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1 Introduction to Base R

A Jupyter notebook, by Seija Sirkiä
Hello, and welcome to this introduction to R. The aim here is to give you a solid understanding

of the basics so that you can start learning the more advanced features suitable to your needs.
The intended audience of this notebook is someone with no experience with R and very limited

or no experience with programming in general. If you do have experience in programming, you
will probably find it wordy and sparse on content, but on the other hand quick to go through.

1.1 About Jupyter

Note that R itself is in fact a programming language (accompanied by something called an inter-
preter, of that language), not a full software like for example SPSS or Excel. As such, it doesn’t
look like anything on its own. On top of that, R code is just text and could be written anywhere.
What you are usually looking at when you are looking at “R” is some kind of a user interface,
nowadays most commonly RStudio (you can go to rstudio.com to have a look). However, what
you are currently looking at (probably, unless you turned this in to a pdf or something — which
you could do) is Jupyter, a web based interface capable of running R as well as a number of other
things. It might be a little confusing at some points to have it run in the web browser (or more
correctly, “in the cloud”) and not actually on your own machine. In addition it isn’t as powerful
for the serious data analysis work you’ll be doing later on as RStudio would be. But it does let us
focus on just the R language and code for now.

There’s no need to learn much about Jupyter itself for the purpose of this R introduction. The
main thing is this: there are code cells, such as this one below here:

In [ ]: df <- data.frame(x = seq(0,1,length=10))
df$y <- 2*df$x + rnorm(10,sd=0.3)
lm(y~x,df)
rm(df)

You can tell the difference between a code cell and a text cell probably by just their appearance
and context, but also, look at the space on the left hand side of the cell: code cells have the text
“In [ ]” there to indicate that this is a code input. Now you can run the code! Click on the cell
above to make it active, and then click on the toolbar button that looks like the play button (the
one that says “run cell, select below” on mouseover). Alternatively, you can press Shift+Enter on
your keyboard. Go ahead, run the code!
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What should happen is that the text on the left hand side becomes “In [1]” (or possibly some
other number), and some new text appears below, talking about Call and Coefficients. If that’s the
case, you are ready to move on!

By the way, every single character in that tiny snippet of code, as well as what actually was
done, should be clear to you by the time you reach the end of this notebook.

1.1.1 Just a bit more about Jupyter

As mentioned above, you don’t need to pay too much attention to Jupyter while going through
this notebook. However, since the notebook is fully editable, you might e.g. accidentally remove
something. You can recover from such an event using checkpoints, which are way to save the
contents of the notebook at a given time. You can create a checkpoint using the button on the
toolbar, or from the File menu, and revert to a checkpoint from the File menu. Now would be a
good time to create the first checkpoint.

You can of course change this notebook as much as you like! Change the text, add comments,
add new code cells, even create a completely new notebook. . . but for now you are on your own
in figuring out how to do all that.

Accidentally closing the browser tab of the notebook is not a problem. Just reopen it from the
Jupyter home tab. If you’ve closed that too (or your browser crashed, or even if you just want to
switch to another browser on another computer) you can start over from pb.csc.fi. All of it remains
as it were for as long as the virtual machine is running.

At the end of the day you might want to keep a copy of all of your work. From the file menu
you can download the notebook in several formats, of which the following three might interest
you for now:

• as a Notebook: use this in case you want to return to the actual complete notebook on an-
other Jupyter instance. The ones on pb.csc.fi will only stay up for a limited time, so if you
want to work longer than that, this is what you need. You can upload the notebook again on
the new Jupyter instance, and continue from there.

• as R code: this will download just the R code parts to be used again e.g. in RStudio
• as pdf: this will create a pdf document which you can read to see what you did, but not

actually work on

And now, onwards to learning R

1.2 Expressions and the R interpreter

Doing anything using R comes down to the R interpreter evaluating expressions. An expression is a
line of code that forms a kind of a question, and evaluation is the process of finding the answer. If
you ran the first example in the previous section, you have actually already made R evaluate an
expression, or several in fact. But now it’s time for you create an expression all on your own.

Here’s a code cell for you. Type out a question, and run the cell (using the toolbar button, or
Shift+Enter).

In [ ]:

It’s quite likely that the answer you get is some kind of an error. This trick exercise serves to
make a couple of points:
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• errors like this will happen and they aren’t dangerous
• the R interpreter can only evaluate proper R code
• in Jupyter you can go back to a code cell, edit the code and re-run it

And that’s what you should do next. The easiest form of an expression that does make sense
and can be evaluated and gives out a well defined answer is a numeric calculation. So go ahead,
type 1+1 in the code cell and re-run it, and make sure you get the familiar answer.

Ordinary calculations use the common symbols, including ˆ for exponentiation. Parentheses
work as usual. The decimal separator is the point/dot . (and not comma ,). Try out calculations
in the code cell below! Invent your own, or use these questions as inspiration.

• How many minutes are there in a week?
• A glass vase of 39.90e is put on 30% sale. What is the new price?
• Body mass index is calculated as weight (in kg) per height (in m) squared. Find yours! Or

find out the numbers for some celebrity you can google. Or think up an imaginary person.
• If the current outside temperature in Fahrenheit degrees is 24, what should you wear on a

trip to downtown?

Note that you can put many expressions (calculations) in the same code cell! Just put them on
separate lines.

In [ ]:

1.3 Assignments

Previously, the results of the evaluations were printed out for viewing. It is also possible to assign
the result value to a name using the symbol <- (that’s the less-than sign and dash; on both Jupyter
and RStudio you can also use alt-dash to type it out easily and with the nice whitespaces around)
like this:

In [ ]: answer <- 1+1

Now if you run this code cell, it seems that nothing happens but in fact it creates an object in the
workspace called answer which can afterwards be used again in other expressions, like this:

In [ ]: answer + 1

You can always check the names of the objects currently in the workspace using this command:

In [ ]: ls()

The workspace is shared between all code cells, and it is changed only if you run or re-run
some code. It doesn’t matter in which order the code is typed out, only the order in which it is
run. Remember, the code itself is just text until it’s run through the interpreter, and after that it
is again just text. If you get confused, it’s possible to start over from empty workspace and clean
notebook by choosing ‘Restart & Clear output’ from the Kernel menu.

Please take a moment of trying out assignments and expressions in the cell below until you
get the hang of it. You can for example revisit the calculations from before and use objects for the
initial values, and/or intermediate and final results. The object names can be anything but there
are some rules to keep in mind:
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• The name must begin with a letter
• It can contain numbers, dots and underscores, and is case sensitive
• It can’t contain whitespaces

– (In fact this is not entirely true! It can but that requires special effort. Don’t go there.)

• Letters with accents and umlauts may or may not work or be portable; try to avoid

In [ ]:

1.3.1 The comment character #

One more thing about the R interpreter: the comment character. You can add non-code text to your
R code, for example to explain (mostly to yourself!) what you are doing, using the # character.
The interpreter will completely ignore the whole line after that character. It is also a quick way to
temporarily “remove” a line of code from a code snippet. You can try this out now, or wait for an
example in the next section.

1.4 Numeric vectors

You have now learned the basic logic of how the R interpreter works using simple expressions
and assignments. These have so far involved just single numbers. In order to do some proper
data analysis you of course need to learn how to deal with actual data. The next stop on that
route is vectors. They come in three basic flavors: numeric, character and logical. We start with the
numeric ones.

• Numeric vectors are ordered sequences of numbers
• They are created with the function c()

– Or as a result of some other function

• You can do calculations with them just like with single numbers, they happen element by
element

– Actually, single numbers are vectors, just of length 1!

• Most mathematical functions also work elementwise

– exp(), log(), abs() and so on

• Some functions treat the vector as a whole

– length(), sum(), mean(), median(), sd(), var(), min(), max()

• summary() tells several things about a vector at once

Below are some numbers, steps taken and estimated calories burned per day, from an activity
bracelet from a single week, and a few calculations concerning them.

In [ ]: steps <- c(106,0,12775,8287,9222,7080,6055)
kcal <- c(1356,1341,2109,1882,1970,1938,1851)

# estimate of distance walked each day:
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steps*0.7

# energy burned per step each day:
kcal/steps

• Most mathematical functions also work elementwise

– exp(), log(), abs() and so on

• Some functions treat the vector as a whole

– length(), sum(), mean(), median(), sd(), var(), min(), max()

• summary() tells several things about a vector at once (but doesn’t make much sense with
vectors as short as the ones in this example)

Note that the result of the calculation is a new vector. You can always save it to a new variable
if you want to do something with the result later, like this:

In [ ]: distances <- steps*0.7
tot_dist <- sum(distances)
tot_dist

However, since the result of the calculation is a new vector, you can also use it directly where
ever a vector is expected. So, the same result as above could have been obtained on a single line
as well:

In [ ]: sum(steps*0.7)

It is up to the situation and your personal preference which way to do it. Go ahead and try
both ways here to calculate the average hourly energy consumption over the week, that is, total
energy consumed over the week divided by the number of hours in a week.

In [ ]:

(Have you remembered to make a checkpoint? Maybe now would be the time to make an-
other?)

Next we have to talk about indices. As we have seen, the elements of the vector reside in a
fixed order (and not in a random pile, for example) so that you can talk about the first element, the
second element etc. You can also extract, or access, only certain elements of a vector, using square
brackets and the index of the element, for example like this:

In [ ]: steps[1]

The first element has the index 1, the second 2, etc. It is also possible to talk about a whole
range of elements, using this notation:

In [ ]: steps[1:5]
kcal[6:7]
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Again, the result of such operation is a new vector. Therefore, they can be combined with
calculations. Let’s assume that the step and energy numbers here are from a full week from Mon-
day to Sunday. Calculate here the average step amount and energy consumption for weekdays,
and for weekend separately. Remember what you learned previously about saving intermediate
results!

In [ ]:

You might have asked now, what if you wanted to extract something like Monday, Wednesday
and Friday, instead of a range? If this never occured to you, feel free to skip this part and continue
from logical vectors. It’s not a difficult idea but also you can very well do without. The thing is,
what you’re supposed to put inside the brackets when you are extracting elements by their index,
is an index vector. A single index is a vector (of length one). The : operator also creates a vector.
So, you are fine as long as you put a vector of indices inside the brackets. Like this:

In [ ]: steps[c(1,3,5)]

Note that this is something very different, and gives you an error (because 1,3,5 is not a
vector, while c(1,3,5) is):

In [ ]: steps[1,3,5]

(In case you are wondering, this last bit would make sense if steps were a 3-dimensional
array and not a 1-dimensional array or in other words, a vector.) Ok, now onwards to logical
vectors.

1.5 Logical vectors

Besides numeric, vectors come in another flavor, logical. Another name for these is Boolean values.
They are pretty much like numbers, but there are only two possible values: TRUE and FALSE. They
come up as results from logical operations, such as comparing values to each other. Here we are
told, element by element, whether the number of steps taken was above 1000:

In [ ]: steps > 1000

The possible comparison are

• less than <

• greater than >

• less or equal <=
• greater or equal >=
• equal ==
• not equal !=

and the logical operations are - and & - or | - not !
A convenience operator for querying whether a value is equal to one of several in a given set

exists: x %in% 1:3.
If you have never played with logical values before, worry not. For basic usage there are

essentially just two situations were you need them. One is to use a comparison, such as above to
extract values of a vector. For example, here we calculate the average of the steps taken and the
energy consumed only on the days that the amount was above 1000 (presumably, on days that the
bracelet was worn all day):
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In [ ]: allday <- steps > 1000
fullsteps <- steps[allday]
fullkcal <- kcal[allday]
mean(fullsteps)

(If you feel like it, see if you can again do this on just one line!) In fact, even this is a bit
more complicated than is usually really needed, but the idea is clearly shown here. And we’ll get
back to it. The second case where logical values are needed, is to control the behaviour of certain
functions. We’ll try that soon in the context of missing values. First, let’s just play a bit with what
we have learned so far.

We’ve calculated before the average energy consumption per step, but we did it a bit wrong:
a person consumes energy to run the body even if she laid in bed all day. This is called the basal
metabolic rate. One day was marked with 0 steps, while there was a positive energy consump-
tion on that day as well. That positive kcal value is the bracelet’s estimate of the wearer’s basal
metabolic rate, based on height, weight etc. Let’s calculate the average energy consumption per
step again, this time based only on the part that was above the basal metabolic rate. Let’s do it
step by step:

In [ ]: # Here you should write the correct code at the points marked with ??

# First we need to find the bmr value:
# it's the element that coincides with the logical steps is equal to 0:
steps0 <- ??
bmr <- kcal[??]
bmr
# You should see the bmr value come out as 1341

# Next we subtract the bmr value from the kcal values
abovebmr <- ??
abovebmr
# You should now see smaller kcal values, with 0 as the second element

# Finally, we get to do the energy consumed per step calculation again
kcalperstep <- ??
kcalperstep

# You should see values between 0.060 and 0.085 for the full days,
# something a bit more for the first day, and "NaN" for the second

There! This makes more sense. The first day is still a bit off, but the other weekdays are similar
with each other, and so are the weekend days, which is consistent with the wearer’s workpattern.
The NaN vlaue will be explained in the next section. Meanwhile, if this felt unnecessarily com-
plicated it is because it was that. We could have just done the same calculation by typing in the
number 1341. The point here was to give you a feeling of what data analysis through R scripts is
like!
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1.6 Missing values

In the steps vector in the previous examples the first two values, 106 and 0, were probably due
to the bracelet not being worn the whole day or at all, and do not reflect the true amount. In other
words, we don’t actually know the step number: those data point are missing. The R language
provides an explicit way of saying this, the NA symbol (“not available”). Here is the steps vector
with missing values explicitly stated:

In [ ]: steps_na <- c(NA,NA,12775,8287,9222,7080,6055)

Another common way of expressing missingness is some specific numeric value that’s sup-
posed to be apparent but this causes problems. An actual number is always going to be treated as
an actual number in calculations, such as total sums etc, skewing results unless they are filtered
out manually (which is easy to forget). An explicit missing value will behave properly and can be
dealt with automatically. For example:

In [ ]: sum(steps_na)

The sum of a vector containing NA’s is also NA. This makes sense: if you don’t know what
number to add, you also don’t know what the result will be. On the other hand, you might be
interested to see the sum of the numbers that are there. This is easily done:

In [ ]: sum(steps_na, na.rm=TRUE)

Here an additional parameter was given to the sum-function, telling it to skip the missing values
(“remove NA’s”). This is the other case where you commonly encounter logical values: the default
behaviour of sum (and many other functions) is to include missing values in the calculation and it
can be changed by setting the parameter na.rm to TRUE. We will learn more about functions and
parameters later in this notebook.

One more thing about NA’s: if you need to know which values are missing, a direct logical
comparison with NA will not work. Instead you have to use a testing function is.na(). See here
(and think for a moment what the first result means!):

In [ ]: steps_na == NA
is.na(steps_na)

In the previous example there was a related symbol, NaN which stands for “not a number”.
This is another kind of missingness that resulted from the calculation 0/0 which has no well de-
fined mathematical meaning (not even infinity, which in turn has its own symbol Inf which we
also saw earlier). The difference between NA and NaN can be easily ignored for now.

1.7 Character vectors and factors

There’s one more flavor of vectors: character. The elements of character vectors are pieces of text,
such as here:

In [ ]: treatg_char <- c("Trt1","Trt2","Ctrl","Trt1","Ctrl","Trt2")
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Note that the pieces of text have to be enclosed in quotation marks. Single ’ and double " both
work the same.

There’s not much you can do with character vectors as such. They often show up in data
representing group membership, or in other words, a categorical variable. However, R has a
special object type reserved exactly for that: factors. The difference between a character vector
and a factor is a bit technical, and in many situations, a character vector is quietly and implicitly
changed in to a factor when needed, so it’s that more difficult to make the distinction. However,
the defining features of a factor is its levels: the specific collection of the different values it might
get. In contrast, the elements of character vector could be thought to be anything, potentially
distinct values for every element. To clarify, here the character vector version of the treatment
groups is described using the summary function:

In [ ]: summary(treatg_char)

Here the character vector is changed in to a factor and described again:

In [ ]: treatg <- factor(treatg_char)
summary(treatg)

In the first case, nothing is told about the contents beyond the length and type, in the second,
a useful summary of the variable is given: it has three categories (levels) each with 2 observations.
Here are two other functions about the levels of a factor:

In [ ]: levels(treatg)
nlevels(treatg)

Now that you are familiar with vectors and factors, you are ready for the most important data
type, data frames.

1.8 Data frames

The examples so far have dealt with single vectors that weren’t actually connected to each other.
We treated the kcal and steps vectors as if their elements corresponded to the same days of the
week but this was not explicitly stated anywhere. In the following the same data are put in a data
frame, maybe the most important data structure in R. But for clarity, let’s empty the workspace
first:

In [ ]: ls()
# you probably see the names of all the objects from before, including steps and kcal

# this command removes everything:
rm(list=ls())

# now the same listing command from before gives no output:
ls()

In other words, there should now be no objects in the workspace. We’ll go right ahead and
create one new one:
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In [ ]: bracelet <- data.frame(day=c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday"),
steps=c(106,0,12775,8287,9222,7080,6055),
kcal=c(1356,1341,2109,1882,1970,1938,1851))

bracelet
summary(bracelet)
ls()

You can see that the whole dataset is now visually represented as a table, with rows and
columns. This is the proper way to think about data frames: they are tables where columns are
variables (in the statistical sense) and rows are observations of those variables that go together. On
the other hand, the columns of a data frame are still vectors, or factors, and you can do anything
with them that you would do with vectors, or factors. The only difference is that you have to
mention the name of the data frame where it comes from too. See here:

In [ ]: # this will give an error message:
steps

The error message should not come as a surprise: assuming you ran the previous two code
cells just before, it should be clear to you that the only object in the workspace is now bracelet,
and that there is nothing called steps. A small change will make a difference:

In [ ]: bracelet$steps

Using the name of the data frame and the $ character it is possible to talk about the column
vector called steps of the data frame called bracelet. Armed with this knowledge, please try and
see if you can redo the calculations related to steps and kcal that were done before in the next code
cell.

Note! This should be very educating and perhaps include a few pitfalls. If you get error
messages, or surprising behavior, take your time and think what is happening. Remember that
you can use ls() to see the current objects, and that you can restart from the previous code cells,
if you get confused.

In [ ]:

1.9 Working with data frames

The next step in learning data analysis with R would naturally be how to bring in your own data to
work with. We will get to that but it requires knowledge of a few more things: functions, working
directories, csv files. . . So before we do that, let’s play around a bit with some example data sets
that come from R itself.

All of the available example data sets are taken in to use with the function called data. First,
let’s look at a classic example, the iris data set:

In [ ]: data(iris)
ls()
summary(iris)
head(iris)
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So now we have a new data frame in the working space, called iris. Its summary shows us that
there are 5 variables, four numeric ones, and one that is a factor, with three levels, each with 50
observations. The head(iris) call is used to look at a few first lines of the data frame, instead of
looking at all 150 of them. Next, we can look at the documentation page of this data set; this will
open a new pop-up like window in Jupyter: you can close it afterwards, or you can move it to its
own tab using the button in its top right corner.

In [ ]: ?iris

You might also consider searching the wikipedia page of this data set to get an idea of what
kind of flowers these are, and what the petal and sepal leaves are.

There is a saying that when doing data analysis, at least 80% of the time is spent on cleaning,
rearranging and otherwise preparing the data, and only 20% on the actual analysis. R is great for
that, particularly when combined with a good user interface (RStudio) and some dedicated pack-
ages. Most of that is beyond this basic introduction, but a few simple tricks will get us somewhere.
The first one is how to add new variables in to the data frame. One way to do this by a simple
assignment. Let’s pretend that the sepal leaves of the iris flowers are rectangular, and add their
area to the data:

In [ ]: iris$Sepal.Area <- iris$Sepal.Width * iris$Sepal.Length
summary(iris)

Now you try the same with petal leaves:

In [ ]:

Another simple trick we look at is taking subsets of the data frame. Recall how we used the
brackets and indices for extracting parts of vectors. The same kind of syntax works for data frames,
except that there are now two sets of indices, one for rows and another for columns. Consider this:

In [ ]: corner <- iris[1:5,1:4]
corner
ls()

This created a new data frame, which consists of the rows 1 to 5 and columns 1 to 4 of the iris.
So, the indices before the comma refer to rows, the indices after the comma refer to columns. For
convenience (?), leaving the other index out completely means “all of them”. So, this means that
in addition to the $ notation from before, you can extract a single column vector also like this:

In [ ]: iris[,4]

Earlier we also learned about using logical vectors to extract parts of vectors that satisfy a
condition. This works for data frames too, in an analogous manner, and in fact makes even more
sense here. But there is also a function called subset that is nicer to use. Here are two examples:

In [ ]: smallones <- subset(iris,Sepal.Length<5)
setosas <- subset(iris,Species=="setosa")
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This function works so that you first state which data frame you want to subset, and then you
give the logical rule for the rows you want to keep. The joy comes from the fact that inside the
function call you only need to mention the data frame once, and then all its columns are known
by name.

Try now if you can calculate the average sepal length for each species separately. You have the
knowledge for (at least) two ways of doing this. First, you could exploit the fact that the species
observations are nicely in order, 50 observations at a time. Things are usually not this nice, so you
should also try splitting the data frame in three single-species parts with subset. This solution
was actually started in the previous code cell already.

(Note that neither of these two ways is in fact viable in the real world. In a real situation one
would use the aggregate function from base R, or summarise from the dplyr package. But it’s
too early for those.)

In [ ]:

The correct answers are 250.3, 296.8 and 329.4 for setosa, versicolor and virginica, respectively.

1.10 Understanding function calls and documentation

Getting anything done in R happens by using functions. In fact, learning to do data analysis using
R after the basics means mostly learning which functions out of the millions available will do the
tasks you need done. That is a completely different story that what we are looking at now. Once
you know which function you want to use though, you can look at its documentation to see how
exactly it is used.

You can bring up the documentation of a function by typing the question mark ? in front of
the function name (without the parentheses), in the similar way as before with the iris data frame.
Try this now with the function mean and remember again that you can detach the page as its own
tab.

In [ ]: ?mean

The documentation pages have a common structure, although not all have every part present.
First there is Description, a short explanation of what the function (or functions, if several are
described in the same page) does. Then there are the parts called Usage and Arguments, which
together list all the possible arguments the function could take and their default values. The argu-
ments are also explained in more detail: most importantly, it is mentioned what kind of argument
is expected (such as numeric, logical, single value, a vector. . . ). After this there is often Details, a
longer and hopefully enlightening explanation of how the function works and is supposed to be
used. Here though, mean is assumed to be simple enough to not need further explanation. Next
one is usually Value, explaining what kind of output the function will produce. At the end, there
are usually a list of related functions under See also and finally Examples, which are both often
very educating.

The arguments are always named in the Usage list, but when calling the function you don’t
have to use the names, as long as the order you give the values matches the order listed in Usage.
If you want to skip giving some (and use their default values), or give them in some other order,
you do need to use the names. A common habit is to give the first argument unnamed, and the
rest with names.

Try now if you can figure out how to use a completely new fucntion based on only its docu-
mentation. Use the function called sample to produce
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• a Finnish Lotto (lottery) ticket: 7 randomly drawn numbers out of 40
• a vector of 0’s and 1’s, representing 10 coin tosses

– as an extra: make a factor with levels “heads” and “tails” instead, if you feel like it. It
is more appropriate but requires a bit more tweaking

• a sample of 5 random sepal length measurements from the iris data set. This is a bit trickier
than the previous 2 parts: first you produce a vector of random indices using sample, then
you use that to pick the measurements (and yes, once more, a ready made function for
picking random samples out of data frames exists, this is for educational purposes!)

In [ ]:

1.11 Reading in data from CSV files

There are many formats data might exist and R is probably able to read all of them with some
effort and the corrcet package. Here, we will only consider one: CSV files. Feel free to have a look
now to see what they are like: https://en.wikipedia.org/wiki/Comma-separated_values. The
short version, suitable for current purposes, is that a CSV file is a text file, containing data in a
table format much like the data frame you would like it to become. The first row is supposed to be
a header row, which contains the names for the columns (variables), and the rest of the rows will
have the actual data. Columns are separated with the comma character. Other programs, such
as Excel, SPSS, SAS, and many other sources are usually able to export their data in this format.
Here’s an example of what such data might look like (in fact, these are the first few rows of a CSV
file called weather-kumpula.csv we will soon read):

ts,year,month,day,dp,rmm,wdir,ws,t,rh,p
2014-01-01,2014,1,1,0.7526754690757457,1.640000000000001,158.0,4.61702571230021,3.05357887421823,84.87491313412092,1011.9901320361296
2014-01-02,2014,1,2,-2.2381944444444573,0.6000000000000004,118.0,3.627777777777778,0.4078472222222211,81.09583333333333,1012.2958333333349
2014-01-03,2014,1,3,-1.4593055555555527,0.5000000000000002,141.0,3.3281944444444385,1.0606944444444493,82.28611111111111,1008.8503472222206
2014-01-04,2014,1,4,0.3417361111111121,3.6999999999999966,219.0,4.28805555555555,1.7476388888888887,90.35138888888889,1001.7586111111136

The function for reading in such data is called read.csv. If you go ahead and open its docu-
mentation. . .

In [ ]: ?read.csv

. . . you will find out - if you read beyond the dauntingly long list of arguments and other
information - that read.csv is an alias for a function called read.table. This function can in
fact read many more kinds of tabular data than just CSV’s but you can safely ignore most of this
information now. If your data is in CSV format, read.csv will get the job done. One exception:
some locales (Finnish, for example) will use comma instead of dot as the decimal separator, and
have to use something else as the column separator. Therefore there exists a non-standard version
of CSV with semicolon ; as the column separator. For this case, read.csv2 will work.

All you really need to tell the read.csv function is where to find the data file. This happens
by giving the name of the file, as a character string, like this: read.csv(“weather-kumpula.csv”)
This works if the file is in the current working directory of your R session. To see what the current
working directory is, use this command:

In [ ]: getwd()
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(This notebook session probably says /home/jovyan/work.) If the file is not in that directory,
you can

• change the current working directory to something else using the function setwd

• give the whole path to the file

– note to Windows users: instead of \ character, you have to use / or double \\

• use interactive file choosing: read.csv(file.choose())

– note: this does not work on this notebook!

(Further note: RStudio has an interactive import wizard, which makes life a lot easier. But this
way still works on RStudio as well.)

This notebook is set so that you have the weather-kumpula.csv available in a directory called
data under the working directory, so we are ready to read the weather data in:

In [ ]: weather <- read.csv("data/weather-kumpula.csv")

And that’s all. If you go back to the documentation of the read.csv, and see the Value section,
it tells you that the result that this function produces is a data frame. In order to be able to actually
use the result, it needs to be assigned to a name. Just like with all the other results.

And now you should both be able to bring in data and understand what’s going on when you
do that. If you have any data of your own now would be a great time to try and bring it in. You
just need to upload it to the notebook first (from the Home page). If not, let’s get familiar with the
weather data.

This data contains the daily weather measurements for one year at Kumpula, Helsinki. The
names of the variables are

In [ ]: names(weather)

and they stand for

• timestamp
• year
• month
• day
• dewpoint in Celsius degrees
• rain in millimeters
• wind direction in degrees
• wind speed
• temperature in Celsius degrees
• relative humidity
• air pressure in millibars

You could now use the knowledge you have, and these new hints, to get a handle of this data
set. For example,

• Use the function dim on the whole data set. What does this function do? What does it tell
you?
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• Use summary on the whole data frame get an overall feeling of the values, such as, what is
the range of temperature over the year? Are there any missing values? (Answer: yes)

• Take a look at a function called complete.cases. Use it, possibly together with subset
and dim to see if the missing values happen on the same day. (Answer: yes) (Which day?)

• How much did it rain in September, October and November in total? Remember the %in%
operator mentioned back in the section on logical values. (Answer: 195.48 mm)

In [ ]:

1.12 A glimpse at actual analysis; formulas

You are now ready to start actually doing something with some real data: you have learned about
vectors, factors and data frames, are able to read in data, and understand the general logic of
how R works. This is in fact as far as this introduction was meant to go. From now on, learning
how to do things in R involves learning which functions to use to which tasks and how exactly
that happens, and since there are so many possible directions to go, here is a good place to draw
the line - almost. There’s one more concept that is in general use in R: a formula. Here’s a first
example:

In [ ]: # let's make sure you have your iris data set with you still:
data(iris)
# and this makes a scatter plot of sepal lengths by sepal width:
plot(Sepal.Length~Sepal.Width,data=iris)

plot is a general purpose plotting function, and what we have given it as arguments is one
formula describing the kind of plot we want, and a data frame where to find the needed variables.
(If at this point you feel like checking the documentation for the plot function, good for you!
Unfortunately, because of its generality, the documentation is rather unhelpful.) The formula is
the thing in the function call with the ~ character in the middle: it has a left hand side and a right
hand side. Its purpose is best revealed if you think of the ~ character as the word “by”. Here, as
stated, we plotted Sepal.Length “by” Sepal.Width. When both are numeric vectors, plot decides
to make a scatter plot. Here’s another example:

In [ ]: lm(Sepal.Length~Sepal.Width,data=iris)

Same formula, different function: this time we fitted a linear model, corresponding to the
scatter plot before. On the left hand side of the formula there is the response (dependent) variable,
and on the right hand side there is the explanatory variable. The output of lm is minimal, showing
only the coefficient estimates of the fitted model. Use summary on the result too see something
more enlightening:

In [ ]: summary(lm(Sepal.Length~Sepal.Width, data=iris))

(Note: while the output of the lm function seemed to be just a bit of text, it is actually a list
object, just returned silently, and the text output just written instead. Lists are a data type we have
skipped talking about, but you can go to the documenation of lm to get an idea of what the result
list actually is. Also note that data frames are in fact a special case of lists.)

Here is one more example of where you might use formulas, a classical T-test:

In [ ]: t.test(Sepal.Length~Species,data=iris,subset=Species!="versicolor")
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There’s one more argument there in addition to the formula and the data frame: a subset
argument. Functions that take a formula as an argument usually also accept a subset argument,
which is used to indicate that only a subset of the data frame is to be used, namely, the part for
which the given logical vector is TRUE. It works exactly like the subset function we encountered
earlier, but just skips creating an explicit subset data frame. In the T-test function here, we took
one species out of the data because the T-test makes no sense with three groups, only with two.

Formulas are in fact a case where the difference between factors and vectors becomes rather
clear. Here, consider this example data set:

In [ ]: data(ToothGrowth)
?ToothGrowth
summary(ToothGrowth)

As described in the documentation, this data set shows the results from an experiment con-
cerning the effect of vitamin C on the tooth growth of guinea pigs. There are two supplement
methods and three dose levels, a total of 6 groups with 10 animals in each. The supp variable is
a factor, but dose is numeric. However, it is a valid question to ask, whether the doses should be
looked at as actual numeric values, or as group labels. The difference should become apparent if
we create a factor version of it, and fit models and plot graphs with both.

In [ ]: ToothGrowth$dose.factor <- factor(ToothGrowth$dose)
summary(lm(len~dose,data=ToothGrowth))
summary(lm(len~dose.factor,data=ToothGrowth))
plot(len~dose,data=ToothGrowth)
plot(len~dose.factor,data=ToothGrowth)

One final case where formulas could come in to use: earlier, when calculating groupwise
means with the iris dataset, it was mentioned in a real situation those would not be calculated
by manually splitting the vector. Instead one would use for example the function aggregate.
That can also be used by a formula. Try now if you can figure out how to do that:

In [ ]:

Finally, feel free and try any of these plots and other methods for example on the weather data.
Here are a few questions for insipiration:

• Make boxplots of monthly temperatures. Which month seems to be most variable?
• Is there any relationship between air pressure and wind speed?
• How about between the air pressure and temperature? Is the answer different if winter and

summer are looked at separately?

In [ ]:

1.13 Packages

A big part of R’s success in the world of data analysis is that the scientific community is able to
endlessly widen the collection of available methods through something called packages. So far
in this notebook we have been able to get by with things that come with a base installation and a
fresh untouched R session. Only the most basic packages are automatically in use, others have to
be brought in to use with the command such as
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In [ ]: library(spatial)

Here, spatial is the name of a package containing functions for spatial statistics methods.
It is one of the handful of recommended packages that come with a default R installation. More
packages (roughly 10 000 at the time of writing this) are available on CRAN, the main repository of
R packages. These need to be installed first using for example the function install.packages
(or one of the menu items when using some UI), and again taken in to use with the same library
command.

The abundance of packages is overwhelming. To not get lost in the jungle you can use the tra-
ditional methods of asking colleagues and searching the internet for advice. In addition, one good
source to keep in mind are the Task Views on the CRAN home page https://cran.r-project.org/.
These are curated lists of packages related to a certain field of study, with short explanations of
which functions do which tasks.

1.14 What next?

You have reached the end of this notebook. Hopefully you have learned enough of the basics so
that you can start learning more on your own, or be able to tell what is going on if you are faced
with a colleague’s R script. You can actually test this: scroll back to the very beginning of this
notebook, to the first code cell. You should be able to tell a function from an assignment etc. You
can see some unfamiliar function calls but you know how to bring up their documentation to see
what they do. Another thing you can try: search for a method or task familiar to you and add
“with R” to the search, see what you find. . . and see if you can understand the R code part of the
content.

And of course, consider installing R on your own computer. Also consider installing RStudio
as well. Note that they are two different things: R is provided by CRAN and comes with its own
user interface. RStudio is an alternative user interface provided by the RStudio company. Only
the commercial version comes with a price tag, you can download the open source version for
free.

Learning how to use RStudio efficiently is a separate learning objective in addition to learning
how to read and write R code, and is in fact intertwined with the learning how to use a collection
of packages (affectionally called hadleyverse, or tidyverse) also provided by the RStudio company.
These packages have an underlying philosophy that is slightly different than the base R way, so
prepare to relearn a few things. Watch videos, read through tutorials, take a course online or
offline. It will be worth it. Good luck!
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