
Data Analysis and Machine 
Learning



From data to wisdom



What is data? 2



2

● Numeric data
○ Continuous: 2.000
○ Discrete: 2

● Categorical
○ Male/Female
○ Employed/student

● Ordinal
○ Stars in movie ranking
○ Placement in competition

● Interval
○ Distance between two values
○ Technically numeric data is an 

interval from 0 
● Text



Machine Learning
● Formally machine learning is creating a 

mapping f from set X to set Y
● Boundary conditions define the type of 

machine learning
○ If we have examples of correct 

input-output pairs the problem is 
supervised learning

○ If we don’t, the problem is generally  
unsupervised learning

X Y
f : X → Y

y = f(x)



Supervised learning
Regression

● Y is numerical
○ Input mostly numerical

● E.g.
○ Predict weight based on height
○ Predict car gas mileage based on engine 

size and weight
○ Predict credit risk based on bank account 

information
○ Predict dollars spent on product X based 

on available data

Classification

● Y is categorical (or maybe ordinal)
● Input is mostly numerical
● E.g.

○ Predict gender based on weight/height
○ Predict party affiliation based on income
○ Predict if customer belongs to the risk 

class
○ Predict car type based on price and engine 

size
○ Predict if tumor is benign/malignant based 

on measurements



Unsupervised learning

Dimension reduction

● Y is a space of lower dimensionality
○ E.g. 4-dimensional → 2-dimensional

● It is usually desired that the space have 
certain qualities

○ Orthonormality
○ Optimality in a particular way

Clustering

● Y is a group label based on some 
(hopefully) natural grouping in the data

● The number of groups to be found in the 
data can be difficult to determine

No example mappings from X to Y are known



Reinforcement Learning
● Reinforcement is a special case of supervised learning
● Heavily influenced by nature
● Well suited for use on (large) streams of data
● No mappings between input and output are given
● Every time the system performs an action it receives a reward
● Algorithm optimizes towards maximum reward



Preprocessing
● Sometimes X isn’t a simple numeric vector

○ Usenet newsgroup posts
○ Image
○ Sound

● “Measure what is measurable, and make measurable what is not so” - quote 
mistakenly attributed to Galileo Galilei



General structure of supervised learning systems

Measurement

• Make 
observations

Feature 
extraction

• Use observed 
data

• modify 
measurement
s

Feature selection

• Discard 
features that 
are irrelevant

Training

• Train classifier 
using known 
samples

Evaluation

• Evaluate 
quality of 
classifier using 
test samples



Practical tasks
Recommender systems Detecting fraud Search engines

Optimizing advertising Natural language processing Spam filtering



Regression



Regression

Scalar

Y

X Z



Regression

• In regression we predict a scalar variable based on one or more 
other variables

• Predict weight based on height
• Predict car gas mileage based on engine volume and weight

• We typically limit ourselves to a model and accept that the model 
doesn’t capture the entire phenomenon → some error is 
acceptable



Error in Regression

• In regression tasks we 
typically minimize the 
Mean Squared Error 
(MSE)



Error in Machine learning

• Let’s assume we have

• We want to estimate so we 

create a predictor

• The expectation of the 

squared error that we want 

to minimize is

 



Linear regression



Linear Regression

• In linear regression we assume 
that the relationship is of the 
form

• We then use least squares to 
estimate the two variables



Quality metrics in linear regression

• Residual Standard Error
• A measure of lack of fit

• R^2 
• Equals to correlation in the single 

variable case
• A sort of generalization of correlation in 

the multivariate case
• The F-statistic



It generalizes to more variables!



Ways to uncover to potential issues in 
regression

• Residual plot
• Relationship is not linear
• Error terms correlate
• Error terms have non-constant variance

• Plot original data
• Outliers
• High leverage points

• Plot correlations
• Collinearity



Nonlinear regression



We can, but should we?
http://www.bbc.com/news/magazine-37658374

http://www.bbc.com/news/magazine-37658374
http://www.bbc.com/news/magazine-37658374


Classification



Categorical

Y

X Z

Classification



General structure of classification systems

Measurement

• Make 
observations

Feature 
extraction

• Use observed 
data

• modify 
measurement
s

Feature selection

• Discard 
features that 
are irrelevant

Training

• Train classifier 
using known 
samples

Evaluation

• Evaluate 
quality of 
classifier using 
test samples



Classification
● Two-class classification is finding a 

hyperplane (H) between s.t. samples on 
one side are classified as belonging to one 
class and samples on the other are 
classified as belonging to the other

○ N-class case can be handled e.g. by 
creating N classifiers 

● If it is possible to construct H so that the 
split is perfect, we say that the classes are 
linearly separable

○ This is not nearly always the case
○ Typically there is at least noise in the data



Logistic regression
● Like regression, except form an estimate of the 

probability of belonging to class 1
○ Use logistic function

● Form an estimate using Maximum Likelihood (ML)
○ Formulation left as homework :)

● If estimated probability > 0.5, choose class 1, 
otherwise choose class 2



Support Vector Machine
● Support Vector Machines maximize the 

distance of the nearest samples to the 
decision hyperplane

● The nearest samples are the so-called 
support vectors



Other paradigms
● Naive Bayes approach

○ A mighty sword to wield

● K-nearest neighbor
○ Beautiful and intuitive
○ Computationally not so fun

● All draw a decision border between classes in space
○ Might not be a hyperplane



Nearest Neighbors
● Intuitively simple:

○ Find the k nearest samples in training set
○ Choose most common (or similar) class

● Performs surprisingly well against much more sophisticated systems
● Generalizes reasonably
● Choice of k can have an effect
● Produces very edgy and ugly decision borders
● Query time in default implementation is O[DN], which is intractable for large 

groups
● Doesn’t generalize, just remembers



Distance metrics for continuous variables
● Euclidean

● Manhattan 

○ “Taxicab distance”

● Chebyshev distance

There are others for e.g. integers, boolean variables, even strings

Meditating about distance metrics is often necessary  nearest neighbor 
classification if your data is strange



Iris 

Iris = Kurjenmiekka
Iris setosa = kaunokurjenmiekka
Iris versicolor = kirjokurjenmiekka
Iris virginica = virginiankurjenmiekka? 
(Virginiassa esiintyvä kurjenmiekka)

iris 
virginica

iris setosa

iris versicolor

Petal = terälehti
Sepal = verholehti



Real-life data
● Class on the left is clearly separable
● Two other classes can’t be separated by a 

simple line
○ They are not linearly separable

● We must choose to minimize some error
● Alternately optimize for some metric
● A confusion matrix is often created



Confusion matrix
● A table containing all correct and incorrect 

classifications represents the behaviour of 
a classification system

● A number of metrics can be optimized for, 
depending on what the goals of the 
system are

Predicted

Class 1 Class 2

Actual 
class

Class 1 10 3

Class 4 20



Confusion matrix
● The accuracy can be determined as the 

number of candies actually liked in the bag 
plus number of candies disliked not in the 
bag divided by all the types of candy

● The precision is the candies in the bag 
that are liked divided by all candies in the 
bag

● The recall is the number of candies liked 
in the bag divided by the number of 
candies in the store 

● There are many more that can be relevant
● How could you optimize for each?

You have to choose candies from a pick’n’mix to 
match another person’s taste. I.e. for each type of 
candy decide if it belongs to class likes or dislikes. 
Bag the likes, leave the dislikes

Predicted

Likes Dislikes

Actual 
class

Likes 10 3

Dislikes 4 20



Gradient descent
● Most machine learning algoritms form a 

function to optimize
● For SVM it was the distance to support 

vectors
● The algorithm starts at a random point and 

takes iterative steps to find the minimum of 
the function

● Gradient == multidimensional derivative
● You could say this is the learning part in 

machine learning
○ Really it’s just optimization



Generalization and overfitting
● Generalization is a Machine Learning 

model’s ability to perform on unseen data
○ Using a separate test set to evaluate 

performance is always necessary
● If a machine learning model performs well 

on training data and poorly on testing data, 
it is said to overfit 

● Overfitting is especially a problem if 
N_samples < N_variables

○ Being able to give gut estimates is a sign 
of a very competent data analyst

● http://scott.fortmann-roe.com/docs/BiasVar
iance.html

http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html


Model complexity
● Most gradient descent systems use 

iterations (or epochs in case of neural 
networks) to improve the system based on 
training data

● For an arbitarily complex model the 
classification error typically diminishes as 
iterations increase

● At some point the system starts 
overfitting to the training set

○ Model no longer generalizes as well
● Error for test set starts to gradually 

increase
● If the model is simple enough this will 

probably not happen before algorithm 
converges



Approaches to test set-up
● Split data into train, test and validate

○ Train model based on train and use test to choose best model and optimize model parameters
○ Once you’re done, validate that the test generalizes

● Cross-validation
○ Split data into k groups, use k-1 groups to train and the final to test
○ Let each group be the test group once
○ Report aggregate metric
○ May be expensive
○ 5-fold to 10-fold are good numbers

● Leave-One-Out (LOO)
○ Like the name says, leave only one datum out and classify it
○ Repeat N times where N is the number of samples
○ Often intractable for large N



Preprocessing
● As we’re drawing a hyperplane it’s usually handy if the axes are roughly 

proportional
● The least you can do with your data is to normalize each dimension to have

○ Zero mean
○ Unit variance



Zero-Mean Unit variance



Zero-Mean Unit variance



Dimensionality reduction



The curse of dimensionality
● High-dimensional spaces function in 

strange ways
● Some methods are intractable or just slow 

if the number of dimensions is high
● Human beings are only able to visualize 

~3 dimensions
● Some spaces are sparse

○ Only <1% of values are nonzero
● N(dimensions) > N(samples) is generally a 

risky proposition
○ Many ways to go awry
○ Most dimensions are probably not relevant 

to the phenomenon



Examples of high dimensional data
● Genome data

○ N = the number of cells in a DNA Microarray
○ Not sparse

● Shopping data
○ N = the number of items available
○ Typically sparse

● Text data
○ N = the number of morphological units in the corpus
○ Typically sparse



Principal Component Analysis
● Principal component analysis finds a 

projection, where
○ The first principal component (PC) 

maximizes variance along 1 dimension
○ The second PC is orthogonal and 

uncorrelated with the first and maximizes 
the variance in 2 dimensions with the first 
PC

○ Etc.
● PCA is very widely used
● It can be thought of as revealing the 

structure that maximizes the variance in 
the data

● Scaling the dimensions affects the results
○ You should always scale before doing 

PCA
Image Wikimedia commons user Nicoguaro 
CC-BY-4



PCA uses
● Too many dimensions for your algorithm?

○ PCA it down to 10-20

● Too many dimensions to plot?
○ PCA it down to 2-3

● Data taking up too much space?
○ PCA it down until the principal components explain e.g. 99% of the variance
○ A form of lossy compression

● Data hairy and has lots of correlation etc.?
○ PCA it to make it more edible to algorithms and less understandable to humans



Proportion of variance
● The first principal components typically 

explain a large proportion of the variance
○ The proportion equals the proportion of the 

eigenvalues of the matrix 
● This means we can usually get very 

similar results by projecting the data down 
to N < 10 Principal component axis as we 
would for the high-dimensional N >> 1000 
data



Feature selection
● Sometimes it makes sense to just leave 

out some of the data
● Some data points may be entirely 

redundant
● Others may correlate so strongly that it 

doesn’t make sense to keep them
○ Some ML methods assume that all 

variables are independent and identically 
distributed

● Lasso is an algorithm for this
● PCA can also be used


