
Using CSC Environment Efficiently

February 13th, 2017

Lecturers:

Jarno Laitinen

Tomasz Malkiewicz

Atte Sillanpää

Program
 09:00 - 09:15 Introduction to the course

09:15 - 09:30 Getting access: User account, project and services
 09:30 - 09:45 Scientist's User Interface (SUI): an introduction to web-based access to

CSC's services
09:45 - 10:00 Coffee break
10:00 - 11:00 How to connect: how to access CSC's computers, NX client, taito-shell
11:00 - 12:00 CSC's computing environment: different platforms, module system,
licensing, storage and data transfer
12:00 - 13:00 Lunch break
13:00 - 14:30 Running your jobs, resource-management (a.k.a. batch job) systems
14:30 - 14:45 Coffee break
14:45 - 15:30 Compiling your program (writing a makefile, linking, debugging)
15:30 - 15:45 Science services at CSC: a short introduction
15:45 - 16:15 Troubleshooter + Installation session: helping with installation of NX
client, PuTTy, Virtual appliance,...

Practicalities
Keep the name tag visible

Lunch is served in the same building

Toilets are in the lobby

Network:
– WIFI: eduroam, HAKA authentication

– Ethernet cables on the tables

– CSC-Guest accounts

Bus stops
– Other side of the street (102,103) → Kamppi/Center

– Same side, towards the bridge (194,195/551) → Center/Pasila

– Bus stops to arrive at CSC at the same positions, just on opposite sides

If you came by car: parking is being monitored - ask for a temporary parking permit from the reception
(tell which workshop you’re participating)

Visiting outside: doors by the reception desks are open

Room locked during lunch
– Lobby open, use lockers

Username and password for workstations: given on-site

3 CSC presentation

CSC at a Glance

CSC?

Non-profit company owned by
Ministry of Education and Culture
and universities

Services mainly free for researchers

In 2015: About 2700 active users

Applications, computational capacity,
user support, FUNET, information
management services, data services

Participating in 15 EU projects

Internationally competitive research

environments and e-Infrastructures
 Collaboration with majority of European computing centers

• International research network organizations:

NORDUnet, eduGAIN, GÉANT (GN3)

• European research infrastructures and supporting projects:

ELIXIR, CLARIN, ENVRI

• International HPC projects and GRID-organizations:

Nordic e-Infrastructure Collaboration (NeIC), PRACE, EGI-Inspire

• European centres of excellence:

• NOMAD, E-CAM

• European e-Infrastructure policy initiatives :

e-Infrastructure Reflection Group (e-IRG), RDA

Datacenter CSC Kajaani

CSC’s modular Data Center in
Kajaani. Modern and reliable
infrastructure (national power grid,
roads, airline connections, data
networks)

The Funet Network ensures excellent
networking capabilities around the
world

Place for CSC’s next supercomputers
with other CSC customer systems

Cost-Efficient Solution – Sustainable
and Green Energy Supply

CSC maintained software's usage covers over 60% of all computing time usage

CSC’s Computing Capacity 1989–2016

CSC presentation

Software and database offered by CSC
Large selection (over 200) of software and database
packages for research https://research.csc.fi/software

Mainly for academic research in Finland

Centralized national offering: software consortia, better
licence prices, continuity, maintenance, training and
support

https://research.csc.fi/software
https://research.csc.fi/software

Courses

How to get started?

https://research.csc.fi

https://research.csc.fi/csc-guide

https://research.csc.fi/faq-knowledge-base

https://www.csc.fi/web/training/materials → CSC-Environment

Service Desk: servicedesk@csc.fi

sbatch job.sh

Submitted batch
job 3660241

https://research.csc.fi/
https://research.csc.fi/csc-guide
https://research.csc.fi/csc-guide
https://research.csc.fi/csc-guide
https://research.csc.fi/faq-knowledge-base
https://research.csc.fi/faq-knowledge-base
https://research.csc.fi/faq-knowledge-base
https://research.csc.fi/faq-knowledge-base
https://research.csc.fi/faq-knowledge-base
https://www.csc.fi/web/training/materials
mailto:servicedesk@csc.fi

Getting access to CSC resources

The process in short

Register to get a user account

– You get a Personal Project

Apply for an Academic Project

– Set is as an accountable project

Apply for an Service e.g. Taito cluster access

1. Register: User account

https://research.csc.fi/csc-guide-getting-access-to-csc-
services

Login via HAKA authentication to SUI https://sui.csc.fi
– There you find the Registration functionality “Sign Up”

This will get you an initial computing quota
– Sending computation job consumes processor cores

– User gets a Personal Project with 10’000 billing units (5000
core-hours) and access to Taito cluster.

It is just for piloting, not for large jobs and you cannot apply for
additional computing quota or services

https://research.csc.fi/csc-guide-getting-access-to-csc-services
https://research.csc.fi/csc-guide-getting-access-to-csc-services
https://research.csc.fi/csc-guide-getting-access-to-csc-services
https://research.csc.fi/csc-guide-getting-access-to-csc-services
https://research.csc.fi/csc-guide-getting-access-to-csc-services
https://research.csc.fi/csc-guide-getting-access-to-csc-services
https://research.csc.fi/csc-guide-getting-access-to-csc-services
https://research.csc.fi/csc-guide-getting-access-to-csc-services
https://research.csc.fi/csc-guide-getting-access-to-csc-services
https://research.csc.fi/csc-guide-getting-access-to-csc-services
https://research.csc.fi/csc-guide-getting-access-to-csc-services
https://research.csc.fi/csc-guide-getting-access-to-csc-services
https://research.csc.fi/csc-guide-getting-access-to-csc-services
https://sui.csc.fi/

2. Apply for an academic Project

Professors and PIs can apply for an Academic Project.

1. Login via HAKA authentication to SUI https://sui.csc.fi

2. From eService menu Resources and Applications tool

3. Fill the application form for the Academic project

• A screenshot in the next slide

https://research.csc.fi/csc-guide-projects-and-resource-

allocation

You will get 10000 Billing Units by default

https://sui.csc.fi/
https://research.csc.fi/csc-guide-projects-and-resource-allocation
https://research.csc.fi/csc-guide-projects-and-resource-allocation
https://research.csc.fi/csc-guide-projects-and-resource-allocation
https://research.csc.fi/csc-guide-projects-and-resource-allocation
https://research.csc.fi/csc-guide-projects-and-resource-allocation
https://research.csc.fi/csc-guide-projects-and-resource-allocation
https://research.csc.fi/csc-guide-projects-and-resource-allocation
https://research.csc.fi/csc-guide-projects-and-resource-allocation
https://research.csc.fi/csc-guide-projects-and-resource-allocation
https://research.csc.fi/csc-guide-projects-and-resource-allocation
https://research.csc.fi/csc-guide-projects-and-resource-allocation

Academic project application form

2. Click

Academic

CSC

Project

1. Click

Project
3. Scroll

down to see

the form

To select the active billing project

You can select which project’s billing units is

accounted

In SUI in eService menu select My Projects tool

1. Select the project from the list

2. Click “Set as Billing Project” button

Change the default billing project from

your Personal Project to the Academic Project when you get it!

To apply for more Billing Units

A Project Member can apply for more billing

units for an Academic Project i.e. not for a

Personal Project

To apply with My Projects tool:

1. https://sui.csc.fi/group/sui/my-projects or in SUI’s

menu select: eService – My Projects

2. Select the Project you want to apply Billing Units

3. Click Apply for Resource button

4. Fill the form and click Send

https://sui.csc.fi/group/sui/my-projects
https://sui.csc.fi/group/sui/my-projects
https://sui.csc.fi/group/sui/my-projects

3. Apply access for a Service

Only an Academic Project can apply access to Service

i.e. not a Personal Project

Principal Investigator of an Academic Project can apply

for access to Taito, Sisu, cPouta and IDA storage

Services in SUI

– https://sui.csc.fi/group/sui/resources-and-applications

In SUI’s menu: eService – Resources and Applications

– A screenshot on the next slide

https://sui.csc.fi/group/sui/resources-and-applications
https://sui.csc.fi/group/sui/resources-and-applications
https://sui.csc.fi/group/sui/resources-and-applications
https://sui.csc.fi/group/sui/resources-and-applications
https://sui.csc.fi/group/sui/resources-and-applications

Resource and application tool in SUI

The Application form is found below when you select the service

Scientist's User Interface (SUI)

Scientist’s User Interface (SUI)
WWW-portal for all CSC users – https://sui.csc.fi

Sign up as customer

Reset your password

Manage your account

Apply for an Academic project

Apply for computing services

Access your data

Download material

Watch videos

Submit jobs

Monitor hosts and jobs

Personalize your use

Message board

+ more

 Use case – run job via SUI-portal

 Generate and store suitable job script with Batch Job Script Wizard

 Open terminal connection to Taito with SSH Console and submit job

 or

 Submit job with My Files

 Monitor your job on Taito with Host Monitor

 Examine and download results with My Files

 Monitor your project’s resource usage with My Projects

Scientist’s User Interface (SUI)

 Forum

Participate in

 discussion on forum

Quick way to find

 information of SUI,

 ask questions or give

 feedback to developers

Share ideas for

 new services

Scientist’s User Interface (SUI)

Scientist’s User Interface (SUI)

 Contact Us

One way to

 contact or

 give feedback

The main contact:

servicedesk@csc.fi

Direct feedback can

 be sent privately and

 anonymously

Scientist’s User Interface (SUI)

 Sign Up

Quick and easy way

 to Sign up

 as CSC customer

Available for all users

 by Haka login

By signing up you can

 access all SUI’s

 services, applications

 and databases,

 Hippu application

 server + more

 Services - Desktop

Personalize your

 desktop by selecting

 your favorite services

Sort/arrange by using

 drag&drop

See messages

Scientist’s User Interface (SUI)

 My Account

Maintain your account

 information

Change password for

 CSC environment

Define your personal

 settings

Scientist’s User Interface (SUI)

 Batch Job Script Wizard

Create job scripts

 with easy to use forms

Save scripts locally or

 in CSC $HOME

Instructions of how to

 submit and monitor

Scientist’s User Interface (SUI)

 Downloads

Access material

 provided to you by

 CSC

Software installation

 packages, manuals,

 videos etc.

Scientist’s User Interface (SUI)

 Host Monitor

View statuses and

 details of CSC’s

 computing servers and

 batch systems

Visualize history of CPU

 usage and job count

Monitor jobs in all hosts

 in single view

Control your own jobs

Scientist’s User Interface (SUI)

 My Certificates

Process your X509

 digital certificates

Format conversions,

 export proxies, save

 locally or to your CSC

 $HOME

Setup grid usage in

 CSC’s computers

Scientist’s User Interface (SUI)

 My Files

Access your data in

 CSC’s storage

 services in single view

 (computing servers,

 IDA and HPC Archive)

Transfer files

Search your data

Submit jobs

Typical folder and file

 operations are supported

Scientist’s User Interface (SUI)

 My Projects

View information and

 resource usage of

 your CSC projects

Edit hosts for projects

Apply resources for

 your CSC customer

 project

Resource usage

 currently not working

 due system changes

Scientist’s User Interface (SUI)

 SSH Console

Connect to CSC’s

 computing servers

UTF-8 character

 translation support

Scientist’s User Interface (SUI)

 Terms of Use

Read CSC’s

 services’

 terms of use

Scientist’s User Interface (SUI)

Login to SUI via HAKA

HAKA is the identity federation of the Finnish
universities, polytechnics and research
institutions.

280000 users

HAKA authentication gives access with your
university account and password to:
– SUI

– Eduroam

– …

CSC presentation 40

https://www.csc.fi/-/haka-kayttajatunnistusjarjestel-1

Connecting to CSC

Learning targets

Be aware of different ways of accessing

CSC resources

Logged in to Taito with ssh and

NoMachine

CSC presentation 42

The (almost) Complete Picture

Access via any of:

Ssh

NoMachine

Browser (SUI,
cloud, Avaa,
…)

Tunneling

ARC (FGCI)

HAKA

iRODS

CSC presentation 43

Direct ssh connection –Linux/Mac

From UNIX/Linux/OSX command line

Use –X (or –Y) to enable remote graphics*

scp : copy file to remote machine

44

$ ssh –X yourid@taito.csc.fi

$ scp file yourid@taito.csc.fi:
login as: yourid

Last login: Tue Jul 09 13:14:15 2019 from cool.somewhere.fi

┌─ Welcome ───┐

│ CSC - Tieteen tietotekniikan keskus - IT Center for Science │

│ HP Cluster Platform SL230s Gen8 TAITO │

├─ Contact ───┤

...

* In Windows you’d also need an X-windows emulator, but there is a better way

NoMachine Remote Desktop

Client connection between user and
gateway

Good performance even with slow network

Ssh from gateway to server (fast if local)

Persistent connection

Suspendable
– Continue later at another location

Read the instructions…
– ssh-key, keyboard layout, mac specific

workarounds, …

Choose an application or server to use
(right click)

CSC presentation 45

https://research.csc.fi/-/nomachine

Access with scientific software

Some software can be configured to use

CSC servers directly, e.g.

– TMolex, ADF, Maestro, Discovery Studio,

Matlab

The GUIs can be used to create and

submit jobs directly to the Taito queueing

system

CSC presentation 46

http://www.cosmologic.de/index.php?cosName=tmolex
http://www.scm.com/GUI/
http://research.csc.fi/-/maestro
https://research.csc.fi/-/discoverystudio
https://research.csc.fi/-/discoverystudio
https://research.csc.fi/-/discoverystudio
https://research.csc.fi/-/matlab

Finnish Grid and Cloud

Infrastructure - FGCI
Distributed computing capacity

9 universities + CSC

Requires a certificate

Lots of preinstalled software

Access with ARC –client

From your own computer or Taito

FGCI guide
CSC presentation 47

arcproxy

arcsub jobscript.xrsl

arcget gsiftp://usva.fgi.csc.fi:2811/jobs/12465133890987654

https://research.csc.fi/fgci-user-guide
https://research.csc.fi/fgci-user-guide

Pouta Cloud service

48

Do I need…

 Different operating system and

software stack than CSC’s systems?

To run web services?

To extend my local computing

resources?

 http://research.csc.fi/cloud-computing

http://research.csc.fi/cloud-computing
http://research.csc.fi/cloud-computing
http://research.csc.fi/cloud-computing

Ascii terminal NoMachine

Open a terminal on your
workstation (right click on
backround or select from
menu), then in terminal:

$ ssh user@taito.csc.fi

 (man in the middle?)

$ ls

$ hostname

$ gnuplot

$ plot sin(x)

Open NoMachine client

Select nxkajaani.csc.fi

Insert your username and
password

(accept help screens)

Right click on the
background, choose taito
from menu

Give your password
$ ls

$ hostname

$ …

Summary: How to access resources at CSC

Ssh terminal connection to CSC (+ X-term emulator for win)

Installation at your own computer, license from CSC
– Materials Studio, Discovery Studio, Ansys, …

GUI at your own computer, computation at CSC (ssh pipe)
– Tmolex, ADFgui, Discovery Studio

GUI at your own computer, input files to CSC by hand, jobs launched from
command prompt

Scientist’s User Interface (www based) sui.csc.fi
– File manager, certificates, terminal, software distribution, …

ARC (Nordugrid) middleware to run jobs in FGCI

NoMachine Remote desktop (etätyöpöytä)
– Client installed at your own computer, working with graphics at CSC

Cloud services: pouta.csc.fi
– Lots of freedom/flexibility and hence some administration and configuration work

https://sui.csc.fi/
http://research.csc.fi/fgci
https://research.csc.fi/-/nomachine
https://research.csc.fi/-/nomachine
https://research.csc.fi/-/nomachine
https://research.csc.fi/-/nomachine
https://research.csc.fi/-/nomachine
http://research.csc.fi/cloud-computing
http://research.csc.fi/cloud-computing

CSC Computing Environment

Learning target

Know how to choose right server (resource)

Know where to put your files

Know how to setup and use preinstalled software

CSC presentation 52

hpc_archive

IDA

Taito.csc.fi

pouta $TMPDIR

Taito-shell.csc.fi

module spider
research.csc.fi

iput

?!

On Clusters and Supercomputers (1/2)

Shared Memory

Parallel (SMP):

– All processors access

(more or less) the same

memory

– Within node

Distributed Memory:

– Processes access their

own memory

– Interconnection network for

exchange

– Between nodes

CSC presentation 53

On Clusters and Supercomputers (2/2)

A cluster is a connection of

separate units (nodes) via a

fast network

All larger CSC platforms

(Sisu, Taito, FGCI) are

clusters in a general sense

CSC presentation 54

Server use profiles
Taito (HP)

Serial and parallel upto 448/672

cores

Huge memory jobs

Lots of preinstalled software

Sisu (Cray XE40)

Parallel from 72 up to

thousands of cores

Scaling tests 1008+

CSC presentation 55

Taito-shell (HP)

Interactive jobs

Very long jobs

Auto queue, shared resources

cPouta (HP) Cloud

Serial and parallel upto

16 cores

FGCI (Dell/HP)

Serial and parallel (16)

Main Computing capacity: Sisu,Taito FGCI

56 CSC presentation

Sisu
(Phase 2)

Taito
(Phase 2)

FGCI

Availability 2014- 2015- 2016-

CPU

Intel Haswell and Sandy Bridge, 2
x 12 and 2 x 8 cores, 2.6 GHz,
Xeon E5-2690v3 and E5-2670

Intel Xeon, 2 x 6 cores,
2.7 GHZ, X5650 and 4x12
Intel Xeon CPU E7-4830v3

@2.1GHz
Interconnect Aries FDR IB QDR IB

Cores 40512 9768+9216 7308+3600

RAM/node 64 GB
64/128/256/

1536 GB
128/256/512 GB

Tflops 1688 515 218

GPU nodes - 50 8

Disc space 4 PB 4 PB 1+ PB

FGCI – The Finnish Grid and Cloud

Infrastructure

Consortium of 9 Finnish Universities and CSC

Infrastructure consists of 7368+3600 cores
and 100 GPU cards (+ Taito)

Accessed via ARC middleware

Submit jobs from taito/own workstation

Preinstalled software

More information: FGCI guide

CSC presentation 57

https://research.csc.fi/fgci-user-guide

&
(executable=runbwa.sh)
(jobname=bwa_1)
(stdout=std.out)
(stderr=std.err)
(gmlog=gridlog_1)
(walltime=24h)
(memory=8000)
(disk=4000)
(runtimeenvironment>="APPS/BIO/BWA_0.6.1")
(inputfiles=
("query.fastq" "query.fastq")
("genome.fa" "genome.fa")
)
(outputfiles=
 ("output.sam" "output.sam")
)

Sample ARC job description file

CSC presentation 58

https://research.csc.fi/cloud-computing

 Infrastructure as a Service (IaaS) type of cloud
 OpenStack cloud middleware for management
 The Virtual Machines are admistrated by the user

 cPouta

 The cPouta service allows customers to run virtual machines
connected to the Internet.

 PI of a project can apply for access in SUI
 Youtube videos on how to start a VM in cPouta

 ePouta

 The cloud service combines virtual computational resources
with the customers' own resources using a dedicated light path
or MPLS connection.

 Designed for secure data handling

59 CSC presentation

IaaS cloud services

https://research.csc.fi/cloud-computing
https://research.csc.fi/cloud-computing
https://research.csc.fi/cloud-computing
https://research.csc.fi/cloud-computing
https://research.csc.fi/cloud-computing
https://research.csc.fi/cloud-computing
https://www.youtube.com/watch?v=CIO8KRbgDoI
https://www.youtube.com/watch?v=CIO8KRbgDoI
https://www.youtube.com/watch?v=CIO8KRbgDoI
https://www.youtube.com/watch?v=CIO8KRbgDoI

The module system

Tool to set up your environment

– Load libraries, adjust path, set environment

variables

– Needed on a server with hundreds of

applications and several compilers etc.

Slightly different on Taito vs. other systems

Used both in interactive and batch jobs

CSC presentation 60

Typical module commands

module avail shows available modules (compatible modules in taito)

module spider shows all available modules in taito

module list shows currently loaded modules

module load <name> loads module <name> (default version)

module load <name/version> loads module <name/version>

module switch <name1> <name2> unloads module name1 and loads

 module name2

module purge unloads all loaded modules

CSC presentation 61

Taito has ”meta-modules” named e.g. gromacs-env, which will load all necessary

modules needed to run gromacs.

Module example

Show compatible modules on Taito
$ module avail

Initialize R and RStudio statistics packages
$ module load r-env

$ module load rstudio

Start RStudio using the command
$ rstudio

It’s better to run the GUI (and calculations) on a compute
node (jobs that have used 1h of CPU on the login node will be killed
automatically)

For interactive work, use taito-shell.csc.fi

CSC presentation 62

> a=seq(0,10,by=0.1)

> plot(a,cos(a))

Simple plotting in R

Directories at CSC Environment (1)

Directory or storage

area
Intended use

Default

quota/user
Storage time Backup

$HOME 1

Initialization scripts, source codes, small data

files.

Not for running programs or research data.

50 GB Permanent Yes

$USERAPPL 1 Users' own application software. 50 GB Permanent Yes

$WRKDIR 1 Temporary data storage. 5 TB 90 days No

$WRKDIR/DONOTREMOVE Temporary data storage. Incl. in above Permanent No

$TMPDIR 3 Temporary users' files. - ~2 days No

Project 1

Common storage for project members. A

project can consist of one or more user

accounts.

On request Permanent No

HPC Archive 2 Long term storage. 2 TB Permanent Yes

IDA 2 Storage and sharing of stable data. On request Permanent

No, multiple

storage copies

63

1: Lustre parallel (3:local) file system in Kajaani 2: iRODS storage system in Espoo

https://research.csc.fi/data-environment

https://research.csc.fi/data-environment
https://research.csc.fi/data-environment
https://research.csc.fi/data-environment

Directories at CSC Environment (2)

64

taito.csc.fi sisu.csc.fi

iRODS interface,

disk cache

compute

nodes

login

nodes

Hpc_archive/IDA

Espoo

compute

nodes

login

nodes

$TMPDIR $TMPDIR

$USERAPPL → $HOME/xyz icp, …

icp, iput, ils, irm

$TMPDIR $TMPDIR $TMPDIR

$WRKDIR

$HOME

Your

workstation

scp, WinSCP…

My Files in SUI

Web portal

Cyberduck (Win/Mac)

or command line

icommands

to access IDA

Storage: hard disks

4 PB on DDN (Lustre), Sisu and Taito
– $USERAPPL: put your own applications here

– /homeappl/home/username/app_taito

– /homeappl/home/username/app_sisu

– /tmp (Taito, ~2 TB) to be used for e.g. compiling codes on the login nodes

– $TMPDIR on compute nodes: for scratch files (accessed with $TMPDIR
in batch script)

– $HOME for configuration files and misc. smallish storage. If full, gives
strange errors (X-graphics etc.)

– $WRKDIR for large data and during calculations. Avoid lots of small files.
Files older than 90 days are deleted. No backup.

– $WRKDIR/DONOTREMOVE old files not deleted from here – don’t copy
files here, but move if you want to keep them (or hpc_archive)

 CSC presentation 65

Storage: disks and tape

IDA Storage Service
– Common storage for project members

– Storage for non-sensitive stable research data (e.g. provides persistent
identifiers, automatic checksums)

– Enables public sharing of data on the internet

– Usage via SUI, command line or file transfer program

– Quota available from universities, universities of applied sciences and
Academy of Finland

– Apply on the web http://openscience.fi/becoming-an-ida-user

hpc_archive Service
– Tape (+ disk cache)

– Default long term storage

– Access with i-commands from Sisu/Taito

 CSC presentation 66

http://openscience.fi/ida
http://openscience.fi/becoming-an-ida-user
http://openscience.fi/becoming-an-ida-user
http://openscience.fi/becoming-an-ida-user
http://openscience.fi/becoming-an-ida-user
http://openscience.fi/becoming-an-ida-user
http://openscience.fi/becoming-an-ida-user
http://openscience.fi/becoming-an-ida-user

hpc_archive/IDA interface at CSC

Some iRODS commands

 iput file move file to hpc_archive/IDA

 iget file retrieve file from …/IDA

 ils list the current IDA directory

 icd dir change the IDA directory

 irm file remove file from IDA

 imv file file move file inside IDA

 imkdir create a directory to IDA

 iinit Initialize your IDA account

IDA uses some different commands. See http://openscience.fi/ida-commands

http://openscience.fi/ida-commands
http://openscience.fi/ida-commands
http://openscience.fi/ida-commands

rsync, not scp (when lots of/big files), zip & tar first

$ rsync -P username@taito-login3.csc.fi:/tmp/huge.tar.gz .
Funet FileSender (max 50 GB [1GB as an attachment? No!])
– https://filesender.funet.fi

– Files can be downloaded also with wget

iRODS, batch-like process, staging

IDA: http://openscience.fi/ida

CSC can help to tune e.g. TCP/IP parameters

FUNET backbone 100 Gbit/s

Webinar on Data Transfer 16th February!

https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment

Moving files, best practices

CSC presentation 68

space!

https://filesender.funet.fi/
http://openscience.fi/ida
https://www.csc.fi/web/training/-/webinar-data-transfer
https://www.csc.fi/web/training/-/webinar-data-transfer
https://www.csc.fi/web/training/-/webinar-data-transfer
https://www.csc.fi/web/training/-/webinar-data-transfer
https://www.csc.fi/web/training/-/webinar-data-transfer
https://www.csc.fi/web/training/-/webinar-data-transfer
https://www.csc.fi/web/training/-/webinar-data-transfer
https://www.csc.fi/web/training/-/webinar-data-transfer
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment
https://research.csc.fi/csc-guide-moving-data-between-csc-and-local-environment

Learning targets achieved?

How to choose right server (resource)?

Where to put your files?

How to setup and use preinstalled

software/libraries/compilers?

CSC presentation 69

Running jobs at CSC

Batch jobs learning target

Benefits of batch jobs for compute intensive jobs
– Difference of login and compute node

How to submit and monitor jobs

Batch script contents i.e. resource requirements

How to learn resource requirements of own jobs

What is saldo [billing units]

Be aware of batch script wizard in SUI

Submit first job(s)

Learn to read the the manual

https://sui.csc.fi/
https://research.csc.fi/csc-guide-batch-jobs
https://research.csc.fi/csc-guide-batch-jobs
https://research.csc.fi/csc-guide-batch-jobs
https://research.csc.fi/csc-guide-batch-jobs

What is a batch system?

Optimizes resource usage by filling the
server with jobs

Cores, memory, disk, length, …

Jobs to run are chosen based on their
priority

Priority increases with queuing time

Priority decreases with recently used
resources

Short jobs with little memory and cores
queue the least

CSC uses SLURM (Simple Linux Utility
for Resource Management)

http://serverstatus.csc.fi/index.phtml.en

ti
m

e

Compute

node 1
Compute

node 2
Individual batch jobs

Number of CPUs Batch job

scheduler

places jobs on

compute nodes

Batch cont’d

Compute nodes are used via

queuing system

$ sbatch job_script.sh

$./my_prog &

Batch job overview

 Steps for running a batch job

1. Write a batch job script
• Script details depend on server, check CSC Guides or software page!

• You can use the Batch Job Script Wizard in Scientist’s User Interface:
 https://sui.csc.fi/group/sui/batch-job-script-wizard

2. Make sure all the necessary files are in $WRKDIR
• $HOME has limited space
• Login node $TMPDIR is not available on compute nodes

3. Submit your job
$ sbatch myscript

https://research.csc.fi/guides
https://research.csc.fi/guides
https://research.csc.fi/software
https://research.csc.fi/software
https://sui.csc.fi/group/sui/batch-job-script-wizard
https://sui.csc.fi/group/sui/batch-job-script-wizard
https://sui.csc.fi/group/sui/batch-job-script-wizard
https://sui.csc.fi/group/sui/batch-job-script-wizard
https://sui.csc.fi/group/sui/batch-job-script-wizard
https://sui.csc.fi/group/sui/batch-job-script-wizard
https://sui.csc.fi/group/sui/batch-job-script-wizard

Batch Job Script wizard in Scientist’s User Interface

Batch jobs: what and why

 User has to specify necessary resources
 Can be added to the batch job script or given as command line options for sbatch (or

a combination of script and command line options)

 Resources need to be adequate for the job
 Too small memory reservation will cause the job to fail

 When the time reservation ends, the job will be terminated whether finished or not

 But: Requested resources can affect the time the job spends in the queue
 Especially number of cores and memory reservation

 Using more cores does not always make the job run faster

 Don’t request extra ”just in case” (time is less critical than memory wrt this)

 So: Realistic resource requests give best results
 Not always easy to know beforehand

 Usually best to try with smaller tasks first and check the used resources

 You can check what was actually used with the sacct command

Saldo and billing units

All jobs consume saldo

https://research.csc.fi/saldo

One core hour of computing equals
2 billing units [bu]

Jobs requesting 4GB of memory per
core or more, multiply saldo usage:

– 4-7.99GB/core = 2x

– 8-11.99GB/core = 3x

– …

Requested but not used computing
time is not billed

If saldo runs out, no new jobs are
possible

New saldo can be requested from
SUI

Serial job (1 core), 0.5
GB/core of memory,
requested 24 hours, used 5
hours billed: 5*2*1=10 bu

(failed) parallel job: requested
24 cores, 2GB/memory per
core, actually used 6 cores
(18 cores idle) total run time
10 hours billed
24*10*2*1=480 bu

Parallel job 3 cores, 5
GB/core, 10 hours billed:
3*5*2*2=60 bu

https://research.csc.fi/saldo

SLURM batch script contents

Example serial batch job script on Taito

#!/bin/bash -l
#SBATCH -J myjob

#SBATCH -e myjob_err_%j
#SBATCH -o myjob_output_%j
#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net
#SBATCH --mem-per-cpu=4000
#SBATCH -t 02:00:00

#SBATCH -n 1
#SBATCH –p serial
#SBATCH --constraint=snb

module load myprog
srun myprog -option1 -option2

#!/bin/bash -l

 Tells the computer this is a script that should be

run using bash shell

 Everything starting with ”#SBATCH” is passed on

to the batch job system (Slurm)

 Everything (else) starting with ”# ” is considered a

comment

 Everything else is executed as a command

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

#SBATCH -J myjob

 Sets the name of the job

 When listing jobs e.g. with squeue, only 8

first characters of job name are displayed.

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

 Option –e sets the name of the file where possible error messages
(stderr) are written

 Option –o sets the name of the file where the standard output
(stdout) is written

 When running the program interactively these would be written to
the command promt

 What gets written to stderr and stderr depends on the program. If
you are unfamiliar with the program, it’s always safest to capture
both

 %j is replaced with the job id number in the actual file name

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

 Option --mail-type=END = send email when the job
finishes

 Option --mail-user = your email address.

 If these are selected you get a email message when the job
is done. This message also has a resource usage summary
that can help in setting batch script parameters in the future.

 To see actually used resources try also: sacct –l –j
<jobid> (more on this later)

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

#SBATCH --mem-per-cpu=4000

 The amount of memory reserved for the job in MB

• 1000 MB = 1 GB

 Memory is reserved per-core basis even for
 shared memory (OpenMP) jobs

• For those jobs it is better to ask memory per job:

• --mem=1000

 Keep in mind the specifications for the nodes. Jobs with impossible requests
are rejected (try squeue after submit)

 If you reserve too little memory the job will be killed (you will see a
corresponding error in the output)

 If you reserve too much memory your job will spend much longer in queue
and potentially waste resources (idle cores)

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

#SBATCH -t 02:00:00

 Time reserved for the job in hh:mm:ss

 When the time runs out the job will be terminated!

 With longer reservations the job may queue longer

 Limit for normal serial jobs is 3d (72 h)

• if you reserve longer time, choose ”longrun” queue (limit 14d)

• In the longrun queue you run at your own risk. If a batch job in that queue
stops prematurely no compensation is given for lost cpu time

• In longrun you likely queue for a longer time: shorter jobs and restarts are
better (safer, more efficient)

• Default job length is 5 minutes need to be set by yourself.

TIP: If you’re unsure of

the syntax, use Batch

job wizard in SUI
#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

https://sui.csc.fi/group/sui/batch-job-script-wizard

#SBATCH -n 1

 Number of cores to use. More than one means parallel.

 It’s also possible to control on how many nodes your job is
distributed. Normally, this is not needed. By default use all
cores in allocated nodes:

 --ntasks-per-node=16 #(Sandy Bridge)

 --ntasks-per-node=24 #(Haswell)

 Check documentation: http://research.csc.fi/software

 There’s a lot of software that can only be run in
serial

 OpenMP applications can only use cores in one node

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

http://research.csc.fi/software

#SBATCH -p serial

 The queue the job should be submitted to

 Queues are called ”partitions” in SLURM

 You can check the available queues with command

 sinfo -l

[asillanp@taito-login4 ~]$ sinfo -l

Wed Jan 28 15:45:39 2015

PARTITION AVAIL TIMELIMIT JOB_SIZE ROOT SHARE GROUPS NODES STATE NODELIST

serial* up 3-00:00:00 1 no NO all 1 draining c623

serial* up 3-00:00:00 1 no NO all 101 mixed c[25,76-77,…

serial* up 3-00:00:00 1 no NO all 593 allocated c[3-24,26-75,…

serial* up 3-00:00:00 1 no NO all 226 idle c[211-213,…

parallel up 3-00:00:00 1-28 no NO all 1 draining c623

parallel up 3-00:00:00 1-28 no NO all 101 mixed c[25,76-77,…

parallel up 3-00:00:00 1-28 no NO all 593 allocated c[3-24,26-75,…

parallel up 3-00:00:00 1-28 no NO all 226 idle c[211-213,…

longrun up 14-00:00:0 1 no NO all 1 draining c623

longrun up 14-00:00:0 1 no NO all 101 mixed c[25,76-77,…

longrun up 14-00:00:0 1 no NO all 587 allocated c[3-24,26-75,…

longrun up 14-00:00:0 1 no NO all 226 idle c[211-213,…

test up 30:00 1-2 no NO all 4 idle c[1-2,984-985]

hugemem up 7-00:00:00 1 no NO all 2 mixed c[577-578]

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

#SBATCH --constraint=snb

 The job is run only in Sandy Bridge (snb) nodes

 The other option is Haswell node (hsw) or

 #SBATCH --constraint=hsw

 Either that is free ”snb|hsw”

 #SBATCH --constraint=”snb|hsw”

 Currently the default is to use either architecture in serial
and longrun partitions

 Sandy Bridge in test and parallel

 A single job cannot use CPUs from both architectures, but
SLURM will take care of this

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

#SBATCH –-constraint=snb

module load myprog

srun myprog -option1 -option2

module load myprog

srun myprog -option1 -option2

 Your commands
• These define the actual job to performed: these commands

are run on the compute node.

• See application documentation for correct syntax

• Some examples also from batch script wizard in SUI

 Remember to load modules if necessary

 By default the working directory is the directory where you submitted the
job

• If you include a cd command, make sure it points to correct directory

 Remember that input and output files should be in $WRKDIR (or in some
case $TMPDIR)

 $TMPDIR contents are deleted after the job

 srun tells your program which cores to use. There are also exceptions…

#!/bin/bash -l

#SBATCH -J myjob

#SBATCH -e myjob_err_%j

#SBATCH -o myjob_output_%j

#SBATCH --mail-type=END

#SBATCH --mail-user=a.user@foo.net

#SBATCH --mem-per-cpu=4000

#SBATCH -t 02:00:00

#SBATCH -n 1

#SBATCH –p serial

module load myprog

srun myprog -option1 -option2

Most commonly used sbatch options

Slurm option Description

--begin=time defer job until HH:MM MM/DD/YY

-c, --cpus-per-task=ncpus number of cpus required per task

-d, --dependency=type:jobid defer job until condition on jobid is satisfied

-e, --error=err file for batch script's standard error

--ntasks-per-node=n number of tasks per node

-J, --job-name=jobname name of job

--mail-type=type notify on state change: BEGIN, END, FAIL or ALL

--mail-user=user who to send email notification for job state changes

-n, --ntasks=ntasks number of tasks to run

-N, --nodes=N number of nodes on which to run

-o, --output=out file for batch script's standard output

-t, --time=minutes time limit in format hh:mm:ss

--mem-per-cpu=<number in MB> maximum amount of real memory per allocated cpu
 required by the job in megabytes

--mem=<number in MB> maximum memory per node

SLURM:

Managing batch jobs in Taito

Submitting and cancelling jobs

 The script file is submitted with command
 $ sbatch batch_job.file

 Job can be deleted with command
 $ scancel <jobid>

Queues
 The job can be followed with command squeue:
$ squeue (shows all jobs in all queues)
$ squeue –p <partition> (shows all jobs in single queue (partition))
$ squeue –u <username> (shows all jobs for a single user)
$ squeue –j <jobid> –l (status of a single job in long format)

 To estimate the start time of a job in queue
 $ scontrol show job <jobid>

 row "StartTime=..." gives an estimate on the job start-up time, e.g.
 StartTime=2014-02-11T19:46:44 EndTime=Unknown

• scontrol will also show where your job is running
• If you add this to the end of your batch script, you’ll get additional info to stdout

about resource usage

seff $SLURM_JOBID

Job logs

 Command sacct can be used to study past jobs

 Useful when deciding proper resource requests

$ sacct Short format listing of jobs starting from midnight today

$ sacct –l long format output

$ sacct –j <jobid> information on single job

$ sacct –S YYYY-MM-DD listing start date

$ sacct –o list only named data fields, e.g.

$ sacct –u <username> list only jobs submitted by username

TIP: Check MaxRSS to see

how much memory you need

and avoid overbooking

$ sacct -o jobid,jobname,maxrss,reqmem,elapsed -j <jobid>

Available nodes/queues and limits

 You can check available resources per node in each queue:
 $ sjstat -c

Pool Memory Cpus Total Usable Free Other Traits

serial* 258000Mb 24 10 10 5 hsw,haswell
serial* 64300Mb 16 502 502 9 snb,sandybridge
serial* 258000Mb 16 14 14 0 bigmem,snb,sandybridge
serial* 128600Mb 24 395 395 6 hsw,haswell
parallel 258000Mb 24 10 10 5 hsw,haswell
parallel 64300Mb 16 502 502 9 snb,sandybridge
parallel 258000Mb 16 14 14 0 bigmem,snb,sandybridge
parallel 128600Mb 24 395 395 6 hsw,haswell
longrun 258000Mb 16 8 8 0 bigmem,snb,sandybridge
longrun 258000Mb 24 10 10 5 hsw,haswell
longrun 64300Mb 16 502 502 9 snb,sandybridge
longrun 128600Mb 24 395 395 6 hsw,haswell
test 64300Mb 16 2 2 2 snb,sandybridge
test 128600Mb 24 2 2 2 hsw,haswell
hugemem 1551000Mb 32 2 2 0 bigmem,snb,sandybridge
hugemem 1551000Mb 40 4 4 1 bigmem,hsw,haswell,ssd

Most frequently used SLURM

commands
Command Description
srun Run a parallel job.
salloc Allocate resources for interactive use.
sbatch Submit a job script to a queue.
scancel Cancel jobs or job steps.
sinfo View information about SLURM nodes and partitions.
squeue View information about jobs located in the SLURM
 scheduling queue
smap Graphically view information about SLURM jobs,
 partitions, and set configurations parameters
sjstat display statistics of jobs under control of SLURM
 (combines data from sinfo, squeue and scontrol)
scontrol View SLURM configuration and state.
sacct Displays accounting data for batch jobs.

Parallel jobs (1/2)

 Only applicable if your program supports parallel running

 Check application documentation for number of cores to use

• Speed-up is often not linear (communication overhead)

• Maximum number can be limited by the algorithms

• Make sure (test) that using more cores speeds up calculation

 Mainly two types: MPI jobs and shared memory (OpenMP) jobs

• OpenMP jobs can be run only inside one node
• All cores access same memory space

• MPI jobs can span several nodes
• Each core has its own memory space

• In some cases you can use both: MPI between nodes and OpenMP
within a node. Check the documentation of your program

Parallel jobs (2/2)

 Memory can be reserved either per core or per node

• For OpenMP jobs request memory per node (--mem=NN)

• Don’t overallocate memory

• If you reserve a complete node, you can also ask for all the memory

 Each server has different configuration so setting up parallel jobs in
optimal way requires some thought

 See server guides for specifics: http://research.csc.fi/guides

 Use Taito for large memory jobs

 Sisu for massively parallel jobs

 Check also the software specific pages for examples and detailed
information: http://research.csc.fi/software

http://research.csc.fi/guides
http://research.csc.fi/software

Array jobs (advanced usage)

 Best suited for running the same analysis for large number of files

 #SBATCH --array=1-100

 Defines to run 100 jobs, where a variable $SLURM_ARRAY_TASK_ID
gets each number (1,2,…100) in turn as its value. This is then used to
launch the actual job (e.g.

 $ srun myprog input_$SLURM_ARRAY_TASK_ID > output_ $SLURM_ARRAY_TASK_ID)

 Thus this would run 100 jobs:

srun myprog input_1 > output_1

srun myprog input_2 > output_2

…

srun myprog input_100 > output_100

 For more information

 http://research.csc.fi/taito-array-jobs

http://research.csc.fi/taito-array-jobs
http://research.csc.fi/taito-array-jobs
http://research.csc.fi/taito-array-jobs
http://research.csc.fi/taito-array-jobs
http://research.csc.fi/taito-array-jobs

Compiling your program

102

What is a program?

A program is a sequence of instructions understandable

by a computer’s central processing unit (CPU) that

indicates which operations the computer should perform

Ready-to-run programs are stored as executable

files

An executable file is a file that has been converted

from source code into machine code, by a

specialized program called a compiler

103

Programming languages at supercomputers

104

gcc [source files] [-o prog]

• Compiles C source files into a program

• -o to give the name of the program, defaults to

a.out

• -c to compile into .o -files

Compiling and installing programs

• For most programs, the three commands to compile and install in

directory /home/user/programs are:
$./configure --prefix=/home/user/programs

$ make

$ make install

• make will be discussed in detail later today

• Destination for own programs in CSC computing environment:

$USERAPPL

Why make?

Program

Module
C

Module
B

Module
A

program separated into
several files

multiple inter-
dependant modules

compilation and linking
becomes easily a
nightmare
– especially when

developing the program!

Why make?

when code has been modified, there are two

approaches to compile the program:

– re-compile everything

– keep records and re-compile only what is needed

make makes life easier by taking care of all the book
keeping

→ too slow

→ too much work

Makefile

defines:

– work-flow(s) for producing target(s)

– dependencies of each target

– library paths, compiler flags etc.

directives for conditional definitions etc.

starts a comment

usually called Makefile

– other choices: makefile, GNUmakefile

Basic syntax

target: dependencies
 recipe
 ...

foo.o: foo.c bar.h # module foo
 cc -c foo.c

clean: # remove all
 rm *.o

name (usually filename)
list of files / rules

commands to execute

example:
Note: use tabs

instead of

spaces to

indent recipes!

R
U

L
E

Basic syntax

target
– usually the file that is produced by the recipe

– name of an action also commonly used

for example: clean, distclean

dependencies
– a list of (source) files needed by the recipe

– may also be other targets

recipe
– a list of commands to execute to make target

Logic of make

read general macro definitions etc.

call the rule for target

– check when dependencies were changed

– if any of the dependencies have changed, the
target is re-built according to the recipe

dependencies may also be targets for other
rules

– in that case, make calls those rules

Simple example

hello: main.o sub1.o sub2.o sub3.o
 f90 -o hello main.o sub1.o sub2.o sub3.o
main.o: main.f90
 f90 -c main.f90
sub1.o: sub1.f90
 f90 -c sub1.f90
sub2.o: sub2.f90
 f90 -c sub2.f90
sub3.o: sub3.f90
 f90 -c sub3.f90
clean:
 rm hello main.o sub1.o sub2.o sub3.o

Which target?

by default, the first target is called

– ’hello’ in the previous example

target can be also specified when running
make

– make target

– make clean

– make main.o

Variables

contain a string of text

 variable = value

substituted in-place when referenced

 $(variable) value

sometimes also called macros

shell variables are also available in the
makefile

– $(HOME), $(USER), …

Two flavors of variables in GNU make

recursive variables
– defined as: foo = bar

– expanded when referenced

simple / constant variables
– defined as: foo := bar

– expanded when defined

foo = $(bar)

bar = $(ugh)

ugh = Huh?

$(foo) Huh?

x := foo

y := $(x) bar

x = later

$(x) later

$(y) foo bar

Variables

by convention variables are name in ALL-CAPS

in the previous example we could have used a
variable to store the names of all objects

– OBJ = main.o sub1.o sub2.o sub3.o

Simple example revisited

OBJ = main.o sub1.o sub2.o sub3.o
hello: $(OBJ)
 f90 -o hello $(OBJ)
main.o: main.f90
 f90 -c main.f90
sub1.o: sub1.f90
 f90 -c sub1.f90
sub2.o: sub2.f90
 f90 -c sub2.f90
sub3.o: sub3.f90
 f90 -c sub3.f90
clean:
 rm hello $(OBJ)

Common variables

some common variables

– CC

– CFLAGS

– FC

– FCFLAGS

– LDFLAGS

– OBJ

– SRC

Special variables

$@

– name of the target

$<

– name of the first dependency

client: client.c

 $(CC) client.c -o $@

client: client.c

 $(CC) $< -o $@

Special variables

$+

– list of all dependencies

$^

– list of all dependencies (duplicates removed)

$?

– list of dependencies more recent than target

client: client.c

 $(CC) $+ -o $@

Special variables

$*

– common prefix shared by the target and the
dependencies

client: client.c

 $(CC) -c -o $*.o $*.c

Special characters

/ continues a line

starts a comment

@ executes a command quietly

– by default, make echos all commands executed

– this can be prevented by using @-sign at the
beginning of the command

@echo ”quiet echo”

 quiet echo

echo ”normal echo”

 echo ”normal echo”

 normal echo

Special characters

if there is an error executing a command,
make stops

– this can be prevented by using a – sign at the
beginning of a command

clean:

 -rm hello

 -rm $(OBJ)

Implicit rules

one can use special characters to define an
implicit rule

e.g. quite often target and dependencies share
the name (different extensions)

– define an implicit rule compiling an object file from
a Fortran 90 source code file

%.o: %.f90

 $(F90) $(FFLAGS) -c -o $@ $<

Example revisited again

OBJ = main.o sub1.o sub2.o sub3.o

implicit rule for compiling f90 files

%.o: %.f90

 f90 -c -o $@ $<

hello: $(OBJ)

 f90 -o hello $(OBJ)

clean:

 rm hello $(OBJ)

Built-in functions

GNU make has also built-in functions
– for a complete list see:

www.gnu.org/software/make/manual/make.html#Functions

strip, patsubst, sort, …
dir, suffix, basename, wildcard, …

general syntax
– $(function arguments)

Command line options

-j parallel execution

-n dry-run

– shows the command, but does not execute them

-p print defaults

– shows default rules and values for variables before
execution

-s silent-run

– do not print commands as they are executed

Command line options

variables can also be defined from the command
line

– make CC=gcc ”CFLAGS=-O3 –g”

foobar

Complete example
SRC = main.f90 sub1.f90 sub2.f90 sub3.f90
OBJ = $(patsubst %.f90, %.o, $(SRC))
F90 = gfortran
FFLAGS =
DEST = bin

implicit rule for compiling f90 files
%.o: %.f90
 $(F90) $(FFLAGS) -c -o $@ $<

hello: $(DEST)/hello

$(DEST)/hello: $(OBJ)
 $(F90) $(FFLAGS) -o $@ $(OBJ)

clean:
 -rm $(OBJ)
 -rm $(DEST)/hello

extra dependencies
sub2.o: modules.o

Science services at CSC: a short introduction

Software and databases at CSC

Software selection at CSC:

● http://research.csc.fi/software

Science discipline specific pages:

● http://research.csc.fi/biosciences

● http://research.csc.fi/chemistry

Chipster data analysis environment:

●http://chipster.csc.fi

http://research.csc.fi/software
http://research.csc.fi/software
http://research.csc.fi/biosciences
http://research.csc.fi/biosciences
http://research.csc.fi/chemistry
http://research.csc.fi/chemistry
http://chipster.csc.fi/
http://chipster.csc.fi/

Troubleshooter: Interactive session to deal with open questions and specific problems

