j.txt

#SBATCH -e errors_%j.txt

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH --nodes=1

#SBATCH --cpus-per-task=6

#SBATCH --mem=6000

#SBATCH -p serial

#

module load biokit

bowtie2-build chr_18.fa chr_18

bowtie2-align -p $SLURM_CPUS_PER_TASK
chr_18 reads.fq > out.sam72

#SBATCH -o output_%j.txt
#SBATCH -e errors_%j.txt

Ø Option –o sets the name of the file where the
standard output (stdout) is written

Ø Option –e sets the name of the file where possible
error messages (stderr) are written

Ø When running the program interactively these would
be written to the command promt

Ø What gets written to stdout and stderr depends on
the program. If you are unfamiliar with the program,
it’s always safest to capture both

Ø %j is replaced with the job id number in the actual
file name

#!/bin/bash -l

#SBATCH -J bowtie2

#SBATCH -o output_%j.txt

#SBATCH -e errors_%j.txt

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH --nodes=1

#SBATCH --cpus-per-task=6

#SBATCH --mem=6000

#SBATCH -p serial

#

module load biokit

bowtie2-build chr_18.fa chr_18

bowtie2-align -p $SLURM_CPUS_PER_TASK
chr_18 reads.fq > out.sam73

#SBATCH -t 02:00:00

Ø Time reserved for the job in hh:mm:ss

Ø When the time runs out the job will be terminated!

Ø With longer reservations the job might spend longer
in the queue

Ø Limit for jobs is 3d (72h)
• if you require longer time, you can specify ”longrun”

queue (limit 14d)
• In the longrun queue your job size is limited to one

node

#!/bin/bash -l

#SBATCH -J bowtie2

#SBATCH -o output_%j.txt

#SBATCH -e errors_%j.txt

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH --nodes=1

#SBATCH --cpus-per-task=6

#SBATCH --mem=6000

#SBATCH -p serial

#

module load biokit

bowtie2-build chr_18.fa chr_18

bowtie2-align -p $SLURM_CPUS_PER_TASK
chr_18 reads.fq > out.sam74

#SBATCH -n 1
#SBATCH --nodes=1
#SBATCH --cpus-per-task=6

Ø In this case we are running a shared memory program.
It must run inside one node, so we specify:

• 1 task (-n)
• 1 node (--nodes)
• 6 cores (--cpus-per-task)

Ø For a MPI program we would not need to run inside
one node, so we might specify simply something like:

#SBATCH -n 36

Ø Check software documentation
• Many bioinformatics software can not utilize more than one core
• Some can use threads and run as a shared memory job
• Only very few utilize MPI

#!/bin/bash -l

#SBATCH -J bowtie2

#SBATCH -o output_%j.txt

#SBATCH -e errors_%j.txt

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH --nodes=1

#SBATCH --cpus-per-task=6

#SBATCH --mem=6000

#SBATCH -p serial

#

module load biokit

bowtie2-build chr_18.fa chr_18

bowtie2-align -p $SLURM_CPUS_PER_TASK
chr_18 reads.fq > out.sam75

#SBATCH --mem=6000

Ø The amount of memory reserved for the job in MB
• 1000 MB = 1 GB

Ø --mem should be used for shared memory (OpenMP) jobs
Ø --mem-per-cpu must be used for MPI jobs

• Example: Specifying --n 8 and --mem-per-cpu=1000
reserves 8 GB memory (8 cores x 1 GB)

Ø Keep in mind the specifications for the nodes. Jobs
with impossible requests are rejected

Ø If you reserve too little memory the job will use
swap disk and become very slow

Ø If you reserve too much memory your job will spend
much longer in queue

#!/bin/bash -l

#SBATCH -J bowtie2

#SBATCH -o output_%j.txt

#SBATCH -e errors_%j.txt

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH --nodes=1

#SBATCH --cpus-per-task=6

#SBATCH --mem=6000

#SBATCH -p serial

#

module load biokit

bowtie2-build chr_18.fa chr_18

bowtie2-align -p $SLURM_CPUS_PER_TASK
chr_18 reads.fq > out.sam76

#SBATCH -p serial

Ø The queue (partition) the job should be submitted to

Ø You can check the available queues with command
sinfo –l

Ø Available queues in Taito:

#!/bin/bash -l

#SBATCH -J bowtie2

#SBATCH -o output_%j.txt

#SBATCH -e errors_%j.txt

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH --nodes=1

#SBATCH --cpus-per-task=6

#SBATCH --mem=1000

#SBATCH -p serial

#

module load biokit

bowtie2-build chr_18.fa chr_18

bowtie2-align -p $SLURM_CPUS_PER_TASK
chr_18 reads.fq > out.sam

Queue Max cores Max time Max memory

serial (default) 16 (1 node) 3d 256 GB

parallel 448 (28 nodes) 3d 256 GB

longrun 16 (one node) 14d 256 GB

hugemem 32 (one node) 7d 1,5 TB

test 32 (2 nodes) 30 min 64 GB

77

Choosing processor architecture

For Haswell:
#SBATCH --constraint=hsw

For Sandy Bridge
#SBATCH --constraint=snd

Ø Necessary if code has been compiled with processor-specific optimizations

Ø Often not necessary

Ø Check software web pages

78

module load biokit
bowtie2-build chr_18.fa chr_18
bowtie2-align -p $SLURM_CPUS_PER_TASK chr_18 reads.fq > out.sam

Ø Remember to load modules if necessary

Ø By default the working directory is the directory where you submitted the job
• If you include a cd command, make sure it points to correct directory

Ø Command syntax depends on the software
• It’s not enough to reserve the cores: Also remember to tell the program to use them!
• See application documentation for correct syntax
• You can use system variable $SLURM_CPUS_PER_TASK

Ø MPI programs must be run through srun. Depending on the software you may
need to specify some additional options

• See application documentation for each software
• For example:
srun raxmlHPC-MPI -N 100 -n test1 -s cox1.phy -m GTRGAMMAI

79

Array jobs

Ø Best suited for running the same analysis for large number of files

Ø Defined by adding --array option to batch job script
• Can be defined as a range or a list. For ranges step size can be defined

#SBATCH --array=1-50

#SBATCH --array=1,2,10

#SBATCH --array=1-100:20

Ø When run, variable $SLURM_ARRAY_TASK_ID will be replaced with
the current array job index
• Note that the range of the $SLURM_ARRAY_TASK_ID variable is limited between 0 and 896

Ø Note that the batch job script is executed for each iteration, so things
that should be done only once should not be included in the script

80

Simple array job example
#!/bin/bash

#SBATCH -J array_job

#SBATCH -o array_job_out_%A_%a.txt

#SBATCH -e array_job_err_%A_%a.txt

#SBATCH -t 02:00:00

#SBATCH --mem=4000

#SBATCH --array=1-50

#SBATCH -n 1

run the analysis command

my_prog data_${SLURM_ARRAY_TASK_ID}.inp data_${SLURM_ARRAY_TASK_ID}.out

In this example the actual command run at each iteration will be:
myprog data_1.inp data_1.out

myprog data_2.inp data_2.out

..

myprog data_50.inp data_50.out

81

Using a list of file names in an array job

Ø Often it is easiest to use a list of input filenames

Ø You can use a combination of sed and the $SLURM_ARRAY_TASK_ID
variable

• To create a list of filenames
ls data_*.inp > namelist

• To print a single row in a file by row number:
sed –n "row_number"p inputfile

• Example commands in batch job script
name=$(sed -n ${SLURM_ARRAY_TASK_ID}p namelist)

my_prog ${name} ${name}.out

82

Example batch job script using a list of file
names in an array job

#!/bin/bash -l

#SBATCH -J array_job

#SBATCH -o array_job_out_%j.txt

#SBATCH -e array_job_err_%j.txt

#SBATCH -t 02:00:00

#SBATCH --mem=4000

#SBATCH --array=1-50

#SBATCH -n 1

set input file to be processed

name=$(sed -n ${SLURM_ARRAY_TASK_ID}p namelist)

run the analysis command

my_prog $name $name.out

83

Most commonly used sbatch options
Slurm option Description
--begin=time defer job until HH:MM MM/DD/YY

-c, --cpus-per-task=ncpus number of cpus required per task

-d, --dependency=type:jobid defer job until condition on jobid is satisfied

-e, --error=err file for batch script's standard error

--ntasks-per-node=n number of tasks per node

-J, --job-name=jobname name of job

--mail-type=type notify on state change: BEGIN, END, FAIL or ALL

--mail-user=user who to send email notification for job state changes

-n, --ntasks=ntasks number of tasks to run

-N, --nodes=N number of nodes on which to run

-o, --output=out file for batch script's standard output

-t, --time=minutes time limit in format hh:mm:ss

--mem-per-cpu=MB maximum amount of real memory per allocated cpu
required by the job in megabytes

-p Specify queue (partition) to be used. In Taito the
available queues are: serial, parallel, hsw_par,
longrun, test and hugemem.84

SLURM:
Managing batch jobs in Taito

85

Submitting and cancelling jobs

Ø The script file is submitted with command
sbatch batch_job.file

Ø sbatch options are usually listed in the batch job script, but they
can also be specified on command line, e.g.

sbatch -J test2 -t 00:05:00 batch_job_file.sh

Ø Job can be deleted with command
scancel <jobid>

86

Queues

Ø The job can be followed with command squeue:
squeue (shows all jobs in all queues)
squeue –p <partition> (shows all jobs in single queue (partition))
squeue –u <username> (shows all jobs for a single user)
squeue –j <jobid> (shows status of a single job)

Ø To estimate the start time of a job in queue
scontrol show job <jobid>

row "StartTime=..." gives an estimate on the job start-up time, e.g.
StartTime=2013-02-27T19:46:44 EndTime=Unknown

87

Job logs

Ø Command sacct can be used to study past jobs
• Usefull when deciding proper resource requests

sacct Short format listing of jobs starting
from midnight today

sacct –l long format output
sacct –j <jobid> information on single job
sacct –S YY:MM:DD listing start date
sacct –o list only named data fields, e.g.

sacct -o jobid,jobname,maxrss,maxvmsize,state,elapsed -j <jobid>

88

Available queues

Ø You can check available queues on each machine with
command:
sinfo -l

PARTITION AVAIL TIMELIMIT JOB_SIZE ROOT SHARE GROUPS NODES STATE NODELIST

serial* up 3-00:00:00 1 no YES:4 all 525 mixed c[5-497,500-505,508,510-516,518-528,570-576]

parallel up 3-00:00:00 1-28 no NO all 525 mixed c[5-497,500-505,508,510-516,518-528,570-576]

longrun up 14-00:00:00 1 no YES:4 all 525 mixed c[5-497,500-505,508,510-516,518-528,570-576]

test up 30:00 1-2 no YES:4 all 4 idle c[1-4]

hugemem up 7-00:00:00 1 no YES:4 all 2 mixed c[577-578]

89

Available nodes

Ø You can check available nodes in each queue with command:
sjstat -c

Scheduling pool data:

Pool Memory Cpus Total Usable Free Other Traits

serial* 258000Mb 16 14 14 0 bigmem
serial* 64300Mb 16 500 499 88
parallel 258000Mb 16 14 14 0 bigmem
parallel 64300Mb 16 500 499 88
hsw_par 128600Mb 24 397 397 304 hsw
hsw_par 258000Mb 24 10 10 6 hsw
longrun 64300Mb 16 500 499 88
longrun 258000Mb 16 8 8 0 bigmem
test 64300Mb 16 4 4 4
hugemem 1551000Mb 32 2 2 1 bigmem

90

Most frequently used SLURM
commands

Command Description
srun Run a parallel job.
salloc Allocate resources for interactive use.
sbatch Submit a job script to a queue.
scancel Cancel jobs or job steps.
sinfo View information about SLURM nodes and partitions.
squeue View information about jobs located in the SLURM

scheduling queue
smap Graphically view information about SLURM jobs,

partitions, and set configurations parameters
sjstat display statistics of jobs under control of SLURM

(combines data from sinfo, squeue and scontrol)
scontrol View SLURM configuration and state.
sacct Displays accounting data for batch jobs.

91

pouta.csc.fi cloud service
https://research.csc.fi/pouta-user-guide

92

pouta.csc.fi cloud service

l Infrastructure as a Service (IaaS) a type of cloud computing service

l Users set up and run virtual machines at the servers of CSC (Taito)

l Motivation: The user does not need to buy hardware, network it and
install operating systems, as this has already been handled by the cloud
administrators

l Ready made virtual images available for CentOS, ScientificLinux and
Ubuntu.

l Independent from the CSC environment (no direct connection to CSC
disk environment and software selection).

l Possible solution for cases where the normal servers of CSC can't be
used:(very long run times, unusual operating system or software
selection.)93

pouta.csc.fi usage

l Send a request for Pouta access with the MyCloud Projects tool in Scientist's
User Interface. (https://research.csc.fi/pouta-application)

l Once you have the access, log in to Pouta-portal:

https://pouta.csc.fi

l Set up and launch a virtual machine according to the instructions in the Pouta
user guide:

https://research.csc.fi/pouta-user-guide

l Login to the virtual machine with ssh and start using your virtual server.

https://pouta.csc.fi
/

94

Could compared to traditional HPCTraditional HPC environment Cloud environment virtual machine

Operatingsystem Same for all: CSC’s cluster OS Chosen by the user

Softwareinstallation Done by cluster administrators,customers can only install software
to their own directories, noadministrative rights

Installed by the user, the user has adminrights

Useraccounts Managed by CSC’s useradministrator Managed by the user

Securitye.g.
softwarepatches

CSC administrators manage thecommon software and the OS User has more responsibility: e.g. patchingof running machines

Runningjobs Jobs need to be sent via thecluster’s Batch Scheduling System The user is free to use or not use a batchjob system

Environment changes Changes to software happen. The user can decide on versions.

Snapshotof the
environment

Not possible Can save as a Virtual Machine image
95

Pouta virtual machine sizes

Cores Memor
y

Disk
(root)

Disk
(ephem
eral)

Disk
(total)

Memor
y/core

Billing
Units/h

tiny 1 1 GB 10 GB 110 GB 120 GB 1 2

mini 1 3,5 GB 10 GB 110 GB 120 GB 3 2

small 4 15 GB 10 GB 220 GB 230 GB 4 8

medium 8 30 GB 10 GB 440 GB 450 GB 4 16

large 12 45 GB 10 GB 660 GB 670 GB 4 24

bigroot 16 60 GB 80 GB 500 GB 580 GB 4 32

fullnode 16 60 GB 10 GB 900 GB 910 GB 4 32

96

