

May 20th, 2016

Lecturers:
Luis Alves
Johan Guldmyr
Tomasz Malkiewicz
Kimmo Mattila
Ulf Tigerstedt (remotely)

Program

09:30 - 10:00	Morning coffee & registration
10:00 – 10:15	Introduction: grid computing vs. local clusters, batch queue systems and cloud
10:15 - 11:00	Introduction to grids
11:00 - 11:30	Obtaining personal certificates hands-on
11:30 - 12:00	NorduGrid ARC middleware hands-on
12:00-12:45	Lunch (on own expense)
12:45 - 13:30	Writing job description files hands-on
13:30 - 14:00	Submitting and monitoring jobs hands-on
14:00-14:15	Coffee
14:15 - 14:45	Arcrunner grid job manager and MPI jobs on the grid hands-on
14:45 - 15:00	Wrap-up
15:00 - 15:30	Troubleshooter: Interactive session to deal with open questions and specific problems

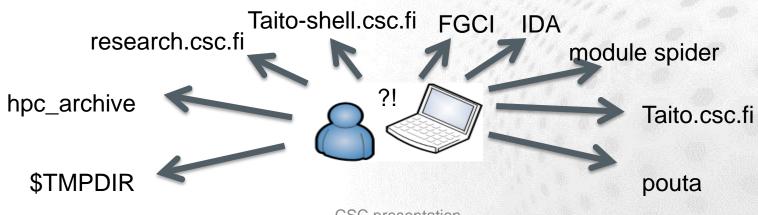
Practicalities

- Keep the name tag visible
- Toilets are in the lobby
- Network:
 - WIFI: eduroam, HAKA authentication
 - Ethernet cables on the tables
 - CSC-Guest accounts upon request
- Bus stops
 - Other side of the street (102,103) → Kamppi/Center (note, underpass)
 - Same side, towards the bridge (194,195,503-6) → Center/Pasila
 - Bus stops to arrive at CSC at the same positions, just on opposite sides
- If you came by car: parking is being monitored ask for a temporary parking permit from the reception (tell which workshop you're participating)
- Visiting outside: doors by the reception desks are open
- Room locked during lunch
 - lobby open, use lockers
- Username and password for workstations: given on-site

CSC?

- Non-profit company owned by Ministry of education and culture
- Services mainly free for researchers
- Applications, computational capacity, user support, FUNET, information management services, data services
- Participating in 15 EU projects

Round robin


- Clément Fiere
- Matthew Hudson
- Khalid Latif
- Sofia Khan
- Pär Håkansson
- Trung Hieu Nguyen
- Markus Rauhalahti
- Eelis Solala

Learning target

Know how to choose right server (resource)

Clusters

- A cluster is a connection of separate units (nodes) via a fast network
- All larger CSC platforms (Sisu, Taito, FGCI) are clusters in a general sense

Finnish Grid Infrastructure - FGCI

- Distributed computing capacity
- 12 universities/research institutes + CSC
- Requires a certificate
- Preinstalled software
- ARC –middleware
- From your own computer or Taito

```
Oulu

Kuopio

Joensuu

Jyväskylä

Tampere

Lappeenunta

Turku

Espoo

Abo

Helsinki
```

```
arcproxy
arcsub jobscript.xrsl
arcget gsiftp://usva.fgi.csc.fi:2811/jobs/12465133890987654
```

FGCI guide

Server use profiles

- FGCI (Dell/HP)
- Serial and parallel (12/16/24 cores)
- cPouta (HP) Cloud
- Serial and parallel (16 cores)
- Taito-shell (HP)
- Interactive jobs
- Very long jobs
- Auto queue, shared resources

- Sisu (Cray XE40)
- Parallel from 72 up to thousands of cores
- Scaling tests 1008+
- Taito (HP)
- Serial and parallel upto 448/672 cores
- Huge memory jobs
- Lots of preinstalled software

Main Computing capacity: Sisu, Taito, FGCI

	Sisu (Phase 2)	Taito (Phase 2)	FGCI prerelease
Availability	2014-	2015-	2016-
СРИ	x 12 and 2 x 8	d Sandy Bridge, 2 cores, 2.6 GHz, v3 and E5-2670	Intel Xeon, 2 x 6 cores, 2.7 GHZ, X5650 and 4x12 Intel Xeon CPU E7-4830v3 @2.1GHz
Interconnect	Aries	FDR IB	QDR IB
Cores	40512	9768+9216	7308+3600
RAM/node	64 GB	64/128/256/ 1536 GB	128/256/512 GB
Tflops	1688	515	218
GPU nodes	-	50	?
Disc space	4 PB	4 PB	1+ PB

Cloud computing: three service models

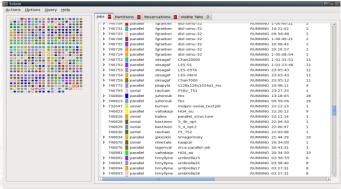
- Software as a Service (SaaS)
 - e.g. Chipster
- Platform as a Service (PaaS)
- Infrastructure as a Service (laaS)
 - e.g. Pouta

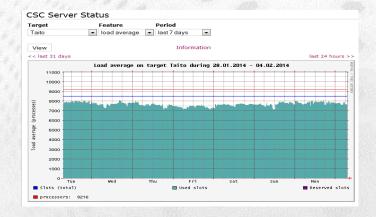
cPouta – computing in the Cloud

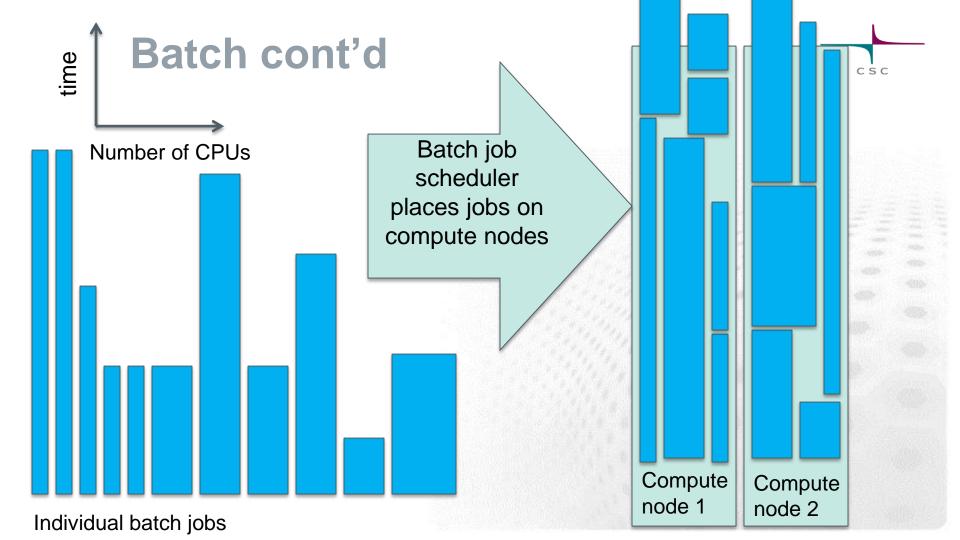
- cPouta
 - Virtual machines on demand
 - Taito hardware
 - Dedicated resources (HPC focus)
- More freedom and flexibility
- More responsibility

cPouta's use cases

- Enhanced security isolated virtual machines
- Advanced users able to manage servers
- Difficult workflows can't run on Taito
- Complex software stacks
- Ready made virtual machine images
- Deploying tools with web interfaces
- "We need root access"

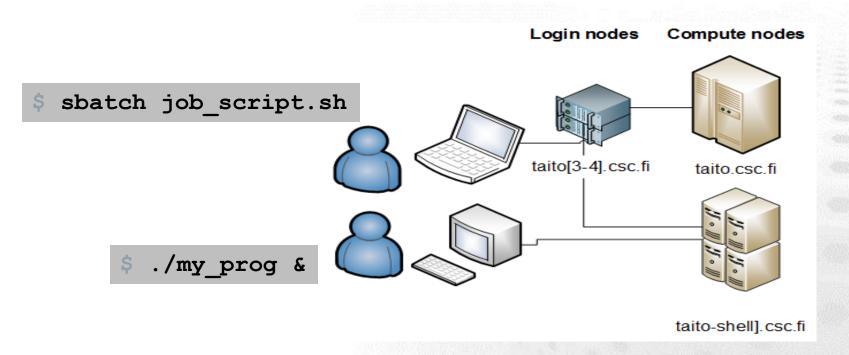

If you can run on Taito – run on Taito
If not – Pouta might be for you


Pouta user guide: https://research.cisc.fi/pouta-user-guide



What is a batch system?

- Optimizes resource usage by filling the server with jobs
- Cores, memory, disk, length, ...
- Jobs to run are chosen based on their priority
- Priority increases with queuing time
- Priority decreases with recently used resources
- Short jobs with little memory and cores queue the least
- CSC uses SLURM (Simple Linux Utility for Resource Management)



Compute nodes are used via queuing system

Using grid

- The jobs are submitted using the ARC middleware (http://www.nordugrid.org/arc/)
 - Using ARC resembles submitting batch jobs in Taito or Sisu
- ARC is installed Taito, but in many cases you can install it to your local machine too.

Sample ARC job description file


```
&
(executable=runbwa.sh)
(jobname=bwa 1)
(stdout=std.out)
(stderr=std.err)
(gmlog=gridlog 1)
(walltime=24h)
(memory=8000)
(disk=4000)
(runtimeenvironment>="APPS/BIO/BWA 0.6.1")
(inputfiles=
( "query.fastq" "query.fastq" )
( "genome.fa" "genome.fa" )
(outputfiles=
 ( "output.sam" "output.sam" )
```


Example serial batch job script on Taito

```
#!/bin/bash -1
#SBATCH -J myjob
#SBATCH -e myjob err %j
#SBATCH -o myjob output %j
#SBATCH --mail-type=END
#SBATCH --mail-user=a.user@foo.net
#SBATCH --mem-per-cpu=4000
#SBATCH -t 02:00:00
#SBATCH -n 1
#SBATCH -p serial
#SBATCH --constraint=snb
```