
import sys, os
try:

from Bio.PDB import PDBParser
__biopython_installed__ = True

except ImportError:
__biopython_installed__ = False

__default_bfactor__ = 0.0 # default B-factor
__default_occupancy__ = 1.0 # default occupancy level
__default_segid__ = '' # empty segment ID

class EOF(Exception):
def __init__(self): pass

class FileCrawler:
"""
Crawl through a file reading back and forth without loading
anything to memory.
"""
def __init__(self, filename):

try:
self.__fp__ = open(filename)

except IOError:
raise ValueError, "Couldn't open file '%s' for reading." % filename

self.tell = self.__fp__.tell
self.seek = self.__fp__.seek

def prevline(self):
try:

self.prev()

Introduction to Python

Jussi Enkovaara
Jyry Suvilehto

September 18-19, 2017
CSC – IT Center for Science Ltd, Finland

All material (C) 2011-2017 by CSC – IT Center for Science Ltd.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Unported License,
http://creativecommons.org/licenses/by-sa/4.0

Agenda

Monday
9:00-9:45 Introduction to Python

9:45-10:30 Exercises

10:30-10:45 Coffee Break

10:45-11:15 Control structures

11:15-12:15 Exercises

12:15-13:00 Lunch break

13:00-13:30 Functions and exceptions

13:30-14:30 Exercises

14:30-14:45 Coffee Break

14:45-15:15 Modules

15:15-16:15 Exercises

Tuesday
9.00-9.45 File I/O and string processing

9.45-10.30 Exercises

10.30-10.45 Coffee break

10:45-11:30 NumPy and simple plotting

11:30-12:15 Exercises

12.15-13.00 Lunch break

13.00-14:00 Object oriented programming

14:00-14:30 Exercises

14.30-14.45 Coffee break

14.45-16.15 Exercises

INTRODUCTION TO PYTHON

What is Python?

Modern, interpreted, object-oriented, full featured high level
programming language
Portable (Unix/Linux, Mac OS X, Windows)
Open source, intellectual property rights held by the Python
Software Foundation
Python versions: 2.x and 3.x
– 3.x is not backwards compatible with 2.x
– Version 2 spread so wide that adopting version 3 has been a

long struggle
– This course uses 3.x version
– It is possible and good practice to write programs compatible

with both versions

Python Essentials

Development started in
1989 by Guido van Rossum

– 2.0 released in 2000, 3.0 in
2008

Language development
overseen by the Python
Software Foundation (PSF)

Most public Python
packages available in the
Python Package Index (PyPI)

image: Daniel Stroud

CC-BY-SA 4.0

Python language development

There is a process for new
language features called
Python Enhancement
Proposals

Guido (a Dutchman) still
retains final say over new
features as the Benevolent
Dictator For Life

There should be one-- and
preferably only one --obvious
way to do it.

Although that way may not be
obvious at first unless you're
Dutch.

- quote from Zen of Python

Python ecosystem

Core Python language features and built-ins

– Always available, very robust if used correctly

The Python standard library
– Available in most standard installations, need to be imported to

use

– Well tested and fairly stable

– Covers a lot of basic needs, ”batteries included”

The Python Package Index
– A package exists for almost everything

– May contain bugs, possibly not actively maintained

– May solve your problem or sub-problem out of the box

Why Python?

Fast program development

– Rapid prototyping and

Simple syntax

Easy to write well readable code

Large standard library

Lots of third party libraries

– Numpy, Scipy, Biopython

– Matplotlib

– ...

Why not Python?

Not energy-efficient

– A factor in doing web-scale things

Emphasizes programmer cognitive load and development
over being close to hardware
– mitigated by libraries that interface with lower level

components

– Not possible to use on some embedded systems

Not backed by a single large commercial entity

The programmer is generally trusted, so not very suitable for
security-oriented systems
– Or security arrangements have to be made at other levels

Information about Python

www.python.org

H. P. Langtangen, “Python Scripting for Computational
Science”, Springer

www.scipy.org
FIRST GLIMPSE INTO PYTHON

Python basics

Syntax and code structure

Data types and data structures

Control structures

Functions and modules

Text processing and IO

Python program

Typically, a .py ending is used for Python scripts, e.g.
hello.py:

Scripts can be executed by the python executable:

print("Hello world!")

hello.py

$ python hello.py
Hello world!

Interactive python interpreter

The interactive interpreter can be started by executing
python without arguments:

Useful for testing and learning

$ python3
Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016, 10:47:25)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> print("hello")
hello

Enhanced interactive Python interpreter

The IPython shell is a more powerful tool for using
Python from the command line

– Autocompletion, details about objects

– We mostly use the browser version on this course

$ ipython
Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016, 10:47:25)
Type "copyright", "credits" or "license" for more information.

IPython 5.1.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]: print("hello")
hello

Jupyter notebooks

Python environment in a web application

Notebook can contain progam code, explanatory text,
and visualisations

Python syntax

Variable and function names
start with a letter and can
contain also numbers and
underscores, e.g “my_var”,
“my_var2”
Variables may also begin with
an underscore but these will
be covered later
Python is case sensitive
Code blocks are defined by
indentation
– a block is started by a colon :

Comments start with #

example
if x > 0:

x = x + 1 # increase x
print("increasing x")

else:
x = x – 1
print "decreasing x"

print("x is processed")

example.py

Python style

variable_name

function_name

ClassName

modulename.submodule or
module_name.another_module

Data types

Python is a dynamically
typed language

– no type declarations for
variables

– easy to make typing errors
in variable names

Variable does have a type

– incompatible types cannot
be combined

– “In the face of ambiguity,
refuse the temptation to
guess.” - zen of python

print("Starting example")
x = 1.0
for i in range(10):

x += 1
y = 4 * x
s = "Result"
z = s + y # Error

example.py

Numeric types

Integers

Floats

Complex numbers

Basic operations

– + and -

– * , / and **

– implicit type conversions

– be careful with integer
division !

>>> x = 2
>>> x = 3.0
>>> x = 4.0 + 5.0j
>>>
>>> 2.0 + 5 – 3
4.0
>>> 4.0**2 / 2.0 * (1.0 - 3j)
(8-24j)

Strings

Strings are enclosed by " or '
Multiline strings can be defined with three double quotes
– this will include newlines

Strings inside the same parentheses will be interpreted as one
string

s1 = "very simple string"
s2 = 'same simple string'
s3 = "this isn't so simple string"
s4 = 'is this "complex" string?'
s5 = """This is a long string
expanding to multiple lines,
so it is enclosed by three "'s."""
s6 = ("This string "

"has no newlines "
"in it”)

strings.py

Strings

+ and * operators with strings:
>>> "Strings can be " + "combined"
'Strings can be combined'
>>>
>>> "Repeat! " * 3
'Repeat! Repeat! Repeat!

Data structures

Sequence structures

– Lists

– Tuples

– Sets

– Frozen sets

– Byte arrays

Dictionaries

Mutable vs immutable data types

Mutable data types can be
modified after creation e.g.
– a list can be added to

– a byte array can be edited

– a dict can be added to

Immutable data types cannot
be modified, modifying them
returns a new object of the
same type
– The original is not changed

There is no ++-operator as
numeric types are immutable

Immutable Mutable

numeric types

tuple list

str byte array

frozen set set

dict

List

Python lists are dynamic arrays

List items are indexed (index starts from 0)

List item can be any Python object, items can be of
different type

New items can be added to any place in the list

Items can be removed from any place of the list

Lists

Defining lists

Accessing list elements

Modifying list items

>>> my_list1 = [3, “egg”, 6.2, 7]
>>> my_list2 = [12, [4, 5], 13, 1]

>>> my_list1[0]
3
>>> my_list2[1]
[4, 5]
>>> my_list1[-1]
7

>>> my_list1[-2] = 4
>>> my_list1
[3, 'egg', 4, 7]

Lists

Adding items to list

Accessing list elements

+ and * operators with
lists

>>> my_list1 = [9, 8, 7, 6]
>>> my_list1.append(11)
>>> my_list1
[9, 8, 7, 6, 11]
>>> my_list1.insert(1,16)
>>> my_list1
[9, 16, 8, 7, 6, 11]
>>> my_list2 = [5, 4]
>>> my_list1.extend(my_list2)
>>> my_list1
[9, 16, 8, 7, 6, 11, 5, 4]

>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]
>>> [1, 2, 3] * 2
[1, 2, 3, 1, 2, 3]

Lists

It is possible to access
slices of lists

Removing list items

>>> my_list1 = [0, 1, 2, 3, 4, 5]
>>> my_list1[0:2]
[0, 1]
>>> my_list1[:2]
[0, 1]
>>> my_list1[3:]
[3, 4, 5]
>>> my_list1[0:6:2]
[0, 2, 4]
>>> my_list1[::-1]
[5, 4, 3, 2, 1, 0]

>>> second = my_list1.pop(2)
>>> my_list1
[0, 1, 3, 4, 5]
>>> second
2

Tuples

Tuples are immutable lists

Tuples are indexed and
sliced like lists, but cannot
be modified

>>> t1 = (1, 2, 3)
>>> t1[1] = 4
Traceback (most recent call last):

File "<stdin>", line 1, in
<module>
TypeError: 'tuple' object does not
support item assignment

Dictionaries

Dictionaries are associative arrays

Unordered list of key - value pairs

Values are indexed by keys

Keys can be strings or numbers

Value can be any Python object

Dictionaries

Creating dictionaries

Accessing values

Adding items

>>> grades = {'Alice' : 5, 'John'
: 4, 'Carl' : 2}
>>> grades
{'John': 4, 'Alice': 5, 'Carl': 2}

>>> grades['John']
4

>>> grades['Linda'] = 3
>>> grades
{'John': 4, 'Alice': 5, 'Carl': 2,
'Linda': 3}
>>> elements = {}
>>> elements['Fe'] = 26
>>> elements
{'Fe': 26}

Converting between basic data types

Python has built-in
functions

– type() for determining
the type of a variable

– int(), float(), str(), list(),
dict(), set(), etc. for
converting to each type

 only if possible

>>> x = 5
>>> type(x)
<class 'int'>
>>> y = str(x)
>>> type(y)
<class 'str'>
>>> type(z)
<class 'float'>
>>> z
5.0
>>> x + z
10.0
>>> y+z
Traceback (most recent call last):

File "<stdin>", line 1, in
<module>
TypeError: Can't convert 'float'
object to str implicitly

Variables

Python variables are
always references

my_list1 and my_list2
are references to the
same list

– Modifying my_list2
changes also my_list1!

Copy can be made by
slicing the whole list

>>> my_list1 = [1,2,3,4]
>>> my_list2 = my_list1

>>> my_list2[0] = 0
>>> my_list1
[0, 2, 3, 4]

>>> my_list3 = my_list1[:]
>>> my_list3[-1] = 66
>>> my_list1
[0, 2, 3, 4]
>>> my_list3
[0, 2, 3, 66]

What is an object?

Object is a software bundle of data (=variables) and
related methods

Data can be accessed directly or only via the methods
(=functions) of the object

In Python, everything is an object

Methods of object are called with the syntax:
obj.method(parameter, parameter)

Methods can modify the data of object or return new
objects

Summary

Python syntax: code blocks defined by indentation

Numeric and string datatypes

Powerful basic data structures:

– Lists and dictionaries

Everything is an object in Python

Python variables are always references to objects

CONTROL STRUCTURES

Control structures

if – else statements

while loops

for loops

if statement

if statement allows one to execute code block depending
on condition

code blocks are defined by indentation, standard practice
is to use four spaces for indentation

comparison operators: ==, !=, >, <, >=, <=

boolean operators: and, or, not

if x > 0:
x += 1
y = 4 * x

numbers[2] = x

example.py

if statement

there can be multiple branches of conditions

Python does not have a switch statement

if x == 0:
print("x is zero")

elif x < 0:
print("x is negative")

elif x > 100000:
print("x is large")

else:
print("x is something completely different")

example.py

if statement - oddities

empty lists, empty strings and 0 evaluate to False for the
truth statement

x = []
y = None
z = 0
if not x :

print("x")
if not y :

print("y")
if not z :

print("z")

example.py

if statement - oddities

collections and sequences support the in keyword

operator priority can be affected with parentheses

– preferable to keep it simple

x = "01245"
if "6" in x :

print("x contains '6'")
elif "5" < 0:

print("x contains '5'")
else:

print("x is something completely different")

example.py

while loop

while loop executes a code block as long as an expression
is True

x = 0
cubes = {}
cube = 0
while cube < 100:

cubes[x] = cube
x += 1
cube = x**3

example.py

for loop

for statement iterates over the items of any sequence
(e.g. list)

In each pass, the loop variable car gets assigned next
value from the sequence

– Value of loop variable can be any Python object

cars = ['Audi', 'BMW', 'Jaguar', 'Lada']

for car in cars:
print("Car is ", car)

example.py

for loop

Many sequence-like Python objects support iteration

– Dictionary: ”next” values are dictionary keys

– (later on: file as sequence of lines, ”next” value of file
object is the next line in the file)

prices = {'Audi' : 50, 'BMW' : 70, 'Lada' : 5}

for car in prices:
print("Car is ", car)
print("Price is ", prices[car])

example.py

for loop

Items in the sequence can be lists themselves

Values can be assigned to multiple loop variables

Dictionary method items() returns list of key-value pairs

for x, y in coordinates:
print("X=", x, "Y=", y)

example.py

coordinates = [[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]]
for coord in coordinates:

print("X=", coord[0], "Y=", coord[1])

example.py

prices = {'Audi': 50, 'BMW' : 70, 'Lada' : 5}
for car, price in prices.items():

print("Price of", car, "is", price)

example.py

break & continue

break out of the loop

continue with the next iteration of loop

x = 0
while True:

x += 1
cube = x**3
if cube > 100:

break

example.py

sum = 0
for p in prices:

sum += p
if sum > 100:

print "too much"
break

example.py

x = -5
cube = 0
while cube < 100:

x += 1
if x < 0:

continue
cube = x**3

example.py

sum = 0
for p in prices:

if p > 100:
continue

sum += p

example.py

range

Indices are not idiomatic when they can be avoided

sometimes they can’t be avoided

range expresses a range of integers with configurable
start, stop and step parameters

– Counting up from 0 with single parameter (stop)

In Python 3 range returns an iterator, in Python 2 a list

print("counting backwards from 10 in steps of 2")
for number in range(10, 1, -2) :

print(number)

example.py

enumerate

Built-in function enumerate returns tuples of index,
[item]

my_list = ["a", "b", "c", "d", "e"]
for index, str_ in enumerate(my_list):

print("index " + str(index) + " is str " + str(str_))

example.py

List comprehension

useful Python idiom for creating lists from existing ones
without explicit for loops

creates a new list by performing operations for the
elements of list:
newlist = [op(x) for x in oldlist]

a conditional statement can be included

>>> numbers = range(6)
>>> squares = [x**2 for x in numbers]
>>> squares
[0, 1, 4, 9, 16, 25]

>>> odd_squares = [x**2 for x in numbers if x % 2 == 1]
>>> odd_squares
[1, 9, 25]

FUNCTIONS AND EXCEPTIONS

Functions

function is block of code that can be referenced from
other parts of the program

functions have arguments

functions can return values

functions are defined using the def keyword

Function definition

name of function is add

x and y are positional arguments

– their order matters

there can be any number of arguments and arguments
can be any Python objects

return value can be any Python object

def add(x, y):
result = x + y
return result

u = 3.0
v = 5.0
sum = add(u, v)

function.py

Keyword arguments

functions can also be called using keyword arguments

keyword arguments can improve readability of code

keyword arguments must always be after positional
arguments
– in function definition

– in function call

keyword arguments don't need to be in any particular order

def sub(x=0, y=0):
result = x - y
return result

res1 = sub(3.0, 2.0)

res2 = sub(y=3.0, x=2.0)

function.py

Keyword arguments

it is possible to have default values for arguments

function can then be called with varying number of
arguments

def add(x, y=1.0):
result = x + y
return result

sum1 = add(0.0, 2.0)

sum2 = add(3.0)

function.py

Modifying function arguments

as Python variables are always references, function can
modify the objects that arguments refer to

side effects can be intentional or accidental

>>> def switch(mylist):
... tmp = mylist[-1]
... mylist[-1] = mylist[0]
... mylist[0] = tmp
...
>>> l1 = [1,2,3,4,5]
>>> switch(l1)
>>> l1
[5, 2, 3, 4, 1]

Exceptions

Exceptions allow the program to handle errors and other
”unusual” situations in a flexible and clean way

Basic concepts:

– Raising an exception. Exception can be raised by user code
or by system

– Handling an exception. Defines what to do when an
exception is raised, typically in user code.

There can be different exceptions and they can be
handled by different code

exceptions in Python

Exceptions are catched and handled by try - except
statements

User code can also raise an exception

my_list = [3, 4, 5]
try:

fourth = my_list[4]
except IndexError:

print("There is no fourth element")

example.py

if solver not in ['exact', 'jacobi', 'cg']:
raise RuntimeError(‘Unsupported solver’)

example.py

Exceptions and functions

Exceptions are a way to return information other than a
return value from a function

def divide(first, second):
if second == 0:

raise ZeroDivisionError("user tried to divide by zero")
return first/second

try:
first= input("Give first number: ")
second = input("Give second number")
print(divide(first, second))

except ZeroDivisionError:
print("execution protected from user error")

except Exception:
print("unknown error occurred!")

example.py

Error vs Exception

Not all Exceptions are Errors

– An error means something went wrong

– There are exceptions that have other significance, e.g.
StopIteration, KeyboardInterrupt or GeneratorExit

Most of the time programmers are interested in the
errors

Generator expressions

It is often the case that each item of a return value can
be processed independently from the rest of the items

It may not be wise to create large data structures only to
immediately destroy them

Instead of returning a list or similar iterable, you can use
the yield keyword

Best used to create items one by one to be consumed
one by one

Sometimes the performance difference is significant

Generator expressions

When the next value is requested, the execution
continues from where it left off

The use of yield instead of return makes this a generator
function

def odd_numbers(n):
counter = 0
for i in range(n):
if i % 2 == 1:

yield result
counter += 1

else:
pass

print("yielded %d odd numbers" % counter)

sum(odd_numbers(10000000))

function.py

Summary

functions help in reusing frequently used code blocks

functions can have positional and keyword arguments

functions often return values

functions (and code in general) can raise exceptions,
most common of which are errors

MODULES AND PACKAGES

Modules

Modules are extensions that can be imported to Python to
provide additional functionality, e.g.
– new data structures and data types
– functions

Python standard library includes several modules
Third party modules can be installed via system package
manager or pip
User defined modules
– Python searches for modules

 in current working directory
 $PYTHONPATH
 relative to the python executable

Importing modules / from modules

import statement

import math
x = math.exp(3.5)

import math as m
x = m.exp(3.5)

from math import exp, pi
x = exp(3.5) + pi

from math import *
x = exp(3.5) + sqrt(pi)

exp = 6.6
from math import *
x = exp + 3.2 # Won't work,

exp is now a function

example.py

Creating modules

it is possible to make imports from own modules

in fact, it is recommended to do so to give structure to
your code

– helps to write reusable code

– forces you to thing about what functionality goes where

Creating modules

it is possible to make imports from own modules

every .py file in the directory you are in can be imported
from

define a function in file mymodule.py

the function can now be imported in other .py files:

def incx(x):
return x+1

mymodule.py

import mymodule

y = mymodule.incx(1)

test.py

from mymodule import incx

y = incx(1)

test.py

Module structure

the presence of file
__init__.py creates a module

– file can be empty

structure improves readability

test.py
project

__init__.py
module_alpha.py
module_beta.py
submodule

__init__.py
module_delta.py

import project.module_alpha

the "as" keyword can be helpful when names collide or if name is long
from project.module_alpha import function_alpha as alpha

from project.submodule.module_delta import function_delta

test.py

Controlling imports (advanced)

To control what is imported
by "import *" you can
expose the functions you
want in __init__.py

By convention functions and
variables beginning with an
underscore _ are not
imported

– This is a hint that someone
using your code shouldn't
use the function/variable

from alpha import first
from alpha import third

__init__.py

def first():
...

def second():
...

def third():
...

alpha.py

from mymodule.alpha import *
first and third are defined but
second is not

test.py

Packages

Python code is often distributed in packages

Most python packages are published in the Python
Package Index (PyPI), https://pypi.python.org/pypi

A tool called pip can be used to install packages

$ pip install --user hypothesis

Collecting hypothesis

Downloading hypothesis-3.26.0.tar.gz (113kB)

100% |████████████████████████████████| 122kB 3.3MB/s

Requirement already satisfied: enum34 in

/Users/suvileht/Library/Python/2.7/lib/python/site-packages (from hypothesis)

Installing collected packages: hypothesis

Running setup.py install for hypothesis ... done

Successfully installed hypothesis-3.26.0

$

pip and virtualenv

Usually only administrators can install packages for all
system users

You can use the --user handle of pip to install only to
yourself

Often one software requires library X to be < 1.0 and
another for it to be > 1.5!

It is often a good idea to isolate requirements for
different software installations

A tool called virtualenv is used to create virtual
environments

Virtualenv example

$ virtualenv example
New python executable in /private/tmp/example/bin/python

Installing setuptools, pip, w heel...done.

$ source example/bin/activate

(example) $ pip install biopython
Collecting biopython

Dow nloading biopython-1.70-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.1MB)
100% |████████████████████████████████| 2.1MB 298kB/s

Collecting numpy (from biopython)

Dow nloading numpy-1.13.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.6MB)

100% |████████████████████████████████| 4.6MB 158kB/s

Installing collected packages: numpy, biopython
Successfully installed biopython-1.70 numpy-1.13.1

(example) $ python
Python 2.7.10 (default, Feb 7 2017, 00:08:15)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.34)] on darw in
Type "help", "copyright", "credits" or "license" for more information.

>>> from Bio.Seq import Seq

>>> my_seq = Seq("AGTACACTGGT")

>>> print(my_seq)

AGTACACTGGT

>>>
(example) $ deactivate

$

Summary

Modules are used to structure code

Modules can be single files or multiple structures

The import keyword is used to activate code from
modules

The pip command is used to install packages

It is recommended to isolate package installations to
virtual environments

FILE I/O AND TEXT PROCESSING

File I/O and text processing

working with files

reading and processing file contents

string formatting and writing to files

Opening and closing files

opening a file:
myfile = open(filename, mode)

– returns a handle to the file

>>> fp = open('example.txt', 'r')
>>>

Opening and closing files

file can opened for

– reading: mode='r'
(file has to exist)

– writing: mode='w'
(existing file is truncated)

– appending: mode='a'

closing a file

– myfile.close()

open file for reading
infile = open('input.dat', 'r')

open file for writing
outfile = open('output.dat', 'w')

open file for appending
appfile = open('output.dat', 'a')

close files
infile.close()

example.py

Reading from files

a single line can be read from a file with the readline() -
function

it is often convenient to iterate over all the lines in a file

>>> infile = open('inp', 'r')
>>> line = infile.readline()

>>> infile = open('inp', 'r')
>>> for line in infile:
... # process lines

with

special syntax for letting the interpreter take care of closing
the file after use

ensures that file is closed, even if errors occur inside the with-
statement

other resources can also be accessed using a with-statement

with open('out', 'r') as infile:
for line in infile:
print(line.strip().reverse())

output.py

Processing lines

generally, a line read from a file is just a string

a string can be split into a list of strings:

fields in a line can be assigned to variables and added to
e.g. lists or dictionaries

>>> infile = open('inp', 'r')
>>> for line in infile:
... line = line.split()

>>> for line in infile:
... line = line.split()
... x, y = float(line[1]), float(line[3])
... coords.append((x,y))

Processing lines

sometimes one wants to process only lines containing
specific tags or substrings

other way to check for substrings:

– str.startswith(), str.endswith()

Python has also an extensive support for regular
expressions in re -module

>>> for line in infile:
... if “Force” in line:
... line = line.split()
... x, y, z = float(line[1]), float(line[2]), float(line[3])
... forces.append((x,y,z))

String formatting

Output is often wanted in certain format

The string object has .format method for placing
variables within string

Replacement fields surrounded by {} within the string

Possible to use also keywords:

>>> x, y = 1.6666, 2.33333
print("X is {0} and Y is {1}".format(x, y))
X is 1.6666 and Y is 2.3333
>>> print("Y is {1} and X is {0}".format(x, y))
Y is 2.3333 and X is 1.6666

>>> print("Y is {val_y} and X is {val_x}".format(val_x=x, val_y=y))
Y is 2.3333 and X is 1.6666

String formatting

Presentation of field can be specified with {i:[w][.p][t]}
w is optional minimum width
.p gives optional precision (=number of decimals)
t is the presentation type

some presentation types
s string (normally omitted)
d integer decimal
f floating point decimal
e floating point exponential

>>> print("X is {0:6.3f} and Y is {1:6.2f}".format(x, y))
X is 1.667 and Y is 2.33

String formatting - old style

Python also has an older style of string formatting,
which is still valid but not recommended

printf-style syntax

Mentioned so you'll recognize it if you see it

>>> var = X is %d and Y is %s" % (5, "foo")
>>> print(var)
X is 5 and Y is foo

Writing to a file

data can be written to a file with print statements

file objects have also a write() function

the outfile.write() does not automatically add a newline

file should be closed after writing is finished or the with-keyword
used

with open('out', 'w') as outfile :
print("Header", file=outfile)
print("{0:6.3f} {0:6.3f}".format(x, y), file=outfile)

outfile = open('out_2', 'w')
outfile.write("Header\n")
outfile.write("{0:6.3f} {0:6.3f}".format(x, y))
outfile.close()

output.py

Differences between Python 2.X and 3.X

print is a function in 3.X

print "The answer is", 2*2 # 2.X
print("The answer is", 2*2) # 3.X

print >>sys.stderr, "fatal error" # 2.X
print("fatal error", file=sys.stderr) # 3.X

differences.py

Summary

files are opened and closed with open() and close()

– You can handle context using the with-statement

lines can be read by iterating over the file object

lines can be split into lists and check for existence of
specific substrings

string formatting operators can be used for obtaining
specific output

file output can be done with print or write()

Useful modules in Python standard library

math : “non-basic” mathematical operations

os : operating system services

glob : Unix-style pathname expansion

random : generate pseudorandom numbers

pickle : dump/load Python objects to/from file

time : timing information and conversions

xml.dom / xml.sax : XML parsing

json: JSON parsing

+ many more
http://docs.python.org/library/

Useful external modules

requests: HTTP request handling

BeautifulSoup: HTML parsing and scraping

Pillow: image handling

OpenCV: Computer vision (e.g. for OCR)

NUMPY

Numpy – fast array interface

Standard Python is not well suitable for numerical
computations

– lists are very flexible but also slow to process in numerical
computations

Numpy adds a new array data type

– static, multidimensional

– fast processing of arrays

– some linear algebra, random numbers

Numpy arrays

All elements of an array have the same type

Array can have multiple dimensions

The number of elements in the array is fixed, shape can
be changed

Python list vs. NumPy array

Python list NumPy array

Memory layout Memory layout

…

Creating numpy arrays

From a list:
>>> import numpy as np
>>> a = np.array((1, 2, 3, 4), float)
>>> a
array([1., 2., 3., 4.])
>>>
>>> list1 = [[1, 2, 3], [4,5,6]]
>>> mat = np.array(list1, complex)
>>> mat
array([[1.+0.j, 2.+0.j, 3.+0.j],

[4.+0.j, 5.+0.j, 6.+0.j]])
>>> mat.shape
(2, 3)
>>> mat.size
6

Creating numpy arrays

More ways for creating arrays:
>>> import numpy as np
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>>
>>> b = np.linspace(-4.5, 4.5, 5)
>>> b
array([-4.5 , -2.25, 0. , 2.25, 4.5])
>>>
>>> c = np.zeros((4, 6), float)
>>> c.shape
(4, 6)
>>>
>>> d = np.ones((2, 4))
>>> d
array([[1., 1., 1., 1.],

[1., 1., 1., 1.]])

Indexing and slicing arrays

Simple indexing:

Slicing:

>>> mat = np.array([[1, 2, 3], [4, 5, 6]])
>>> mat[0,2]
3
>>> mat[1,-2]
>>> 5

>>> a = np.arange(5)
>>> a[2:]
array([2, 3, 4])
>>> a[:-1]
array([0, 1, 2, 3])
>>> a[1:3] = -1
>>> a
array([0, -1, -1, 3, 4])

Indexing and slicing arrays

Slicing is possible over all dimensions:
>>> a = np.arange(10)
>>> a[1:7:2]
array([1, 3, 5])
>>>
>>> a = np.zeros((4, 4))
>>> a[1:3, 1:3] = 2.0
>>> a
array([[0., 0., 0., 0.],

[0., 2., 2., 0.],
[0., 2., 2., 0.],
[0., 0., 0., 0.]])

Views and copies of arrays

Simple assignment creates references to arrays

Slicing creates “views” to the arrays

Use copy() for real copying of arrays

a = np.arange(10)
b = a # reference, changing values in b changes a
b = a.copy() # true copy

c = a[1:4] # view, changing c changes elements [1:4] of a
c = a[1:4].copy() # true copy of subarray

example.py

Array operations

Most operations for numpy arrays are done element-
wise

– +, -, *, /, **

>>> a = np.array([1.0, 2.0, 3.0])
>>> b = 2.0
>>> a * b
array([2., 4., 6.])
>>> a + b
array([3., 4., 5.])
>>> a * a
array([1., 4., 9.])

Array operations

Numpy has special functions which can work with array
arguments

– sin, cos, exp, sqrt, log, ...
>>> import numpy, math
>>> a = numpy.linspace(-math.pi, math.pi, 8)
>>> a
array([-3.14159265, -2.24399475, -1.34639685, -0.44879895,

0.44879895, 1.34639685, 2.24399475, 3.14159265])
>>> numpy.sin(a)
array([-1.22464680e-16, -7.81831482e-01, -9.74927912e-01,

-4.33883739e-01, 4.33883739e-01, 9.74927912e-01,
7.81831482e-01, 1.22464680e-16])

>>>
>>> math.sin(a)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: only length-1 arrays can be converted to Python scalars

Vectorized operations

for loops in Python are slow

Use “vectorized” operations when possible

Example: difference

– for loop is ~80 times slower!

brute force using a for loop
arr = np.arange(1000)
dif = np.zeros(999, int)
for i in range(1, len(arr)):

dif[i-1] = arr[i] - arr[i-1]

vectorized operation
arr = np.arange(1000)
dif = arr[1:] - arr[:-1]

example.py
1 2 3 4 5 6 7 80 9

1 2 3 4 5 6 7 80 9

I/O with Numpy

Numpy provides functions for reading data from file and
for writing data into the files

Simple text files

– numpy.loadtxt

– numpy.savetxt

– Data in regular column layout

– Can deal with comments and different column delimiters

Linear algebra

Numpy can calculate matrix and vector products
efficiently: dot, vdot, ...

Eigenproblems: linalg.eig, linalg.eigvals, …

Linear systems and matrix inversion: linalg.solve,
linalg.inv

>>> A = np.array(((2, 1), (1, 3)))
>>> B = np.array(((-2, 4.2), (4.2, 6)))
>>> C = np.dot(A, B)
>>>
>>> b = np.array((1, 2))
>>> np.linalg.solve(C, b) # solve C x = b
array([0.04453441, 0.06882591])

Numpy performance

Matrix multiplication
C = A * B
matrix dimension 200

pure python: 5.30 s

naive C: 0.09 s

numpy.dot: 0.01 s

Summary

Numpy provides a static array data structure

Multidimensional arrays

Fast mathematical operations for arrays

Arrays can be broadcasted into same shapes

Tools for linear algebra and random numbers

SIMPLE PLOTTING WITH MATPLOTLIB

Matplotlib

2D plotting library for python

Can be used in scripts and in interactive shell

Publication quality in various hardcopy formats

“Easy things easy, hard things possible”

Some 3D functionality

Matplotlib interfaces

Simple command style functions similar to Matlab

Powerful object oriented API for full control of plotting

import matplotlib.pyplot as plt
...
plt.plot(x, y)

plot.py

Basic concepts

Figure: the main container of a plot

Axes: the “plotting” area, a figure can contain multiple
Axes

graphical objects: lines, rectangles, text

Command style functions are used for creating and
manipulating figures, axes, lines, ...

The command style interface is stateful:

– track is kept about current figure and plotting area

Simple plot

plot : create a simple plot. Figure and axes are created if
needed

import matplotlib.pyplot as plt
...
plt.plot(x, y)
plt.title(‘About as simple’)
plt.xlabel(‘time (s)’)

plot.py

Interactive vs. batch mode

In many installations batch mode is default

– Figures do not show up without show() function

– Batch mode is useful e.g. for writing out files during
simulation and for heavy rendering

Mode can be controlled as:

– ion() : turn on interactive mode

– ioff() : turn on interactive mode

IPython has more extensive support for interactive usage

– %matplotlib magic command

– Start as “ipython - -matplotlib”

Multiple subplots

subplot : create multiple axes in the figure and switch
between subplots

plt.subplot(211) #2x1 plot, use 1st
plt.plot(x, y1)
…
plt.subplot(212) #use 2nd
plt.plot(x, y2)

subplot.py

Histograms

hist : create histogram

Latex can be used with matplotlib

mu, sigma = 100, 15
x = mu + sigma*np.random.rand(1000)
plt.hist(x, 50)
#use raw strings for Latex
plt.title(r’Distribution, μ)

histogram.py

Bar and pie charts

bar : bar charts

pie : pie charts

Summary of basic functions

Simple plot: plot

Interactive vs. batch mode: ion / ioff

Hardcopies: savefig

Multiple plots: subplot

Histograms: hist

Bar charts: bar

Pie charts: pie

Switch plotting on top of existing figure: hold

Contour plots: contour, contourf

Summary

Matplotlib provides a simple command style interface for
creating publication quality figures

Interactive plotting and different output formats (.png,
.pdf, .eps)

Simple plots, multiplot figures, decorations

Possible to use Latex in text

OBJECT ORIENTED PROGRAMMING WITH PYTHON

Object oriented programming with Python

Basic concepts

Classes in Python

Inheritance

Special methods

Programming paradigms

There is no one right way to structure programs

Some ways have been found to be better than others,
especially because of

– reusability

– testability

– readability

– programmer efficiency

Multiple programming paradigms exist and Python
actually supports several

OOP concepts

Object Oriented Programming (OOP) is programming
paradigm

– data and functionality are wrapped inside of an “object”

– Objects provide methods which operate
on (the data of) the object

 Method is a function that is tied to the data of an object

Encapsulation

– User accesses objects only through methods

– Organization of data inside the object is hidden from the
user

Examples

String as an object

– Data is the contents of string

– Methods could be lower/uppercasing the string

Two dimensional vector

– Data is the x and y components

– Method could be the norm of vector

Examples

An object in a 3D game

– Data are the location of the object and it's shape, color, state,
etc.

– Methods could be interacting with the object

– Multiple objects may be parts of a larger object

A bank account in banking software

– Data are the account number, account balance and a list of
account transactions

– A transaction needs to be it's own type of object

– A likely method is recording a new transaction on an account

OOP in Python

In Python everything is an object

Example: open function returns a file object

– data includes e.g. the name of the file

– methods of the file object referred by f are f.read(),
f.readlines(), f.close(), ...

Also lists and dictionaries are objects (with some special
syntax)

Even functions are objects!

>>> f = open('foo', 'w')
>>> f.name
'foo'

OOP concepts

class

– defines the object, i.e. the data and the methods
belonging to the object

– there is only single definition for given object type

– e.g. the string-class

instance

– there can be several instances of the object

– each instance can have different data, but the methods are
the same

– e.g. string instances "example" and "foobar"

Class definition in Python

When defining class methods in Python the first argument to
method is always self

self refers to the particular instance of the class

self is not included when calling the class method

Data of the particular instance is handled with self

class Student(object):
def set_name(self, name):

self.name = name

def say_hello(self):
print(“Hello, my name is ”, self.name)

students.py

Class definition in Python

class Student(object):
def set_name(self, name):

self.name = name
def say_hello(self):

print(“Hello, my name is ”, self.name)

creating an instance of student
stu = Student()
calling a method of class
stu.set_name(‘Jussi’)
creating another instance of student
stu2 = Student()
stu2.set_name(‘Martti’)
the two instances contain different data
stu.say_hello()
stu2.say_hello()

students.py

Passing data to object

Data can be passed to an object at the point of creation by defining a special
method __init__

__init__ is always called when creating the instance

In Python, one can also refer directly to data attributes

>>> from students import Student
>>> stu1 = Student(‘Jussi’)
>>> stu2 = Student(‘Martti’)
>>> print(stu1.name, stu2.name)
’Jussi’, ’Martti’

class Student(object):
def __init__(self, name):

self.name = name
...

students.py

Python classes as data containers

classes can be used for C-struct or Fortran-Type like data
structures

instances can be used as items in e.g. lists

class Student(object):
def __init__(self, name, age):

self.name = name
self.age = age

students.py

>>> stu1 = Student('Jussi', 27)
>>> stu2 = Student('Martti', 25)
>>> student_list = [stu1, stu2]
>>> print(student_list[1].age)

Encapsulation in Python

Generally, OOP favours separation of internal data
structures and implementation from the interface

In some programming languages attributes and methods
can be defined to be accessible only from other methods
of the object.

Python does not enforce encapsulation

Leading underscore in a method or data attribute name
can be used to hint that it is not intended for external use

Inheritance

New classes can be derived from existing ones by
inheritance

The derived class “inherits” the attributes and methods
of parent

The derived class can define new methods

The derived class can override existing methods

All classes should explicitly inherit the "object" class

Inheritance - example

Suppose you are making a mobile game with multiple objects that are all
drawn in 2D  class WorldObject

WorldObjects have a location and a shape and they can move (have speed
and direction) and they can collide with other world objects, they can also
draw themselves on a display using a method draw()

You then create object types Bird and Pig, which inherit WorldObject but
are drawn differently and a Bird colliding with a Pig destroys the Pig, they
override the method collide() and draw()

Then you create multiple subclasses of Bird which perform differently

Through all this you only had to handle movement and other basic stuff
once

Inheriting classes in Python

class Student(object):
...

class PhDStudent(Student):
override __init__ but use __init__ of base class!
def __init__(self, name, age, thesis_project):

self.thesis = thesis_project
super(PhDStudent, self).__init__(self, name, age)

define a new method
def get_thesis_project(self):

return self.thesis

stu = PhDStudent(‘Pekka’, 20, ‘Theory of everything’)
use a method from the base class
stu.say_hello()
use a new method
proj = stu.get_thesis_project()

inherit.py

Multiple inheritance

In Python classes can inherit from multiple classes

Very powerful when used correctly

– Possible to create mixin classes

Method Resolution Order determines in which order the
calls to super() are processed

class Vehicle(object):
...
class Car(object):
...

class Volvo(Vehicle, Car):
...

inherit.py

Special methods

class can define methods with special names to
implement operations by special syntax (operator
overloading)

Examples

– __add__, __sub__, __mul__, __div__

– for arithmetic operations (+, -, *, /)

– __cmp__ for comparisons, e.g. sorting

– __setitem__, __getitem__ for list/dictionary like syntax
using []

Special methods

class Vector(object):
def __init__(self, x, y):

self.x = x
self.y = y

def __add__(self, other):
new_x = self.x + other.x
new_y = self.y + other.y
return Vector(new_x, new_y)

v1 = Vector(2, 4)
v2 = vector(-3, 6)
v3 = v1 + v2

special.py

class Student(object):
...
def __lt__(self, other):

return self.age < other.age

def __eq__(self, other):
return self.age == other.age

students = [Student('Jussi', 29),
Student('Aaron', 27)]

students.sort()

special.py

Exceptions

Exceptions are just classes
that inherit from Exception

Creating new exceptions is
easy, because most of the
things are handled in the
parent classes

def addition(a, b):
return a + b

try:
addition("5", 10)

except TypeError as ex:
print("Error: ", str(ex))

class BadDayException(Exception):
pass

raise BadDayException("programmer "
"is having a bad day")

exceptions.py

Summary

Objects contain both data and functionality

class is the definition of the object

instance is a particular realization of object

class can be inherited from other class(es)

Python provides a comprehensive support for object oriented
programming (“Everything is an object”)

Exceptions inherit from the base class Exception

Python is a multiparadigm programming language, you don't
have to use classes
– Most programmers know OOP so it may be the path of least

resistance to follow it in larger projects

