
Data Analysis and Machine
Learning

From data to wisdom

What is data? 2

2

● Numeric data
○ Continuous: 2.000
○ Discrete: 2

● Categorical
○ Male/Female
○ Employed/student

● Ordinal
○ Stars in movie ranking
○ Placement in competition

● Interval
○ Distance between two values
○ Technically numeric data is an

interval from 0
● Text

Machine Learning
● Formally machine learning is creating a

mapping f from set X to set Y
● Boundary conditions define the type of

machine learning
○ If we have examples of correct

input-output pairs the problem is
supervised learning

○ If we don’t, the problem is generally
unsupervised learning

X Y
f : X → Y

y = f(x)

Supervised learning
Regression

● Y is numerical
○ Input mostly numerical

● E.g.
○ Predict weight based on height
○ Predict car gas mileage based on engine

size and weight
○ Predict credit risk based on bank account

information
○ Predict dollars spent on product X based

on available data

Classification

● Y is categorical (or maybe ordinal)
● Input is mostly numerical
● E.g.

○ Predict gender based on weight/height
○ Predict party affiliation based on income
○ Predict if customer belongs to the risk

class
○ Predict car type based on price and engine

size
○ Predict if tumor is benign/malignant based

on measurements

Unsupervised learning

Dimension reduction

● Y is a space of lower dimensionality
○ E.g. 4-dimensional → 2-dimensional

● It is usually desired that the space have
certain qualities

○ Orthonormality
○ Optimality in a particular way

Clustering

● Y is a group label based on some
(hopefully) natural grouping in the data

● The number of groups to be found in the
data can be difficult to determine

No example mappings from X to Y are known

Reinforcement Learning
● Reinforcement is a special case of supervised learning
● Heavily influenced by nature
● Well suited for use on (large) streams of data
● No mappings between input and output are given
● Every time the system performs an action it receives a reward
● Algorithm optimizes towards maximum reward

Preprocessing
● Sometimes X isn’t a simple numeric vector

○ Usenet newsgroup posts
○ Image
○ Sound

● “Measure what is measurable, and make measurable what is not so” - quote
mistakenly attributed to Galileo Galilei

General structure of supervised learning systems

Measurement

• Make
observations

Feature
extraction

• Use observed
data

• modify
measurement
s

Feature selection

• Discard
features that
are irrelevant

Training

• Train classifier
using known
samples

Evaluation

• Evaluate
quality of
classifier using
test samples

Practical tasks
Recommender systems Detecting fraud Search engines

Optimizing advertising Natural language processing Spam filtering

Regression

Regression

Scalar

Y

X Z

Regression

• In regression we predict a scalar variable based on one or more
other variables

• Predict weight based on height
• Predict car gas mileage based on engine volume and weight

• We typically limit ourselves to a model and accept that the model
doesn’t capture the entire phenomenon → some error is
acceptable

Error in Regression

• In regression tasks we
typically minimize the
Mean Squared Error
(MSE)

Error in Machine learning

• Let’s assume we have

• We want to estimate so we

create a predictor

• The expectation of the

squared error that we want

to minimize is

Linear regression

Linear Regression

• In linear regression we assume
that the relationship is of the
form

• We then use least squares to
estimate the two variables

Quality metrics in linear regression

• Residual Standard Error
• A measure of lack of fit

• R^2
• Equals to correlation in the single

variable case
• A sort of generalization of correlation in

the multivariate case
• The F-statistic

It generalizes to more variables!

Ways to uncover to potential issues in
regression

• Residual plot
• Relationship is not linear
• Error terms correlate
• Error terms have non-constant variance

• Plot original data
• Outliers
• High leverage points

• Plot correlations
• Collinearity

Nonlinear regression

We can, but should we?
http://www.bbc.com/news/magazine-37658374

http://www.bbc.com/news/magazine-37658374
http://www.bbc.com/news/magazine-37658374

Classification

Categorical

Y

X Z

Classification

General structure of classification systems

Measurement

• Make
observations

Feature
extraction

• Use observed
data

• modify
measurement
s

Feature selection

• Discard
features that
are irrelevant

Training

• Train classifier
using known
samples

Evaluation

• Evaluate
quality of
classifier using
test samples

Classification
● Two-class classification is finding a

hyperplane (H) between s.t. samples on
one side are classified as belonging to one
class and samples on the other are
classified as belonging to the other

○ N-class case can be handled e.g. by
creating N classifiers

● If it is possible to construct H so that the
split is perfect, we say that the classes are
linearly separable

○ This is not nearly always the case
○ Typically there is at least noise in the data

Logistic regression
● Like regression, except form an estimate of the

probability of belonging to class 1
○ Use logistic function

● Form an estimate using Maximum Likelihood (ML)
○ Formulation left as homework :)

● If estimated probability > 0.5, choose class 1,
otherwise choose class 2

Support Vector Machine
● Support Vector Machines maximize the

distance of the nearest samples to the
decision hyperplane

● The nearest samples are the so-called
support vectors

Other paradigms
● Naive Bayes approach

○ A mighty sword to wield

● K-nearest neighbor
○ Beautiful and intuitive
○ Computationally not so fun

● All draw a decision border between classes in space
○ Might not be a hyperplane

Nearest Neighbors
● Intuitively simple:

○ Find the k nearest samples in training set
○ Choose most common (or similar) class

● Performs surprisingly well against much more sophisticated systems
● Generalizes reasonably
● Choice of k can have an effect
● Produces very edgy and ugly decision borders
● Query time in default implementation is O[DN], which is intractable for large

groups
● Doesn’t generalize, just remembers

Distance metrics for continuous variables
● Euclidean

● Manhattan

○ “Taxicab distance”

● Chebyshev distance

There are others for e.g. integers, boolean variables, even strings

Meditating about distance metrics is often necessary nearest neighbor
classification if your data is strange

Iris

Iris = Kurjenmiekka
Iris setosa = kaunokurjenmiekka
Iris versicolor = kirjokurjenmiekka
Iris virginica = virginiankurjenmiekka?
(Virginiassa esiintyvä kurjenmiekka)

iris
virginica

iris setosa

iris versicolor

Petal = terälehti
Sepal = verholehti

Real-life data
● Class on the left is clearly separable
● Two other classes can’t be separated by a

simple line
○ They are not linearly separable

● We must choose to minimize some error
● Alternately optimize for some metric
● A confusion matrix is often created

Confusion matrix
● A table containing all correct and incorrect

classifications represents the behaviour of
a classification system

● A number of metrics can be optimized for,
depending on what the goals of the
system are

Predicted

Class 1 Class 2

Actual
class

Class 1 10 3

Class 4 20

Confusion matrix
● The accuracy can be determined as the

number of candies actually liked in the bag
plus number of candies disliked not in the
bag divided by all the types of candy

● The precision is the candies in the bag
that are liked divided by all candies in the
bag

● The recall is the number of candies liked
in the bag divided by the number of
candies in the store

● There are many more that can be relevant
● How could you optimize for each?

You have to choose candies from a pick’n’mix to
match another person’s taste. I.e. for each type of
candy decide if it belongs to class likes or dislikes.
Bag the likes, leave the dislikes

Predicted

Likes Dislikes

Actual
class

Likes 10 3

Dislikes 4 20

Gradient descent
● Most machine learning algoritms form a

function to optimize
● For SVM it was the distance to support

vectors
● The algorithm starts at a random point and

takes iterative steps to find the minimum of
the function

● Gradient == multidimensional derivative
● You could say this is the learning part in

machine learning
○ Really it’s just optimization

Generalization and overfitting
● Generalization is a Machine Learning

model’s ability to perform on unseen data
○ Using a separate test set to evaluate

performance is always necessary
● If a machine learning model performs well

on training data and poorly on testing data,
it is said to overfit

● Overfitting is especially a problem if
N_samples < N_variables

○ Being able to give gut estimates is a sign
of a very competent data analyst

● http://scott.fortmann-roe.com/docs/BiasVar
iance.html

http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html

Model complexity
● Most gradient descent systems use

iterations (or epochs in case of neural
networks) to improve the system based on
training data

● For an arbitarily complex model the
classification error typically diminishes as
iterations increase

● At some point the system starts
overfitting to the training set

○ Model no longer generalizes as well
● Error for test set starts to gradually

increase
● If the model is simple enough this will

probably not happen before algorithm
converges

Approaches to test set-up
● Split data into train, test and validate

○ Train model based on train and use test to choose best model and optimize model parameters
○ Once you’re done, validate that the test generalizes

● Cross-validation
○ Split data into k groups, use k-1 groups to train and the final to test
○ Let each group be the test group once
○ Report aggregate metric
○ May be expensive
○ 5-fold to 10-fold are good numbers

● Leave-One-Out (LOO)
○ Like the name says, leave only one datum out and classify it
○ Repeat N times where N is the number of samples
○ Often intractable for large N

Preprocessing
● As we’re drawing a hyperplane it’s usually handy if the axes are roughly

proportional
● The least you can do with your data is to normalize each dimension to have

○ Zero mean
○ Unit variance

Zero-Mean Unit variance

Zero-Mean Unit variance

Dimensionality reduction

The curse of dimensionality
● High-dimensional spaces function in

strange ways
● Some methods are intractable or just slow

if the number of dimensions is high
● Human beings are only able to visualize

~3 dimensions
● Some spaces are sparse

○ Only <1% of values are nonzero
● N(dimensions) > N(samples) is generally a

risky proposition
○ Many ways to go awry
○ Most dimensions are probably not relevant

to the phenomenon

Examples of high dimensional data
● Genome data

○ N = the number of cells in a DNA Microarray
○ Not sparse

● Shopping data
○ N = the number of items available
○ Typically sparse

● Text data
○ N = the number of morphological units in the corpus
○ Typically sparse

Principal Component Analysis
● Principal component analysis finds a

projection, where
○ The first principal component (PC)

maximizes variance along 1 dimension
○ The second PC is orthogonal and

uncorrelated with the first and maximizes
the variance in 2 dimensions with the first
PC

○ Etc.
● PCA is very widely used
● It can be thought of as revealing the

structure that maximizes the variance in
the data

● Scaling the dimensions affects the results
○ You should always scale before doing

PCA
Image Wikimedia commons user Nicoguaro
CC-BY-4

PCA uses
● Too many dimensions for your algorithm?

○ PCA it down to 10-20

● Too many dimensions to plot?
○ PCA it down to 2-3

● Data taking up too much space?
○ PCA it down until the principal components explain e.g. 99% of the variance
○ A form of lossy compression

● Data hairy and has lots of correlation etc.?
○ PCA it to make it more edible to algorithms and less understandable to humans

Proportion of variance
● The first principal components typically

explain a large proportion of the variance
○ The proportion equals the proportion of the

eigenvalues of the matrix
● This means we can usually get very

similar results by projecting the data down
to N < 10 Principal component axis as we
would for the high-dimensional N >> 1000
data

Feature selection
● Sometimes it makes sense to just leave

out some of the data
● Some data points may be entirely

redundant
● Others may correlate so strongly that it

doesn’t make sense to keep them
○ Some ML methods assume that all

variables are independent and identically
distributed

● Lasso is an algorithm for this
● PCA can also be used

