
Introduction

1

HISTORY, BASIC SYNTAX

2

What is C?

C is a general-purpose programming
language initially developed by Dennis
Ritchie between 1969 and 1973 at
AT&T Bell Labs

It is an imperative procedural language
intended for system software

– Strong ties with UNIX operating system

It has influenced many other programming languages

– C++, C#, ObjC, Java, JavaScript, Go, csh, ...

3

Why C?

It’s still popular and widely used

– Available on almost all platforms

– Lots of libraries for different tasks

Provides a relatively low-level (or mid-level) access to the
operating system and hardware

– System-level programming, embedded systems

– Can lead to better performance

4

Standards

First standard by ANSI in 1989, known as “ANSI C” or C89

– Still the best choice when portability is important!

– ISO adopted the same standard in 1990 (C90)

Next revision in 1999, C99

– New datatypes, complex numbers, variable length arrays,...

– Not fully backwards compatible with C90

Current standard is C11

– Improved Unicode support, atomic operations, multi-threading,
bounds-checked functions, ...

5

Look and feel

/* Computing the factorial of an specified (by the user) number */
#include <stdio.h>
int fact(int n);
int main(void){

int current;
printf("Enter some POSITIVE integer (non-positive to finish): ");
scanf("%d", ¤t);
while (current > 0) {

printf("Factorial of %d is %d\n", current, fact(current));
printf("Enter a POSITIVE integer (non-positive to finish): ");
scanf("%d", ¤t);

}
return 0;

}

/* This function returns the factorial of the specified integer (n) */
int fact(int n) {
...

6

Basic syntax

Code is case sensitive

Statements terminate with ;

{} enclose blocks

There are two ways to comment:

/* example function */
float foo(int bar) {

int i, c = 0;
float x;

x = 0.1;
for (i = 0; i < bar; i++) {

x += i*3.14 + c;
c = i + 2;

}
return x;

}

/* Single or
Multiple lines */

// Single line (C99)

7

Formatting

Free format

– Whitespace, newlines, layout etc. do not matter …

/* example function */
float foo(int bar) {

int i, c=0;
float x;

x = 0.1;
for (i=0; i<bar; i++) {

x += i*3.14 + c;
c = i + 2;

}
return x;

}

/* same example function? */
float
foo(/*float f,*/int
bar) { int i,c=0; float x;
x=0.1;for (/*i=10
; i<2*bar*/ i=
0;i<bar;i++){x+=i*3.1/*1.2+

*/4+c;c=i+2;}return x;}

to the computer !

8

DATATYPES, VARIABLES, ASSIGNMENT AND OPERATORS

9

Basic data types

Basic datatypes in C are:

char character
int integer number
long long integer number
float floating point number
double double precision float

Integers can be signed (default) or unsigned

C has also pointer types

There is also a special type void

10

Variables

Variable data types are static

Declare variables before
using them

– C90 requires that the
declarations are before any
other statements

Valid variable names in C:

 Upper and lower case
letters, underline and
numbers are allowed

// variable declaration
int i;
float f, g;
double total = 1.9;

// valid names
int i3, myINT, I_o;
float o3Gf_ry9;

// invalid names
int 33, 9a, i-o;
float o3.Gf;

// data type matters
char c;
float f;

f = 1.234;
c = f; // ERROR!

// wrong data type

11

Variable assignment

Assign a value to a variable:
variable = value;

Both should have the same
data type

– Implicit conversion between
compatible types

– Explicit conversion (typecast)
syntax:

(type) var

// examples of assignment
count = 10;
i = j = 0;
k = i*j + 1;

// assign at declaration
int i = 4;

// typecast from int to float
int i;
float f;

i = 5 * 21;
f = (float) i;

// watch out for operator order
(float) i/5 != (float) (i/5)

12

Arithmetics

Operators:

Operator precedence
1) % * /

2) + -

Parentheses can be used to group operations () and change
evaluation order

+ addition
– subtraction
* multiplication
/ division
% modulus

13

Compound assignment

C has a short-hand notation
for combined arithmetic
operation and assignment

Given an operator <op> and
values a and b, the syntax is
a<op>=b and the result is
a=a<op>b

For special cases a+=1 and
a-=1 there are special
operators ++ and --

// example of compound assignment
int count = 10;
count += 5; // now count is 15
count /= 3; // and now count is 5

// Adding one to count
count++;

// This is also valid!
++count;

14

Arithmetics and assignment examples

// addition, substraction
i = 5 + 2;
i = 5 – 2;
i += 1; // i = i + 1
f -= 3.4;
i++; // i = i + 1
i--;

// multiplication, division
i = 5 * 2;
i = 5 / 2; // integer division
f *= 3.0 / 4.2;

// modulus
m = 25 % 3;

// grouping with ()s
b = a * (1.3 + (25%3));

// watch out for precedence!
f = 1 + q / (1 - q);
f = (1 + q) / (1 - q);

// also function calls use ()
f = r * sin(theta);
f = (r + p)*sin(theta);

15

Other operators

Bit-wise operatorsLogical operators

>> shift right
<< shift left
& AND
| OR
^ XOR
~ complement

&& AND
|| OR
> larger than
< less than
>= larger or equal
<= less or equal
== equal
!= unequal
! negation

16

BASIC I/O

17

Basic I/O

printf prints formatted text to the screen

Format of printf call is
printf(<template> {, <variables>})

where
<template> arbitrary string with optional

placeholders for data from variables
<variables> (optional) list of variables or values

18

Basic I/O

Special characters that can be used in the template string:

\n newline \t horizontal tab
\" double quote \\ literal backslash

Placeholders are marked with % followed by formatting and
type information

– For now, we will just use the following formattings:

%d integer value
%f float value
%s string

19

Basic I/O example

#include <stdio.h>

int main(int argc, char *argv[]) {
printf("The answer is %d.\n", 42);
printf("Pi equals to %.2f", 3.14159265);
printf(" ...at least to the %dnd decimal.\n", 2);
return 0;

}

//output:
// The answer is 42.
// Pi equals to 3.14 ...at least to the 2nd decimal.

20

Summary

Short history and different standards

Basic syntax

Variables and their type, assignment of values

Arithmetic operations

Basic IO (printf)

21

Getting started

22

POINTERS, ARRAYS AND FUNCTIONS

23

Pointers

On the hardware level a variable is actually a reference to
a memory location

The contents of the memory block determine the value
of a variable
– The size of the memory block depends on the type of the

variable

Memory addresses can be stored (and manipulated)
using pointers

Pointer variables can be considered as variables that hold
the address of a element with given datatype (int,
char, ...)

24

Pointers

Pointer variables are defined by adding * into the
definition, for example a pointer named ptr of type int
is defined as int *ptr;

The address of a variable can be obtained using &
operator

int a;
Memory

int *p = &a;

Address

25

Arrays

Static arrays can be introduced using []:

char str[20]; Array of 20 characters
double values[10]; Array of 10 doubles

Elements of array can be accessed using the same []
operator. The value inside brackets is interpreted as an
offset from the beginning of the array

– Indices always start from 0

– Last element of an array A of size n is A[n-1]

26

Array examples

// int array of size 10
int array[10];

// Set value of third element to 1
array[2] = 1;

// Print the value
printf(“a[2]=%d\n”, array[2]);

// type of array is equivalent to
// type (int*)
int *ptr;

array[0] = 3;
ptr = array;
printf(“*ptr=%d\n”, *ptr);

27

FUNCTIONS

28

Functions

Functions are the only subroutine type in C

– But functions do not have to return anything

Function definitions are of form

Here type is the return type of the function

– void means that function does not return anything

type func-name(param-list)

{

/* body of function */

}

29

main function

Every C program has the main function with definition

Command line arguments are passed to the program
using argc and argv

main should always return integer

– zero means success, non-zero values are errors

int main(int argc, char *argv[])

{

/* body of function */

}

30

Function example

This function returns the sum of two integer arguments:

#include <stdio.h>

int add(int a, int b) {

return a + b;

}

int main(void) {

int val;

val = add(3, 6);

printf(“Sum is %d\n”, val);

return 0;

}

31

Variable scoping

Variable scoping in C is
local unless defined
otherwise

– Variables declared in
the function definition
are only visible inside
the function body

– Variables of calling
scope are not visible
inside function body

void funcB(float a) {

int counter;

...

}

int funcA(void) {

float value_1, value2;

funcB(value_1);

...

}

Not accessible from funcA

Not accessible from funcB

32

Arguments

All arguments are passed as
values

– Copy of the value is passed to
the function

– Functions can not change the
value of a variable in the
calling scope

Pointers can be used to pass a
reference to a variable as an
argument!

void funcB(int a) {

a += 10;

}

int funcA(void) {

int var = 0;

funcB(var);

// var is still 0!

...

}

33

PREPROCESSOR

34

C preprocessor

The line #include <stdio.h> in the previous example
is a preprocessor directive

– It directs the preprocessor to literally read in the file
stdio.h before the source is passed to the compiler

– stdio.h has several definitions related to standard input
and output, including the definition of the printf function

35

Preprocessor macros and #define

#define can be used to define “objects” or macros

It has the form of
#define identifier replacement-list new-line

After the definition, all instances of identifier are
replaced with replacement-list

// Example

#define ONE 1

printf(“Value is %d\n”, ONE);

// Result: Value is 1

36

COMPILING AND LINKING, MATH ROUTINES

37

Transition from source code to program

Compiling:
– Transforming the C source

code to machine language

Linker:
– Combines object files

generated by the compiler
into a single executable
program

The result is an executable
binary file

#include <stdio.h>

void main() {
int i,j=0;
float f=1.0;
for (i=0; i<8; i++) {

j += i;
f *= j+i;

}

compiler

program

gcc, cc, ...

./foo

foo.c

preprocessor
compiler

linker

38

Let's try it out!

Write the classic first program in C:

Compile your code:

Test your program:

#include <stdio.h>
int main(int argc, char *argv[]) {

printf(”Hello, World!\n”);
return 0;

}

$ gcc –o hello hello.c

$./hello
Hello, World!

39

Math routines library

Math routines are defined in
a library that is not linked in
by default

It includes the most common
mathematical functions, e.g.
sin(), pow(), log(), etc.

Header math.h also has
definitions for constants such
as M_PI for π
For power operation function
pow() is used (^ is bitwise
operator in C)

#include <math.h>

float r, theta;
double area, y;

// radius and an angle
r = 1.2;
theta = 0.456;

// calculate something
area = M_PI * pow(r,2);
y = sin(theta)
+ cos(theta/2.0);

y += exp(-3.1 * area);

// echo results
printf("area is %f\n", area);
printf("y=%.18e\n", y);

40

Compiler flags

Compiler flags provide a way to control how the program code
is processed

For example following (and many other) options can be used
with gcc:

-o name of the output file
-c generate an object file, do not link executable
-lname link in library name, for example -lm
-O optimize the program code (also -O2, -O3, ...)

For more comprehensive list of options, see the man page of
gcc (“man gcc”)

41

Linking objects and libraries

In complex projects:

– Compile each source code file (.c) into an object file (.o)

– Link object files into a binary and execute the binary

$ gcc -c main.c

$ gcc -c sub.c

$ gcc -o foo main.o sub.o -lm

$./foo

Link with math routines library!

42

Summary

Functions

Pointers

Compiling

Arrays

Scoping

43

Control structures

44

LOGICAL COMPARISONS, BRANCHING

45

Boolean datatype

C90 does not have a logical datatype

– Comparison operators (>,>=,...) return integer 0 for FALSE
and 1 for TRUE

C99 has boolean type bool defined in header
stdbool.h

– Also defines constants true and false as integers with
values 1 and 0 respectively

– Backwards compatible with C90 definition

46

Recap: logical operators

Operators

> larger than
< less than
>= larger or equal
<= less or equal
== equal
!= unequal
&& AND
|| OR
! NOT

Precedence (high to low)

* / % + -
< <= > >=
== !=
&&
||
= += -= *= /= %=

47

Control structures // if – else

Code execution can be branched according to a logical
test using if statement:

if (...) {...} else {...}

TRUE block is executed if the conditional evaluates to
non zero, otherwise the (optional) FALSE block is
executed

conditional FALSETRUE

48

Control structures // if – else

// simple if-else
if (x > 1.2) {

y = 4 * x * r; // TRUE
} else {

y = 0.0; // FALSE
}

// else is optional
if (x || y) {

z += x + y;
}

// complex if-elseif-else
if ((x > 1.2) && (i != 0))
{

y = x * i; // 1st TRUE
} else if ((x < 1.0) && c)
{

y = -x; // 1st FALSE
// 2nd TRUE

} else {
y = 0.0; // 1st, 2nd

FALSE
}

49

Control structures // switch

switch (...) {
case ... : ...

break;
default: ... }

Condition:

– single variable or expression

Branch(=case) with matching value chosen

break stops branch

condition

test value

end of branch

default branch executed
if nothing else matches

50

Control structures // switch

// Simple switch based on the
// value of integer i
switch (i) {

case 1:
printf("one\n");
break;

case 2:
printf("two\n");
break;

default:
printf("many\n");
break;

}
good style to break even the last branch!

51

Control structures // switch

switch (i) {
case 1:

printf("one\n");
case 2:

printf("two\n");
default:

printf("many\n");
}

switch (i) {
case 1:

printf("one\n");
break;

case 2:
printf("two\n");
break;

default:
printf("many\n");

}

switch (i) {
default:

printf("many\n");
case 1:

printf("one\n");
break;

case 2:
printf("two\n");
break;

}

A B

C

In each case, what would
be printed on the screen if
i is 1, 2, or 3?

52

Ternary operator

Ternary conditional is an expression that can be used as a
short-hand if-else in assignments:

(conditional) ? value-if-true : value-if-false

// ternary conditional in use
total += found ? count : 0

// is equal to this
if (found)

total += count;
else

total += 0;

53

LOOPS

54

Loops // for

Looping over a block of code can be accomplished using
for statement:

for (<initial>;
<condition>;
<post-iteration>) {...}

<initial> executed once before entering
the loop

<condition> stop loop when condition is FALSE

<post-iteration> execute after each iteration

55

Loops // while

while (...) {...}

Code block executes repeatedly as long as condition is
TRUE

Condition evaluated before iteration

condition code block

56

Loops // while

// loop using a for-statement
// i is incremented after each iteration
for (i = 0; i < bar; i++) {

x += i*3.14 + c;
c = i + 2;

}

// the same loop but with a while-statement
i = 0;
while (i < bar) {

x += i*3.14 + c;
c = i + 2;
i++;

}

57

do while

The condition for while is
evaluated before the block
is executed

– Sometimes it is desirable to
start the loop first and then
check the condition

This can be done using
do {...} while () loop

// Execute the loop at least
// one time
counter = 0;

do {
printf("in loop");

} while (counter != 0)

58

Special for loops

All statements in the for loop construct are optional

So all following loops are valid C code (with variables
correctly defined):

for (; a < treshold; a += 1e-3) {...}
for (; still_valid;) {...}
for (;;) {...}

Try to avoid using these use the while instead

59

Jump statements

break

– end a loop (for, while, do)
or a switch statement

continue

– continue with the next
iteration of a loop

Note that these apply to
the smallest enclosing
iteration statement

// jump out of a loop
// at first iteration
for (i = 0; i < 10; i++) {

break;
printf("in loop");

}
printf("i=%d ", i);
// output: i=0

// jump to the next loop
// iteration
for (i = 0; i < 10; i++) {

continue;
printf("in loop");

}
printf("i=%d", i);
// output: i=10

60

Summary

Boolean values, comparisons

if-then-else

switch-case

Loops

61

Pointers and dynamic memory

62

USING POINTERS

63

Recap

Pointer variables hold a reference to a memory location

Pointers have type (int, float, ...)

Pointer variables are defined with *, for example
int *a; double *d;

Address of a variable can be obtained using address
operator & (same symbol as bit-wise AND)

64

Address operator &

Operator & returns the
reference to the operand

Type of the pointer
matches with the type of
the operand

– That is, reference to an
int is of type pointer to
an integer, (int *)

int i_value = 0;

double d_value;

int *ptr;

// This is ok

ptr = &i_value;

// Types have to match!

ptr = &d_value;

65

Dereferencing pointers with *

Dereferencing means
accessing the value from
the address that pointer
points to

Dereferencing is done
using * operator

Precedence can be
changed with parentheses
()

int a = 10;

int *ptr;

// ptr points to a

ptr = &a;

// Let’s do some arithmetics

(*ptr)++;

// and print the value of a

printf(“a=%d\n”, a);

// Result: a=11

66

Functions with pointer arguments

All function arguments are passed “by value”

– When function changes the values of arguments the
changes are not visible to the caller (no side effects)

When a pointer is passed as a function argument the
function can not change the value of the pointer itself,
but it can modify the referenced value

67

Pointer arguments example

#include<stdio.h>

void demo(int a, int *b) {
a += 1;
*b += 1;
printf(“In demo function: a=%d, b=%d\n”, a, *b);

}

int main(void) {
int a = 0, b = 0;
demo(a, &b);
printf(“In main after call: a=%d, b=%d\n”, a, b);
return 0;

}
// Result:
// In demo function: a=1, b=1
// In main after call: a=0, b=1

68

Pointer arithmetics

Pointer variables can also be
modified using arithmetic
operations

Can lead to bugs that are
very difficult to find and fix

Can be useful in some cases
when manipulating arrays

Try to avoid when possible!

#include<stdio.h>

#include<stddef.h>

int main(void) {

int a = 0, b = 0;

int *ptr;

ptrdiff_t diff;

diff = &a - &b;

ptr = &a;

*(ptr - diff) = 10;

printf(“a=%d,b=%d\n”,a,b);

return 0;

}

// Result: a=0,b=10

69

Dereferencing pointers with []

For arrays it is more convenient to derefence the values
using [] operator

– This was already used with static sized arrays

Definition of the [] operator is that
E1[E2] equals to (*(E1+(E2)), for example

b=3*arr[n+1] is same as b=3*(*(arr+(n+1)))

70

Special pointers

Pointers to type void can be cast back and forth to any
other type

– Provides a mechanism to implement type generic routines

– Several standard library routines use void pointers

Pointers of any type can be assigned to value NULL

– Can be used to check if a pointer is associated or not

– Pointers are not initialized to NULL by default

71

Pointers to pointers

It is possible to have pointer references to pointers

– This is very useful when functions have to manipulate
values of arguments of pointer type

– Multidimensional arrays are also naturally mapped into
pointers of pointers

72

Pointer to a pointer example

#include<stdio.h>

int main(void) {
int a = 5;
int *int_ptr;
int **int_ptr_ptr;

int_ptr_ptr = &int_ptr;
int_ptr = &a;

printf(“a=%d\n”, **int_ptr_ptr);
return 0;

}

// Result: a=5

73

MALLOC, REALLOC AND FREE

74

Memory management in C

C manages memory statically, automatically and
dynamically

– Static allocations are determined during compile time and
required memory allocation is done when execution starts

– Automatic memory management is done for e.g. variables
defined inside a function body

– Dynamic memory management is controlled by the
program logic at runtime

75

Dynamic memory management

In most cases the exact size of all data structures is not
known at compile time because they depend on the
input data

Dynamic memory management is accomplished by using
pointers and controlling memory (de)allocation manually

Relevant functions are malloc(), realloc(), free()

76

malloc

malloc function is defined in header file stdlib.h:
void *malloc(size_t size);

malloc returns a pointer of type void to a memory
location with allocated space of size size bytes

– If allocation fails, malloc returns NULL!

The memory area returned by the malloc is uninitialized!

77

How to determine the size for allocation?

The only argument for malloc function is the size of the
object in bytes

The sizes of different objects can be determined using
sizeof operator which returns the size of the argument
in bytes

– Return type of the sizeof operator is size_t

Example:
int *ptr = (int *) malloc(sizeof(int));

float **ptr = (float **) malloc(sizeof(float *));

78

realloc

realloc function changes the size of allocation, its
definition is

void *realloc(void *ptr, size_t size);

The argument ptr has to point to a previously allocated
object

– If ptr is NULL, realloc is equivalent to malloc

Contents of the allocated memory area returned by
realloc is equal up to the lesser of old and new sizes

79

free

free deallocates previous allocated object
void free(void *ptr);

After freeing you should not try to access any part of the
allocation

Calling free with a pointer that does not point to a
allocated memory can crash the code

– Calling free twice is a common mistake!

80

Summary

Pointers are references to memory locations

Operators *, & and []

Functions with pointer arguments can manipulate the
values of arguments

Pointers to pointers

Dynamic memory management

– malloc and free

81

Structures and strings

82

STRINGS

83

Strings

Strings in C are arrays of type char that end with value 0
(not character 0!)

– This definition is problematic and has caused many critical
bugs especially in operating systems

String manipulation routines are defined in header
<string.h>

– There are routines with both str and mem prefixes

 Different behavior when the array is not NULL terminated

84

String manipulation

Concatenate:
char *strncat(char *s1, char *s2, size_t n);

Compare:
int strncmp(char *s1, char *s2, size_t n);

Copy:
char *strncpy(char *s1, char *s2, size_t n);

Search a character:
void *memchr(void *s, int c; size_t n);

String length:
size_t strlen(char *s);

85

Character manipulation

• Defined in header <ctype.h>

int isspace(int c) test for space
int isalpha(int c) test for alphabetic letter
int isdigit(int c) test for decimal digit
int isalnum(int c) test for letter or digit
int iscntrl(int c) test for control character
int tolower(int c) convert to lower case
int toupper(int c) convert to upper case

86

String examples

// two string buffers
char str1[256], str2[256];

// initialize the strings
strncpy(str1, “abc”, 256);
strncpy(str2, “def”, 256);

// add str2 to the end of str1
strncat(str1, str2, 3);

printf(“len(str1)=%d\n”, strlen(str1));
// output: 6

printf(“%s, %s\n”, str1, str2);
// output: abcdef, def

printf(“tolower(A) = %c\n”, tolower(‘A’));
// output: tolower(A) = a

87

STRUCTURES

88

Defining a structure

Structures are defined using struct keyword:
struct tag_name {

type member1;
type member2;
…

};

Example:
struct book {

char author[100];
char title[100];
char publisher[100];
int year;

};

89

Declaring a structure variable

Structure declarations are usually given at the beginning
of the file before function definitions

– Accessible by all functions in the same file

Variables of a given structure type are declared using the
struct keyword, for example

struct book item;

declares a variable item of type struct book

90

Structures - why?

Structures can be considered as a collection of variables
with (possibly) different datatypes

Code can be made more readable when all related
information is passed between function using just a one
argument of relevant structure

– For example the information of a book in a library

Also implementing abstract datatypes, such as lists and
binary trees, is much more convenient with structures

91

Accessing structure members

Structure members can be accessed using ., for example
setting the year and printing the title for a book defined
previously:

struct book item;
...
item.year = 1984;
...
printf(“Author: %s\n”, item.author);

92

Pointer to structure

There is a short-hand notation -> for accessing elements
of a pointer to a structure:

struct book item;
struct book *ptr;
ptr = &item;
(*ptr).year = 2015;
ptr->year = 2015;

93

Pointer to structure

Structures can have
other structures as
members

– Also a pointer to the
structure itself!

– Abstract datatypes can
be nicely defined using
structures with pointers

struct node {
int value;
struct node *next;

};

struct node first, second;
first.next = &second;
second.next = NULL;

value

*next

first

value

*next

second

NULL

94

Pointer to structure

7

96

82 11

10 131

3

4

125

struct node {
integer value;
struct node *left, *right;

};

Example of ADT: binary tree

95

Summary

Strings in C always end with 0

– Remember the safety implications of string operations

Structure is datatype that is a collection of members

– Packing relevant data to a single unit

– Abstract data types

96

Dynamic memory management

97

Dynamic arrays

malloc can be used to allocate space for arrays too

When allocating an array just multiply the size of each
element in the array by the number of elements

– malloc returns a pointer to the beginning of the array

– Elements can be accessed with normal pointer syntax

98

Dynamic arrays

int n_elems = 32;
float *prices;

// allocate memory for the required amount of floats
prices = malloc(n_elems*sizeof(float));
for (i = 0; i < n_elems; i++) {

prices[i] = i*1.23;
}
// add space for one more float
prices = realloc(prices, sizeof(float)*(n_elems+1));
prices[n_elems] = 0.91;
// de-allocate the memory block
free(prices);

99

Dynamic multi-dimensional arrays

Doable, but becomes complicated

No real multi-dimensional arrays in C, so really just arrays
of arrays

– Two dimensional array maps to a variable that is a pointer
to a pointer

Memory management by hand

– There are at least two different ways to do the allocation

– Easy to make mistakes, beware here lieth dragons!

100

int i;

int rows = 4, cols = 8;

float **matrix;

/* allocate memory */

matrix = malloc(rows * sizeof(float *));

for (i = 0; i < rows; i++)

matrix[i] = malloc(cols * sizeof(float));

// start using the 2D array

matrix[0][2] = 3.14;

Allocating row-by-row, not recommended

matrix

matrix[i]

matrix[i][j]

101

Dynamic multi-dimensional arrays

Dynamic 2D array in contiguous memory:

First, allocate memory for pointers to the first element of
each row

Second, allocate memory for all elements

Third, point each row at the first element of that row

102

/* allocate memory */

matrix = malloc(rows * sizeof(float *));

matrix[0] = malloc(rows * cols * sizeof(float));

/* point the beginning of each row at the correct address
*/

for (i = 1; i < rows; i++)

matrix[i] = matrix[0] + i * cols;

// start using the 2D array

matrix[0][2] = 3.14;

Dynamic multi-dimensional arrays

matrix

matrix[i]

matrix[i][j]

103

Memory layout

Allocating space for the whole array using a single malloc
call is the recommended way

– Number of expensive malloc calls is minimized

– Array is represented as one contiguous block in memory

– It can be copied without looping over rows

– Most IO and numerical libraries assume contiguous storage

104

After using a dynamic
multi-dimensional
array, remember to
free each array inside
the main array

/* free each row first */

for (i = 0; i < rows; i++) {

free(matrix[i]);

}

/* only after that, we can free the
main matrix */

free(matrix);

OR

/* alternatively, when using contiguous
memory */

free(matrix[0]);

free(matrix);

Freeing multi-dimensional arrays

105

Summary

Multidimensional arrays are a bit tricky and there are
several different implementations

– Malloc are usually time consuming

– Memory layout matters

106

I/O

107

I/O – Introduction

Common I/O design alternatives

– databases

– data format libraries

– standard C libraries

Standard C library stdio.h

– Reading from keyboard and writing to display

– Reading and writing files

108

I/O – Standard C library stdio.h

To use:

1. Do a web search for “stdio.h reference” to see what
functions are in the library.

2. Do a web search for “stdio.h printf” to get a detailed
description of the printf function.

3. Type “man stdio” and “man printf” on a Linux
workstation

#include <stdio.h>

109

I/O – Reading from keyboard and
writing to display

printf() Print formatted data to stdout.

scanf() Read formatted data from stdin.

putchar() Print a single character to stdout.

getchar() Read a single character from stdin.

puts() Print a string to stdout.

fgets() Read a string from stdin (or file).

stdin = keyboard
stdout = display

110

int printf(const char *format, ...)

I/O – Reading from keyboard and
writing to display

printf("The answer is %d.\n", 42);
printf("Pi equals to %.2f", 3.14159265);
printf("...at least to the %dnd decimal.\n", 2);

/* output:
* The answer is 42.
* Pi equals to 3.14 ...at least to the 2nd decimal.
*/

111

I/O – printf

\a alarm (beep) character
\p backspace
\f formfeed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\? question mark
\’ single quote
\” double quote

\0NN character code in octal
\xNN character code in hex
\0 null character

112

I/O – printf

%d decimal integer
%c character
%s string
%e floating-point

number in
exponential notation

%f floating-point
number in
decimal notation

%g use %e or %f,
whichever is shorter

%u unsigned decimal
integer

%o unsigned octal
integer

%x unsigned hex integer

113

I/O – printf

The format specifier:

type:

[0-9] : left-pad w/ spaces
+ : always show +/-
- : left-align
: alternate form
0 : pad w/ zeros

n$: which parameter

[0-9] : min. width / precision
* : width / precision given

as a parameter

l L : long int / float
ll : long long int

%[parameter][flags][width][.precision][length]type

d, i int x hexadecimal
f, e, g float / double o octal
s string c char
% literal %

114

int scanf(const char *format, ...)

I/O – Reading from keyboard and
writing to display

printf("Enter a number: ");
scanf("%d", &number);
printf("You entered %d.\n", number);

/* output:
* Enter a number: 9
* You entered 9.
*/

115

I/O – scanf

When can you assume that the input is well-formatted?
Never.

Good article :“Things to Avoid in C/C++” at
www.gidnetwork.com for discussion about gets() and
scanf().

116

I/O – Reading from keyboard and
writing to display

printf() Print formatted data to stdout.

scanf() Read formatted data from stdin.

putchar() Print a single character to stdout.

getchar() Read a single character from stdin.

puts() Print a string to stdout.

fgets() Read a string from stdin or a file.

stdin = keyboard
stdout = display

117

char *fgets(char *str, int num, FILE *stream)

I/O – Reading from keyboard and
writing to display

printf("Enter some text\n");
fgets(string, 100, stdin);
printf("You entered:\n");
printf("%s", string);

/* output:
* Enter some text:
* Reading and validating input is difficult.
* You entered:
* Reading and validating input is difficult.
*/

118

I/O – fgets

Input
stream Input

stream

char *str \n char *str \0

\0 \0 \0

int floatchar

fgets()

119

I/O – Reading and writing files

FILE *fopen(const char *filename, const
char *mode)

int fclose(FILE *stream)

int fflush(FILE *stream)

r, w, a read, write, append
r+, w+, a+ read+write
rb, wb, ... binary mode

120

I/O – fopen, fclose

char filename[] = "file.txt";
FILE *myfile;
myfile = fopen(filename, "r");
if (myfile == NULL) {
printf("Can’t open %s. Check that it ", filename);
printf("exists and the permissions.\n");
return EXIT_FAILURE;

}
fclose(myfile);

/* output (on error):
* Can’t open file.txt. Check that it exists and the
* permissions.
*/

121

I/O – Reading and writing files

fprintf() Print formatted data to file.

fscanf() Read formatted data from file.

fputc() Print a single character to file.

fgetc() Read a single character from file.

fputs() Print a string to file.

fgets() Read a string from file.

fwrite() Write binary data to file

fread() Read binary data from file

122

I/O – Reading and writing files

int fgetc(FILE *stream)

int c;
char filename[] = "file.txt";
FILE *myfile;
myfile = fopen(filename, "r");
c = fgetc(myfile);
while (c != EOF) {
printf("%c", (char)c);
c = fgetc(myfile);

}
fclose(myfile);

123

I/O – Reading and writing files

size_t fwrite(const void *ptr, size_t
size, size_t count, FILE *stream)

char filename[] = "file.dat";
FILE *mybinary;
mybinary = fopen(filename, "wb");
fwrite(&number, sizeof(int), 1, mybinary);
fwrite(array, sizeof(float), 1000, mybinary);

124

I/O – Reading and writing files

size_t fread(const void *ptr, size_t size,
size_t count, FILE *stream)

char filename[] = "file.dat";
FILE *mybinary;
mybinary = fopen(filename, "rb");
fread(&number, sizeof(int), 1, mybinary);
fread(array, sizeof(float), 1000, mybinary);

125

I/O – Final words

Standard C libraries

– text or binary?

Alternative solutions

– databases

– data format libraries

126

Code structuring

127

C PREPROCESSOR

128

Preprocessing directives

C preprocessor is a part of the compiler that does initial
text substitution, manipulation, inclusion and other
activities before the actual translation is done

– We have already used #include, which includes a file and
#define for macros

C relies heavily on preprocessor to accomplish

– Portability of code

– Source code control

– Debugging

129

Directives

Preprocessor directives start with #, which has to be first
token on a line

Directives are limited to one line

– Line can be continued using \

Directives are not statements, do not end the line with ;

// These are ok

#define one

#define two

// Not the first token - WRONG!

int i; #define one

130

Conditional inclusion with #if

Conditionals can be used to control if part of the code is
included (and compiled) or not

Conditional part begins with #if/#ifdef/#ifndef
and ends with #endif:

#if constant-exp

text section

#elif constant-exp

text section

#else

text section

#endif

#ifdef identifier

text section

#else

text section

#endif

#ifndef identifier

text section

#else

text section

#endif

131

Example

#include <stdio.h>

#define PRINT_GREETINGS

#define PRINT_VALUE 3

int main(void) {

#ifdef PRINT_GREETINGS

printf(“Hello, World!\n”);

#endif

#if PRINT_VALUE == 3

printf(“Value is %d\n”, PRINT_VALUE);

#endif

return 0;

}

132

Definitions on compiler command line

It is also possible to set preprocessor definitions on the
compiler command line

Most compilers accept option -D for this purpose:

gcc -DONE=1 -DUSE_FEATURE

is equivalent with

#define ONE 1
#define USE_FEATURE

133

COMPILING WITH SEVERAL FILES

134

Compilation: working with several files

Advantages:

– Code structure is easier to understand when related parts
are in same file

 Scoping of variables can be controlled more strictly

– Changing a file, only that file needs to be re-compiled to
rebuild the program

UNIX ‘make’ can be very useful tool for this!

– Most IDEs also provide a tools for building this kind of
compilation

135

Function prototypes

Functions, like variables, have to be defined (declared)
before use

Program execution starts from main()

– If function definitions are in the same file and definitions
are always before usage then compiler can find everything
it needs

– Otherwise we have to introduce the functions using
function prototypes

136

Function prototypes

Function prototypes are like
variable declarations: they
introduce the name of the
function, its arguments and
return value

Note that only types of
arguments are needed

Function prototype declaration
is a statement so you have to
finish it with ;

// Function prototype

int funcA(int, int);

// Function can now be used

int main(void) {

...

val = funcA(arg1, arg2);

...

}

// Function definition

int funcA(int a, int b)

{

return a * b;

}

137

Working with several files

We can use header files
to define functions that
we can use later

Making .h files for your
functions allows you to
‘include’ them in your
code

// we define the function ‘add’
#ifndef ADD_H
#define ADD_H
int add(int first, int second);
#endif

// we implement the function ‘add’
int add(int first, int second)
{

return first + second;
}

File: add.c

File: add.h

138

Compilation: working with several files

Another .c file can then use the function add() by
including the header file:

// If we use #include "", the file is searched from
// current directory
#include "add.h"

int example(int x)
{

return add(x, add(x,x));
}

139

Compilation: working with several files

So, this is how headers work:

– main() would be in one file, the others will contain
functions

– Headers usually only contain definitions of data types,
function prototypes and C preprocessor commands

– We include the header into the C files

– We compile the different files and the compiler calls the
header file

140

Global variables, extern

Scoping of variables depend on the place where the
variable is declared

– Variables declared inside a function are visible only in the
scope of that function

Variables defined in a file have a scope of that file

If a truly global value is needed (not generally
recommended practice), one has to use extern keyword

– Only one definition in file scope

– Other files refer this value with extern

141

Example

...

// File scope variable for

// status

struct status global_status;

...

int main(void) {

...

...

// We want to use the same

// structure in this file

extern struct status global_status;

...

int set_error_status(int stat) {

...

global_status.error_code = stat;

...

}

file main.c: file utilities.c:

142

Summary

C preprocessor

– Macros, conditional compiling

Working with several files

– Function prototypes

– Compiling and linking

143

Programming practices

144

BACKGROUND

145

What and why?

Coding practices are an informal set of rules that
community has learned by experience

– Purpose is to help improve the quality of software

Some practices may seem unimportant if you are just
starting to write a small ad-hoc application for yourself

– Software lifetime is hard to predict—small application can
grow and become important

– Wrong choices are much harder to fix when project grows
and more developers start to contribute

146

Software quality

Several definitions and metrics, but some common
desirable attributes are
– Maintainability

 How easy the code is to modify and extend?

– Reliability
 Does program work correctly with different inputs?

– Efficiency
 Is the program fast enough for the purpose it was made for?

– Correctness
 Does the program implement the given specifications

correctly?

147

CODING STANDARDS

148

Keep it simple

Code should be simple, do not use complicated logic to
implement simple things

– Complicated algoritms are of course difficult, but individual
parts of code should not be!

Complicated code filled with tricks is difficult to
understand, fix and modify

– After couple of years it will be hard even for the person
who wrote it

149

Comments

Easily overlooked, but
very important for new
developers working on
old code

Comment at least the
purpose of different data
structures and things that
use complicated logic

// Do not comment like this

// Increment i by one

i++;

// This is more useful

// Increment i so that

// the residual will be

// computed correctly

i++;

150

Code formatting

As mentioned already in the
beginning the C code
formatting is very flexible

– There are many common
styles: K&R, GNU, Linux, ...

Rule of thumb: be consistent!

– It is much easier to read
code that has all blocks
formatted similarly

Use automatic tools: indent

// GNU

for (i = 0; i < n; i++)

{

printf(“Hi!\n”);

}

print(“Finished\n”);

// Linux

for (i = 0; i < n; i++) {

printf(“Hi!\n”);

}

print(“Finished\n”);

151

Naming conventions

There are several conventions on naming, but again,
choose one and use it

In any case the name of variables and fuctions should be
descriptive

Preprocessor macros and definitions should always be
uppercase!

// This

d = s * t;

// ... or this

distance = speed * time_interval;

152

Version control

If you do any development you should already be using
version control

– It is helpful even in projects with just one developer

– ... but it is critical tool for projects with larger teams

Without VCS tracking bug fixes and changes becomes
almost impossible

Common version control systems include git, svn,
mercurial, cvs, perforce,...

153

Build tools

When the size of the software project grows compiling
becomes more and more complicated

– Recompiling everything from the beginning becomes too
slow and handling the dependencies can be complicated

Build tools handle the dependencies

Most common tool in UNIX-like systems is Make

IDEs also provide build tools

154

DEBUGGING

155

Debuggers

Debuggers are tools that are used to examine the
program execution

– Check the values of variables during execution without
adding any extra I/O calls

– Execute the program code step-by-step

– Stop the program execution when a given condition is met

– Examine the call tree and function call arguments

156

Debugging demo

Demo on tracking down the cause of segmentation fault

157

COMMON PITFALLS

158

Common pitfalls 1

Segmentation faults

Arrays in C are not protected

– Trying to access a wrong element can in principle have any
effect

– Most difficult cases to debug are the ones where value of
some other variable is modified by accident

– Segmentation faults are usually easier to find

– Some compilers have memory debugging tools integrated
(e.g. address sanitizer in Clang and gcc)

159

Common pitfalls 2

Using = in comparison in stead of ==
int val = 2;
if (val = 1)

printf(“val is equal to one”);

This will print that the value is one!

– The assignment operator returns the assigned value 1
which is nonzero and interpreted as true

One way to avoid this is to use the constant on left,
compiler will complain about the invalid assignment

160

Common pitfalls 3

Manual memory management is error prone

Make sure that the allocations are always done before
trying to dereference pointers

Memory leak:

– Releasing the pointer to an allocation before free

161

Common pitfalls 4

Remember the implicit type conversions

For example integer division:
double third = 1/3;

This will set the value of third to zero

– Result of the integer division is 0 and that value is then
casted into double precision 0.0

162

Summary

Coding standards help to develop programs

– Based on long time experience

Debuggers help when you track down errors in your
programs

163

