
int **b1, **b2;

/* Initialise metadata */
board_1->height = height;
board_1->width = width;
board_2->height = height;
board_2->width = width;

/* Allocate memory for grids */
board_1->space = malloc((height + 2) * sizeof(int *));
board_1->space[0] = malloc((height + 2) *

(width + 2) * sizeof(int));
for(i = 1; i < height + 2; i++) {

board_1->space[i] = board_1->space[0] + i * (width + 2);
}
board_2->space = malloc((height + 2) * sizeof(int *));
board_2->space[0] = malloc((height + 2) *

(width + 2) * sizeof(int));
for(i = 1; i < height + 2; i++) {

board_2->space[i] = board_2->space[0] + i * (width + 2);
}

Introduction to C programming

Sami Ilvonen
Petri Nikunen

Sep 6 – 8, 2017
@ CSC – IT Center for Science Ltd, Espoo

All material (C) 2017 by CSC – IT Center for Science Ltd.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License, http://creativecommons.org/licenses/by-nc-sa/3.0/

Agenda

Wednesday

09:00-09:45 Introduction

09:45-10:00 Coffee break

10:00-10:45 Getting started with C

10:45-12:00 Exercises

12:00-13:00 Lunch break

13:00-14:00 Control structures and loops

14:00-14:30 Exercises

14:30-14:45 Coffee break

14:45-15:45 Exercises

15:45-16:00 Wrap-up day 1

Thursday

09:00-10:00
Pointers and dynamic
memory management

10:00-10:15 Coffee break

10:15-11:00 Exercises

11:00-11:30
Strings, structures and
datatypes

11:30-12:00 Exercises

12:00-13:00 Lunch break

13:00-14:00 Exercises

14:00-14:30 Dynamic arrays

14:30-14:45 Coffee break

14:45-15:45 Exercises

15:45-16:00 Wrap-up day 2

Agenda

Friday

09:00-09:45 I/O

09:45-10:00 Coffee break

10:00-11:15 Exercises

11:15-12:00 Code structuring

12:00-13:00 Lunch break

13:00-14:00 Exercises

14:00-14:15 Coffee break

14:15-15:00
Programming practices and
debugging

15:00-15:45 Exercises

15:45-16:00 Course wrap-up

Introduction C programming – exercises

1. Basics, compiling, datatypes and expressions
a) Write from a scratch a short program that prints out a sentence (e.g. “hello,

world!”). Compile the code using GNU C compiler (gcc) and execute the program.

See the lecture material for relevant code examples and compiler commands.

b) Perform simple expressions with different types of variables (integers, floats,

doubles) and print out results with printf using correct format. File

ex1b_expressions.c contains a skeleton code to start with.

c) Add some pointer variables to the previous exercise and perform some

expressions via the pointers. Investigate both the original variable and the pointer

variable after expressions. A skeleton code is provided in ex1c_pointers.c

2. Control structures
a) Write a control structure which checks whether an integer is negative, zero, or

larger than 100 and performs corresponding printf. Investigate the behavior

with different integer values. Skeleton code is given in file ex2a_if_else.c.

b) In the file ex2b_my_pow_prog.c you find a skeleton code for a program that

calculates powers. Finish the code by adding a missing update loop.

c) Fibonacci numbers are a sequence of integers defined by the recurrence relation

 Fn = Fn-1 + Fn-2

with the initial values F0=0, F1=1. Print out Fibonacci numbers Fn < 100 using a

while loop.

d) Write a function that determines if a given character is a vowel or a consonant.

Use the switch-case structure. Skeleton code is given in file ex2d_switch.c.

3. Pointers and dynamic memory management
a) Implement a function that takes three arguments of type double. The function

should return in the third argument the sum of the first two arguments. Template

code is in file ex3a_pointers.c.

b) Modify the given template ex3b_pointer_swap.c and implement a function

that swaps its pointer arguments a and b so that they point to b and a in reversed

order. Can you make a version that can accept all pointer types? (Hint: remember

the type void).

4. Strings, structures and datatypes
a) Implement a program that converts the strings given as command line arguments

to upper case equivalents and prints them out on separate lines. Template can be

found in ex4a_upcase.c. Use can use the routine toupper defined in the header

file ctype.h to convert the string letter by letter. (Hint: man 3 toupper).

b) Modify the given template (ex4b_structs.c) so that you use a structure to

pass the values to the output routine that prints the basic information of a book.

c) Implement the insertion routine for the linked list example program given in the

template file ex4c_linked_list.c. Note that the list is implemented so that

empty list has two nodes: head defined in the main routine holds the starting

point and init_list routine allocates one place holder for the end point of the

list. Implement the insert so that new value is added to the beginning of the list.

After insertion the head->next should point to the new node.

int value;
struct element *next;

int value;
struct element *next;

int value;
struct element *next;

NULL

head

new node

last element

5. Dynamic arrays
a) Write a function that allocates an integer array and sets the values in the array

from 1 to the N where N is the size of the array given as an input argument. Print

out the values in the calling main function. Skeleton is in file ex5a_malloc.c.

b) Extend the allocation function so that it allocates a two-dimensional array.

Implement also a routine that frees the array. Skeleton file ex5b_array.c has

some utility routines that print out the array for checking.

6. I/O
a) Implement a program that asks for user input and echoes back all numerical

characters (0-9) and drops out all other input. If no numbers is given, program

should report that no numbers were given. Skeleton code is in file ex6a_echo.c.

b) Extend the skeleton file ex6b_file_io.c file and implement a program that reads

the input file “testdata.dat” line-by-line, converts the read text to upper case and

prints the results to standard output.

7. Code structuring
a) Start from the provided single file version of a heat solver and move the function

save_png to a separate file pngwriter.c. Create a header file pngwriter.h

with needed declarations. Try to compile the new version and check that it works.

Note that you will need two libraries, libpng and libm (use compiler flags

-lpng and -lm).

b) Split the solver further so that the main routine is in a separate file ex7_main.c

and the needed declarations in a header file ex7_heat_solver.h.

8. Debugging
Take a look at the demo code in folder demo, compile it using the provided

makefile (issue the command make) and run the program. Find the reason for

segmentation fault using gdb, fix the problem and check that the program works

correctly after your corrections.

