Jussi Enkovaara

Jyry Suvilehto

September 18-19, 2017

CSC - IT Center for Science Ltd, Finland

1mport sys, 0s

Ry,
from Bio.PDB import PDBParser
__biopython _installed = True

except ImportError:
__biopython installed = False

default B-factor

@ # default occupancy level
empty segment ID

__default_bfactor = 0.0
__default_occupancy = 1.
__default segid = "'

class EOF(Exception):
def _ init_ (self): pass

class FileCrawler:
Crawl through a file reading back and forth without loading
anything to memory.
def __init_ (self, filename):
Ry
self. fp =
exceptt TOErroRr:

open(filename)

raise ValueError, "Couldn't open file '%s' for reading." %

self.tell = self. fp .tell
self.seek = self. fp .seek
def prevline(self):
try:
self.prev()

filename

BY SA

All material (C) 2011-2017 by CSC —IT Center for Science Ltd.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Unported License,
http://creativecommons.org/licenses/by-sa/4.0

Agenda

Monday Tuesday

9:00-9:45 Introduction to Python 9.00-9.45 File I/O and string processing
9:45-10:30 Exercises 9.45-10.30 Exercises

10:30-10:45 Coffee Break 10.30-10.45 Coffee break

10:45-11:15 Control structures 10:45-11:30 NumPy and simple plotting
11:15-12:15 Exercises 11:30-12:15 Exercises

12:15-13:00 Lunch break 12.15-13.00 Lunch break

13:00-13:30 Functions and exceptions 13.00-14:00 Object oriented programming
13:30-14:30 Exercises 14:00-14:30 Exercises

14:30-14:45 Coffee Break 14.30-14.45 Coffee break

14:45-15:15 Modules 14.45-16.15 Exercises

15:15-16:15 Exercises

What is Python?

@ Modern, interpreted, object-oriented, full featured high level
programming language
@ Portable (Unix/Linux, Mac OS X, Windows)
@ Open source, intellectual property rights held by the Python
Software Foundation
@ Python versions: 2.x and 3.x
— 3.xis not backwards compatible with 2.x
— Version 2 spread so wide that adopting version 3 has been a
long struggle
— This course uses 3.x version

— It is possible and good practice to write programs compatible
with both versions

@ Development startedin

Python Essentials

1989 by Guido van Rossum
— 2.0 released in 2000, 3.0 in
2008
@ Language development
overseen by the Python

! image: Daniel Stroud
Software Foundation (PSF) CC-BY-SA 4.0

@ Most public Python
packages available in the
Python Package Index (PyPI)

@ pythonzsms,

Python language development

There should be one-- and

@ Thereis a process for new
preferably only one --obvious

language features called

way to do it.
Python Enhancement
Proposals Although that way may not be
© Guido (a Dutchman) still gzzzﬁus AL AirpSnTees ypulie

retains final say over new
features as the Benevolent

- quote from Zen of Python

Python ecosystem

@ Core Python language features and built-ins
— Always available, very robust if used correctly
@ The Python standard library

— Available in most standard installations, need to be imported to
use

— Well tested and fairly stable
— Covers a lot of basic needs, ”batteries included”
@ The Python Package Index

Dictator For Life
— A package exists for almost everything
— May contain bugs, possibly not actively maintained
— May solve your problem or sub-problem out of the box
Why Python? Why not Python?
© Fast program development @ Not energy-efficient

— Rapid prototyping and

Simple syntax

Easy to write well readable code
Large standard library

¢ ¢ ¢ ¢

Lots of third party libraries
— Numpy, Scipy, Biopython
— Matplotlib

— A factor in doing web-scale things
@ Emphasizes programmer cognitive load and development
over being close to hardware
— mitigated by libraries that interface with lower level
components
— Not possible to use on some embedded systems
Not backed by a single large commercial entity
The programmer is generally trusted, so not very suitable for
security-oriented systems
— Or security arrangements have to be made at other levels

(2

€

Information about Python

© www.python.org
@ H. P. Langtangen, “Python Scripting for Computational
Science”, Springer

@ www.scipy.org

FIRST GLIMPSE INTO PYTHON

Python basics

@ Syntax and code structure

© Datatypes and data structures
@ Control structures

@ Functions and modules

© Text processing and 10

Python program

© Typically, a .py ending is used for Python scripts, e.g.
hello.py:

print("Hello world!")

@ Scripts can be executed by the python executable:

% python hello.py
Hello world!

Interactive python interpreter

© The interactive interpreter can be started by executing
python without arguments:

$ python3
Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016, 10:47:25)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

>>> print("hello")
hello

Type "help", "copyright", "credits" or "license" for more information.

@ Useful for testing and learning

Enhanced interactive Python interpreter
@ The IPython shell is a more powerful tool for using
Python from the command line
— Autocompletion, details about objects
— We mostly use the browser version on this course

$ ipython
Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016, 10:47:25)
Type "copyright", "credits" or "license" for more information.

IPython 5.1.0 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object', use 'object??' for extra details.

In [1]: print("hello")
hello

Jupyter notebooks

@ Python environment in a web application

@ Notebook can contain progam code, explanatory text,
and visualisations

= Jupyter 1- Introduction wnsaved cnanges) L
o = Nt Tt

B+ % a8 4 v N BC . | =

First program

(surrounded by a green box). 3

~sasting. print

In [1: print(*hello world!)

Lot

Python syntax

Variable and function names
start with a letter and can
contain also numbers and
underscores, e.g “my_var”,
“my_var2”

@ Variables may also begin with
an underscore but these will

(2

example

LEEXHO)
X = x + 1 # increase X
print("increasing x")

else:
be covered later e
@ Python is case sensitive ; Er(‘:llnt"'decreasingu))("
. prin X 1S processe!
@ Code blocks are defined by 2

indentation
— ablock is started by a colon :
© Comments start with #

Python style

variable_name
function_name
ClassName

modulename.submodule or
module_name.another_module

Data types

@ Python is a dynamically Y e P e
%)

typed language x = 1.
P guag X for i in range(10):
— no type declarations for X += 1
iabl Yogghidx
variables Lo e

z s + y # Error

— easy to make typing errors
in variable names

@ Variable does have a type

— incompatible types cannot
be combined

— “In the face of ambiguity,
refuse the temptation to
guess.” -zen of python

Numeric types

Strings

@ Strings are enclosed by " or'

@ Integers o .) .
g : @ Multiline strings can be defined with three double quotes
o Floats e e — this will include newlines
© Complex numbers >>> X = 4.0 + 5.0 @ Strings inside the same parentheses will be interpreted as one
. : 3> 2.0 45 -3 string
@ Basic operatlons 4.0 :
— +and- >>> 4.6%*2 / 2.0 * (1.6 - 33) sl = "very simple string"
(8-243) s2 = 'same simple string’
- * ,/and x s3 = "this isn't so simple string"
) L.) s4 = 'is this "complex" string?’
— implicit type conversions s5 = """This is a long string
b ful with int expanding to multiple lines,
— Dbe caretul with integer so it is enclosed by three "'s."""
division ! s6 = ("This string "
"has no newlines "
"in it”)
Strings Data structures

@ +and * operators with strings:

>>> "Strings can be " + "combined"
'Strings can be combined’

>>>

>>> "Repeat! " * 3

'Repeat! Repeat! Repeat!

@ Sequence structures
— Lists
— Tuples
— Sets
— Frozen sets
— Byte arrays
@ Dictionaries

Mutable vs immutable data types

List

© Mutable data types can be © Python lists are dynamic arrays
modified after creation e.g. TUITET 2GS @ Listitems are indexed (index starts from 0)
— alistcan be added to tuple list ;
— abyte array can be edited st BEary @ Listitem can be any Python object, items can be of
— adict can be added t i
| a |cb|car(1:| e added to t —— set different type
¢ Immutable data types canno dict @ New items can be added to any place in the list
be modified, modifying them
returns a new object of the @ Items can be removed from any place of the list
same type
— The original is not changed
@ There is no ++-operator as
numeric types are immutable
Lists Lists
© Defining lists S>> my_listl = [3, “egg”, 6.2, 7] © Adding items to list >>> my_listl = [9, 8, 7, 6]
>>> my_list2 = [12, [4, 5], 13, 1] >>> my_listl.append(11)
>>> my_listl
[9558, 7 6 11]
@ Accessing list elements >>> my_listi[e] @ Accessing list elements >>> my_}%szi-insert(l:w)
3 >>> my_lis
>>> my_list2[1] [9, 16, 8;'7,/65-12}
[4, 5] >>> my_list2 = [5, 4]
>>> my_listi[-1] >>> my_listl.extend(my_list2)
7 >>> my_listl
[9, 163, 8,77,%6, 118 5, 4]
@ Modifying list items >>> my_list1[-2] = 4 @ +and * operators with >>> [1, 2, 3] + [4, 5, 6]
>>> my_listl . [1, 2, 3, 4, 5, 6]
[3, 'egg’, 4, 7] lists >>> [1, 2, 3] * 2
[1;20 3N es)]

@ Itis possible to access
slices of lists

@ Removing list items

Lists

>>> my_listl = [e, 1, 2, 3, 4, 5]
>>> my_list1[@:2]
[e, 1]

>>> my_list1[:2]
[e, 1]

>>> my_listi[3:]
[3, 4, 5]

>>> my_list1[0:6:2]
[e, 2, 4]

>>> my_listi[::-1]
[5, 4, 3, 2, 1, 0]

>>> second = my_listl.pop(2)
>>> my_listl

[o, 1, 3, 4, 5]

>>> second

Tuples

© Tuples are immutable lists

@ Tuples are indexed and
sliced like lists, but cannot
be modified

>¥>tlr=2(175725-3)

>>> t1[1] = 4

Traceback (most recent call last):
File "<stdin>", line 1, in

<module>

TypeError: 'tuple' object does not

support item assignment

Dictionaries

@ Dictionaries are associative arrays

@ Unordered list of key - value pairs

© Values are indexed by keys

@ Keys can be strings or numbers

© Value can be any Python object

Dictionaries

@ Creating dictionaries

@ Accessing values

@ Adding items

>>> grades = {'Alice' : 5, 'John’
sEay R Car) i 2)
>>> grades

{'John': 4, ‘'Alice': 5, 'Carl': 2}

>>> grades['John']
4

>>> grades['Linda‘'] = 3

>>> grades
{ ' John'i i 4, FiATices:NI56" ‘Carl 172,
‘Linda‘': 3}

>>> elements = {}
>>> elements['Fe'] = 26
>>> elements

{'Fe': 26}
Converting between basic data types Variables
@ Python has built-in s @ Python variables are S>> my_listl = [1,2,3,4]
functions % >>> my_list2 = my_listl

— type() for determining
the type of a variable
— int(), float(), str(), list(),
dict(), set(), etc. for
converting to each type
= only if possible

>>> type(x)

<class 'int'>

>>> y = str(x)

>>> type(y)

<class 'str'>

>>> type(z)

<class 'float'>

P LA

5.0

P2 P Yo S

10.0

>>> y+z

Traceback (most recent call last):
File "<stdin>", line 1, in

<module>

TypeError: Can't convert 'float'

object to str implicitly

always references
o my_listl and my_list2
are references to the
same list
— Modifying my_list2
changes also my_list1!
@ Copy can be made by
slicing the whole list

>>> my_list2[@] = @
>>> my_listl
[0, 2, 3, 4]

>>> my_list3 = my_listl[:]
>>> my_list3[-1] = 66

>>> my_listl

[e, 2, 3, 4]

>>> my_list3

[0, 2, 3, 66]

What is an object?

@ Object is a software bundle of data (=variables) and

related methods

@ Datacan be accessed directly or only via the methods

(=functions) of the object

@ In Python, everything is an object

@ Methods of object are called with the syntax:
obj.method(parameter, parameter)

@ Methods can modify the data of object or return new

objects

Summary

@ Python syntax: code blocks defined by indentation

@ Numeric and string datatypes

v Powerful basic data structures:

— Lists and dictionaries

Everything is an object in Python
© Python variables are always references to objects

CONTROL STRUCTURES

Control structures

@ if —else statements
© while loops
@ for loops

if statement

v if statement allows one to execute code block depending
on condition
@ code blocks are defined by indentation, standard practice
is to use four spaces for indentation
if x > o:
X += 1
=4 * x
numbers[2] = x
@ comparison operators: ==, I=, >, <, >=, <=
@ boolean operators: and, or, not

if statement
@ there can be multiple branches of conditions

if x == 0:
print("x is zero")
elif x < 0:
print("x is negative")
elif x > 100000:
print("x is large")
else:
print("x is something completely different")

@ Python does not have a switch statement

if statement - oddities

@ empty lists, empty strings and 0 evaluate to False for the
truth statement

X

[]

y = None

z=0

if not x :
print("x")

if not y :
print("y")

if not z :
print("z")

if statement - oddities

@ collections and sequences support the in keyword

x = "01245"
if "6" in x :
print("x contains '6'")
elif "5" < @:
print("x contains '5'")
else:
print("x is something completely different")

© operator priority can be affected with parentheses
— preferable to keep it simple

while loop

@ while loop executes a code block as long as an expression
is True

X =0

cubes = {}

cube = @

while cube < 100:
cubes[x] = cube
X += 1
cube = x**3

for loop

o for statement iterates over the items of any sequence
(e.g. list)

cars = ['Audi', 'BMW', 'Jaguar', ‘Lada’']

for car in cars:
print(“Car is ", car)

@ In each pass, the loop variable car gets assigned next
value from the sequence

— Value of loop variable can be any Python object

for loop

@ Many sequence-like Python objects support iteration
— Dictionary: “next” values are dictionary keys

prices = {'Audi' : 50, 'BMW' : 70, 'Lada' : 5}
for car in prices:
print("Car is ", car)
print("Price is ", prices[car])
— (later on: file as sequence of lines, "next” value of file
object is the next line in the file)

for loop

@ Itemsin the sequence can be lists themselves

coordinates = [[1.0, ©.0], [0.5, ©.5], [0.0, 1.0]]
for coord in coordinates:
print("X=", coord[@], "Y=", coord[1])

© Values can be assigned to multiple loop variables

for x, y in coordinates:
print("X=", x, "Y=", y)

break & continue

@ break out of the loop

X =0 sum = @
while True: for p in prices:
X += 1 sum += p
cube = x**3 if sum > 100:
if cube > 100: print "too much"
break break

@ continue with the next iteration of loop

icti H i i X = -5 sum = @
@ Dictionary method items() returns list of key-value pairs =g o
while cube < 100: if p > 100:
prices = {'Audi': 50, 'BMW' : 70, ‘Lada' : 5} X += 1 continue
for car, price in prices.items(): if x < @: sum += p
print("Price of", car, "is", price) continue
cube = x**3
range enumerate

@ Indices are not idiomatic when they can be avoided
@ sometimes they can’t be avoided
print(“counting backwards from 10 in steps of 2")

for number in range(10, 1, -2) :
print(number)

@ range expresses a range of integers with configurable
start, stop and step parameters
— Counting up from 0 with single parameter (stop)
@ In Python 3 range returns an iterator, in Python 2 a list

@ Built-in function enumerate returns tuples of index,
[item]

my_list = ["a", "b", "c", "d", "e"]
for index, str_ in enumerate(my_list):
print("index " + str(index) + " is str " + str(str_))

[

List comprehension

© useful Python idiom for creating lists from existing ones
without explicit for loops

@ creates a new list by performing operations for the
elements of list:
newlist = [op(x) for x in oldlist]

>>> numbers = range(6)

>>> squares = [x**2 for x in numbers]
>>> squares

[0, 1, 4, 9, 16, 25]

@ aconditional statement can be included

>>> odd_squares = [x**2 for x in numbers if x % 2 == 1]
>>> odd_squares
[1, 9, 25]

Functions

@ function is block of code that can be referenced from
other parts of the program

o functions have arguments
@ functions can return values
@ functions are defined using the def keyword

Function definition

def add(x, y):
result = x +y
return result

<
non
nuw
2o ®

© name of function is add
@ x andy are positional arguments
— their order matters

@ there can be any number of arguments and arguments
can be any Python objects

@ return value can be any Python object

Keyword arguments

o functions can also be called using keyword arguments

def sub(x=0, y=0):
result = x -y
return result

resl = sub(3.0, 2.0)
res2 = sub(y=3.0, x=2.0)
o keyword arguments can improve readability of code
@ keyword arguments must always be after positional
arguments
— in function definition
— in function call

@ keyword arguments don't need to be in any particular order

Keyword arguments

v it is possible to have default values for arguments

« function can then be called with varying number of
arguments

def add(x, y=1.0):
result = x +y
return result

suml = add(0.0, 2.0)
sum2 = add(3.0)

Modifying function arguments

@ as Python variables are always references, function can

modify the objects that arguments refer to

>>> def switch(mylist):
tmp = mylist[-1]
mylist[-1] = mylist[0]
mylist[@] = tmp

>>> 11 = [1,2,3,4,5]
>>> switch(11)

>>> 11

[5, 2, 3, 4, 1]

© side effects can be intentional or accidental

Exceptions

© Exceptions allow the program to handle errors and other
"unusual” situations in a flexible and clean way
@ Basic concepts:
— Raising an exception. Exception can be raised by user code
or by system
— Handling an exception. Defines what to do when an
exception is raised, typically in user code.
@ There can be different exceptions and they can be
handled by different code

exceptions in Python

v Exceptions are catched and handled by try - except
statements

my_list = [3, 4, 5]
try:
fourth = my_list[4]
except IndexError:
print("There is no fourth element")

@ User code can also raise an exception

if solver not in ['exact', 'jacobi', 'cg']:
raise RuntimeError(‘Unsupported solver’)

Exceptions and functions

© Exceptions are a way to return information other than a
return value from a function

def divide(first, second):
if second ==
raise ZeroDivisionError(“user tried to divide by zero")
return first/second

try:
first= input(“Give first number: ")
second = input(“"Give second number")
print(divide(first, second))
except ZeroDivisionError:

print(“"execution protected from user error")
except Exception:

print("unknown error occurred!")

Error vs Exception

@ Not all Exceptions are Errors
— An error means something went wrong
— There are exceptions that have other significance, e.g.
Stoplteration, KeyboardInterrupt or GeneratorExit
@ Most of the time programmers are interested in the
errors

Generator expressions

@ Itis often the case that each item of a return value can
be processed independently from the rest of the items

@ It may not be wise to create large data structures only to
immediately destroy them

@ Instead of returning a list or similar iterable, you can use
the yield keyword

@ Best used to create items one by one to be consumed
one by one

@ Sometimes the performance difference is significant

Generator expressions

@ When the next value is requested, the execution
continues from where it left off

@ The use of yield instead of return makes this a generator
function

def odd_numbers(n):
counter = @
for i in range(n):
if i %2 ==1:
yield result
counter += 1
else:
pass
print("yielded %d odd numbers" % counter)

sum(odd_numbers (10000000))

Summary

@ functions help in reusing frequently used code blocks
« functions can have positional and keyword arguments
« functions often return values

« functions (and code in general) can raise exceptions,
most common of which are errors

Modules

€

Modules are extensions that can be imported to Python to
provide additional functionality, e.g.

— new data structures and data types
— functions
Python standard library includes several modules
Third party modules can be installed via system package
manager or pip
User defined modules
— Python searches for modules
= in current working directory
= SPYTHONPATH
= relative to the python executable

€

(5

€

Importing modules / from modules

© import statement

import math
x = math.exp(3.5)

import math as m
X = m.exp(3.5)

from math import exp, pi
x = exp(3.5) + pi

from math import *
x = exp(3.5) + sqrt(pi)

exp = 6.6
from math import *
X = exp + 3.2 # Won't work,
exp is now a function

Creating modules

© it is possible to make imports from own modules

@ in fact, it is recommended to do so to give structure to
your code
— helps to write reusable code
— forces you to thing about what functionality goes where

Creating modules

v it is possible to make imports from own modules

© every .py file in the directory you are in can be imported
from

© define a function in file mymodule.py
« the function can now be imported in other .py files:

def incx(x):
return x+1

import mymodule from mymodule import incx

y = mymodule.incx(1) y = incx(1)

Module structure

@ the presence of file test.py
__init__.py creates a module project
__init__.py
module_alpha.py
module_beta.py
submodule
« Init “%py,
module_delta.py

— file can be empty
@ structure improves readability

import project.module_alpha

the "as" keyword can be helpful when names collide or if name is long
from project.module_alpha import function_alpha as alpha

from project.submodule.module_delta import function_delta

] Controlling imports (advanced)

@ To control what is imported
by "import *" you can
expose the functions you
wantin __init__.py

from alpha import first
from alpha import third

X X def first():
@ By convention functions and

variables beginning with an
underscore _ are not
imported

— This is a hint that someone

using your code shouldn't from mymodule.alpha import *

use the function/variable # first and third are defined but
second is not

def second():

def third():

Packages

@ Python code is often distributed in packages

@ Most python packages are published in the Python
Package Index (PyPl), https://pypi.python.org/pypi

@ Atool called pip can be used to install packages

$ pip install --user hypothesis
Collecting hypothesis
Downloading hypothesis-3.26.0.tar.gz (113kB)

100% | | 22KE 3.3MB/s
Requirement already satisfied: enum34 in
/Users/suvileht/Library/Python/2.7/lib/python/site-packages (from hypothesis)
Installing collected packages: hypothesis

Running setup.py install for hypothesis ... done
Successfully installed hypothesis-3.26.0
$

] pip and virtualenv

« Usually only administrators can install packages for all
system users

@ You can use the --user handle of pip to install only to
yourself

@ Often one software requires library X to be < 1.0 and
another for it to be > 1.5!

@ [tis often a good idea to isolate requirements for
different software installations

@ Atool called virtualenv is used to create virtual
environments

L] Virtualenv example

$ virtualenv example
New python executable in rpwaxammlexamemwnm
nstaling Setuptoos, pp, w

$ source example/bm/actlvate
(example) $ pip install biopython
Collecting biopython

Dow nload: thon-1.70-cp27-cp27m-macosx 10 6 intel macosx_10_9_intelmacosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_xB6_64whi(2.1v8)
100% “ MB 298K8/s.

Cblecmq nu"vy (frombiopython)
L3 o227, cp2m mcost g el ocosx 0.9 e maccsx 0.9 x86_64mecos_10.10_ elracsy 10,10, 266_64ii (4oke)
B 158K

o
Instaling colected packages:numpy, bopython
Successiuty mstated opython 170 gy 1131

(example) $ python

Python 2.7.10 (defau, Feb-7 2017, 00.08:15)
[GCC 4.2.1 Compatble Appie LLVM8.0.0 (clang 800.0.34)] on darwin
Type el “Copyright.“credis" or cense- fof more nformaton
>>> from Bio.Seq import Seq
>>>my_seq = Seq("AGTACACTGGT")
>>> print(my_seq)
AGTACACTGGT
>>>

(example) $ deactivate

Summary

@ Modules are used to structure code
@ Modules can be single files or multiple structures

@ The import keyword is used to activate code from
modules

@ The pip command is used to install packages

@ |tis recommended to isolate package installations to
virtual environments

File 1/0 and text processing

© working with files
@ reading and processing file contents
@ string formatting and writing to files

Opening and closing files

@ opening a file:
myfile = open(filename, mode)
— returns a handle to the file

>>> fp = open('example.txt', 'r')
>>>

Opening and closing files

© file can opened for
— reading: mode="r'
(flle has to eXISt) # open file for reading
_ writing' mode='w' infile = open('input.dat’, 'r‘)
(existing file is truncated) # open file for writing
outfile = open('output.dat’', 'w")
- ing: mode="a’
appendmg ode="a # open file for appending
o cIosing a fl|e appfile = open('output.dat’', 'a')
close files

— myfile.close() infile.close()

Reading from files

@ asingle line can be read from a file with the readline() -
function

>>> infile = open('inp', 'r')
>>> line = infile.readline()

@ itis often convenient to iterate over all the lines in a file

>>> infile = open('inp', 'r')
>>> for line in infile:
process lines

with

@ special syntax for letting the interpreter take care of closing
the file after use

@ ensures that file is closed, even if errors occur inside the with-
statement

@ other resources can also be accessed using a with-statement

with open('out', 'r') as infile:
for line in infile:
print(line.strip().reverse())

Processing lines

© generally, a line read from afile is just a string
© astring can be splitinto a list of strings:

>>> infile = open(‘'inp', 'r')
>>> for line in infile:
.. line = line.split()

« fields in a line can be assigned to variables and added to
e.g. lists or dictionaries

>>> for line in infile:

. line = line.split()
x, y = float(line[1]), float(line[3])
coords.append((x,y))

Processing lines

@ sometimes one wants to process only lines containing
specific tags or substrings

>>> for line in infile:
if “Force” in line:
line = line.split()
X, ¥, z = float(line[1]), float(line[2]), float(line[3])
forces.append((x,y,z))

@ other way to check for substrings:
— str.startswith(), str.endswith()

@ Python has also an extensive support for regular
expressions in re -module

String formatting

@ Output is often wanted in certain format

@ The string object has .format method for placing
variables within string

© Replacement fields surrounded by {} within the string

55> X, y = 1.6666, 2.33333

print("X is {0} and Y is {1}".format(x, y))

X is 1.6666 and Y is 2.3333

>>> print("Y is {1} and X is {@}".format(x, y))
Y is 2.3333 and X is 1.6666

@ Possible to use also keywords:

>>> print("Y is {val_y} and X is {val_x}".format(val_x=x, val_y=y))
Y is 2.3333 and X is 1.6666

String formatting

@ Presentation of field can be specified with {i:[w][.p][t]}
w is optional minimum width
.p gives optional precision (=number of decimals)
t isthe presentation type

@ some presentation types
s string (normally omitted)
d integer decimal
f floating point decimal
e floating point exponential

>>> print("X is {0:6.3f} and Y is {1:6.2f}".format(x, y))
X is 1.667 and Y is 2.33

String formatting - old style

@ Python also has an older style of string formatting,
which is still valid but not recommended

@ printf-style syntax
@ Mentioned so you'll recognize it if you see it

>>> var = X is %d and Y is %s" % (5, "foo")
>>> print(var)
X is 5 and Y is foo

Writing to a file

data can be written to a file with print statements
file objects have also a write() function
the outfile.write()does not automatically add a newline

file should be closed after writing is finished or the with-keyword
used

¢ ¢ ¢ ¢

with open('out', 'w') as outfile :
print("Header", file=outfile)
print("{0:6.3f} {0:6.3f}".format(x, y), file=outfile)

outfile = open(‘'out_2', 'w')
outfile.write("Header\n")
outfile.write("{0:6.3f} {0:6.3f}".format(x, y))
outfile.close()

Differences between Python 2.X and 3.X

@ print is a function in 3.X

print “The answer is", 2*2 # 2.X
print("The answer is", 2*2) # 3.X

print >>sys.stderr, "fatal error" # 2.X
print("fatal error", file=sys.stderr) # 3.X

Summary

o files are opened and closed with open() and close()
— You can handle context using the with-statement

@ lines can be read by iterating over the file object

@ lines can be split into lists and check for existence of
specific substrings

@ string formatting operators can be used for obtaining
specific output

o file output can be done with print or write()

Useful modules in Python standard library

@ math : “non-basic” mathematical operations
@ 0s : operating system services
@ glob : Unix-style pathname expansion
@ random : generate pseudorandom numbers
@ pickle : dump/load Python objects to/from file
@ time : timing information and conversions
@ xml.dom / xml.sax : XML parsing
@ json: JSON parsing
@ +many more
http://docs.python.org/library/

Useful external modules

© requests: HTTP request handling

@ BeautifulSoup: HTML parsing and scraping
© Pillow: image handling

@ OpenCV: Computer vision (e.g. for OCR)

S-
a.
=
-
2

Numpy - fast array interface

@ Standard Python is not well suitable for numerical
computations

— lists are very flexible but also slow to process in numerical
computations

@ Numpy adds a new array data type
— static, multidimensional
— fast processing of arrays
— some linear algebra, random numbers

Numpy arrays

« All elements of an array have the same type
@ Array can have multiple dimensions

@ The number of elements in the array is fixed, shape can
be changed

Python list vs. NumPy array

Python list

-

Memory layout

NumPy array

Memory layout

[T W [7T |

Creating numpy arrays

@ From a list:

>>> import numpy as np

>>> a = np.array((1, 2, 3, 4), float)

>>> a

array([1., 2., 3., 4.])

>>>

>>> listl = [[1, 2, 3], [4,5,6]]

>>> mat = np.array(listl, complex)

>>> mat

array([[1.+0.j, 2.+0.3j, 3.+0.j],
[4.+40.j, 5.+0.j, 6.+0.3]])

>>> mat.shape

(2, 3)

>>> mat.size

6

Creating numpy arrays

© More ways for creating arrays:

>>> import numpy as np
>>> a = np.arange(10)
>>> a
array([e, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>>
>>> b = np.linspace(-4.5, 4.5, 5)
>>> b
array([-4.5 , -2.25, ©. , 2.25, 4.5 1])
>>>
>>> ¢ = np.zeros((4, 6), float)
>>> c.shape
(4, 6)
>>>
>>> d = np.ones((2, 4))
>>> d
array([[1., 1., 1., 1.],
1., 1., 1., 1.]1])

Indexing and slicing arrays

© Simple indexing:

>>> mat = np.array([[1, 2, 3], [4, 5, 6]])
>>> mat[e,2]

3
>>> mat[1,-2]
>>> 5

@ Slicing:

>>> a = np.arange(5)

>>> af2:]

array([2, 3, 4])

>>> af:-1]

array([0, 1, 2, 3])

>>> af[1:3] = -1

>>> a

array([0, -1, -1, 3, 4])

Indexing and slicing arrays

@ Slicing is possible over all dimensions:

>>> a = np.arange(10)
>>> a[1:7:2]

array([1, 3, 5])

>>>

>>> a = np.zeros((4, 4))
>>> a[1:3, 1:3] = 2.0
>>> a
array([[o.
0.
0.
0.

>
>
>
>

ONN®

>
B
>
>

ONN O

>
>
>
>

[
[
[

Views and copies of arrays

@ Simple assignment creates references to arrays
@ Slicing creates “views” to the arrays
@ Use copy() for real copying of arrays

a = np.arange(10)
b =a # reference, changing values in b changes a
b = a.copy() # true copy
a[1:4] # view, changing c changes elements [1:4] of a

o)
non

a[1:4].copy() # true copy of subarray

Array operations

@ Most operations for numpy arrays are done element-
wise

=5

np.array([1.0, 2.0, 3.0])
.0

, 4., 6.])
array([3., 4., 5.])
>>> a *
array([

v
v
v
o
+
PO WONON

, 4., 9.1)

Array operations

@ Numpy has special functions which can work with array
arguments
— sin, cos, exp, sqrt, log, ...

>>> import numpy, math

>>> a = numpy.linspace(-math.pi, math.pi, 8)

>>> a

array([-3.14159265, -2.24399475, -1.34639685, -0.44879895,
0.44879895, 1.34639685, 2.24399475, 3.14159265])

>>> numpy.sin(a)

array([-1.22464680e-16, -7.81831482e-01, -9.74927912e-01,
-4.33883739e-01, 4.33883739e-01, 9.74927912e-01,
7.81831482e-01, 1.22464680e-16])

>>>

>>> math.sin(a)

Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: only length-1 arrays can be converted to Python scalars

Vectorized operations

@ for loops in Python are slow
@ Use “vectorized” operations when possible
@ Example: difference

0]1 2 34567 809

brute force using a for loop O 25 1211 131 [43 150 el 7. 8
arr = np.arange(1000)
dif = np.zeros(999, int)
for i in range(1, len(arr)):
dif[i-1] = arr[i] - arr[i-1]
vectorized operation
arr = np.arange(1000)
dif = arr[1:] - arr[:-1]

— for loop is ~80 times slower!

1/0 with Numpy

« Numpy provides functions for reading data from file and
for writing data into the files
@ Simple text files
— numpy.loadtxt
— numpy.savetxt
— Datain regular column layout
— Can deal with comments and different column delimiters

Linear algebra

© Numpy can calculate matrix and vector products
efficiently: dot, vdot, ...

© Eigenproblems: linalg.eig, linalg.eigvals, ...
@ Linear systems and matrix inversion: linalg.solve,

linalg.inv
>>> A = np.array(((2, 1), (1, 3)))
>>> B = np.array(((-2, 4.2), (4.2, 6)))
>>> C = np.dot(A, B)

>>>
>>> b = np.array((1, 2))

>>> np.linalg.solve(C, b) # solve C x = b
array([©.04453441, ©.06882591])

Numpy performance

[

Matrix multiplication
C=A*B
matrix dimension 200

(4

pure python: 5.30s
naive C: 0.09s
numpy.dot: 0.01s

¢

(4

Summary

@ Numpy provides a staticarray data structure
@ Multidimensional arrays

@ Fast mathematical operations for arrays

@ Arrays can be broadcasted into same shapes
@ Tools for linear algebra and random numbers

SIMPLE PLOTTING WITH MATPLOTLIB

Matplotlib

© 2D plotting library for python

@ Can be used in scripts and in interactive shell

© Publication quality in various hardcopy formats
© “Easy things easy, hard things possible”

© Some 3D functionality

Matplotlib interfaces
@ Simple command style functions similar to Matlab

import matplotlib.pyplot as plt

;.)i'.c.plot(x, y)

@ Powerful object oriented API for full control of plotting

Basic concepts

© Figure: the main container of a plot

o Axes: the “plotting” area, a figure can contain multiple
Axes

@ graphical objects: lines, rectangles, text

@ Command style functions are used for creating and
manipulating figures, axes, lines, ...

@ The command style interface is stateful:
— track is kept about current figure and plotting area

Simple plot

About as simple as it gets, folks

os import matplotlib.pyplot as plt

[;i{?.plot()(, y)
plt.title(“About as simple’)
plt.xlabel(“time (s)’)

voltage (mV)
o
°

185 0.5 1.0 15 2.0
time (s)

@ plot : create a simple plot. Figure and axes are created if
needed

Interactive vs. batch mode

@ In many installations batch mode is default
— Figures do not show up without show() function

— Batch mode is useful e.g. for writing out files during
simulation and for heavy rendering

@ Mode can be controlled as:
— ion() : turn on interactive mode
— ioff() : turn on interactive mode
@ |Python has more extensive support for interactive usage
— %matplotlib magic command
— Start as “ipython - -matplotlib”

Multiple subplots

A tale of 2 subplots

plt.subplot(211) #2x1 plot, use 1st
oo plt.plot(x, y1)

Damped oscillation

= ©00000000M

o modioNbPO®O
e
* .
o
;

;lt.subplot(212) #use 2nd

© ! 2 3 4 plt.plot(x, y2)
g o3\ VN
£ ool % / % /
2
g o \/ \/ |
195 0.5 10 15 2.0

time (s)

@ subplot : create multiple axes in the figure and switch
between subplots

Histograms

Histogram of IQ: 4 =100, o ~15
0.030

0.025

mu, sigma = 100, 15

X = mu + sigma*np.random.rand(1000)
plt.hist(x, 50)

#use raw strings for Latex
plt.title(r’Distribution, μ)

0.020

3 0015

uuauiny

0.010

0.005

0-0005 60 80 100 120 140 160
Smarts

@ hist : create histogram
@ Latex can be used with matplotlib

Bar and pie charts

Raining Hogs and Dogs)
Hogs

Scores by group and gender

© bar : bar charts
@ pie : pie charts

Summary of basic functions Summary

Simple plot: plot @ Matplotlib provides a simple command style interface for

Interactive vs. batch mode: ion / ioff creating publication quality figures

Hardcopies: savefig © Interactive plotting and different output formats (.png,
.pdf, .eps)

Multiple plots: subplot

Histograms: hist @ Simple plots, multiplot figures, decorations

Bar charts: bar @ Possible to use Latexin text

Pie charts: pie

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

Switch plotting on top of existing figure: hold
@ Contour plots: contour, contourf

OBJECT ORIENTED PROGRAMMING WITH PYTHON

Object oriented programming with Python

@ Basic concepts
© Classesin Python
@ Inheritance

© Special methods

Programming paradigms

© There is no one right way to structure programs

@ Some ways have been found to be better than others,
especially because of
— reusability
— testability
— readability
— programmer efficiency

@ Multiple programming paradigms exist and Python
actually supports several

OOP concepts

@ Object Oriented Programming (OOP) is programming
paradigm
— data and functionality are wrapped inside of an “object”

— Objects provide methods which operate
on (the data of) the object

= Method is a function that is tied to the data of an object
@ Encapsulation
— User accesses objects only through methods

— Organization of data inside the object is hidden from the
user

Examples

@ String as an object

— Datais the contents of string

— Methods could be lower/uppercasing the string
@ Two dimensional vector

— Dataiis the x and y components

— Method could be the norm of vector

Examples

@ An object in a 3D game

— Data are the location of the object and it's shape, color, state,
etc.

— Methods could be interacting with the object
— Multiple objects may be parts of a larger object
@ A bank account in banking software

— Data are the account number, account balance and a list of
account transactions

— A transaction needs to be it's own type of object
— A likely method is recording a new transaction on an account

OOP in Python

@ In Python everything is an object
@ Example: open function returns a file object
— dataincludes e.g. the name of the file

>>> f = open('foo', 'w')
>>> f.name
‘foo'

— methods of the file object referred by f are f.read(),
f.readlines(), f.close(), ...

@ Also lists and dictionaries are objects (with some special
syntax)

@ Even functions are objects!

OOP concepts

@ class

— defines the object, i.e. the data and the methods
belonging to the object

— there is only single definition for given object type
— e.g. the string-class

@ instance
— there can be several instances of the object

— each instance can have different data, but the methods are
the same

— e.g. string instances "example" and "foobar"

Class definition in Python

@ When defining class methods in Python the first argument to

method is always self

o self refers to the particular instance of the class
o self is not included when calling the class method
@ Data of the particular instance is handled with self

class Student(object):
def set_name(self, name):
self.name = name

def say_hello(self):
print(“Hello, my name is ”, self.name)

Class definition in Python

class Student(object):
def set_name(self, name):
self.name = name
def say_hello(self):
print(“Hello, my name is ”, self.name)

creating an instance of student

stu = Student()

calling a method of class
stu.set_name(“Jussi’)

creating another instance of student
stu2 = Student()

stu2.set_name(‘Martti’)

the two instances contain different data
stu.say_hello()

stu2.say_hello()

Passing data to object

@ Datacan be passed to an object at the point of creation by defining a special
method __init__
@ __init__is alwayscalled when creating the instance

class Student(object):
def __init__(self, name):
self.name = name

@ In Python, one can also refer directly to data attributes

>>> from students import Student
>>> stul = Student(‘Jussi’)

>>> stu2 = Student(‘Martti’)

>>> print(stul.name, stu2.name)
?Jussi’, ’Martti’

Python classes as data containers

@ classes can be used for C-struct or Fortran-Type like data
structures
class Student(object):
def __init__(self, name, age):

self.name = name
self.age = age

@ instances can be used as items in e.g. lists

>>> stul = Student('Jussi', 27)
>>> stu2 = Student('Martti', 25)
>>> student_list = [stul, stu2]
>>> print(student_list[1].age)

Encapsulation in Python

(¥

Generally, OOP favours separation of internal data

structures and implementation from the interface

@ In some programming languages attributes and methods
can be defined to be accessible only from other methods
of the object.

@ Python does not enforce encapsulation

@ Leading underscore in a method or data attribute name

can be used to hint that it is not intended for external use

Inheritance

@ New classes can be derived from existing ones by
inheritance

@ The derived class “inherits” the attributes and methods
of parent

@ The derived class can define new methods
@ The derived class can override existing methods
@ All classes should explicitly inherit the "object" class

Inheritance - example

@ Suppose you are making a mobile game with multiple objects that are all
drawn in 2D > class WorldObject

@ WorldObjects have a location and a shape and they can move (have speed
and direction) and they can collide with other world objects, they can also
draw themselves on a display using a method draw()

@ You then create object types Bird and Pig, which inherit WorldObject but
are drawn differently and a Bird colliding with a Pig destroys the Pig, they
override the method collide() and draw()

@ Then you create multiple subclasses of Bird which perform differently

@ Through all this you only had to handle movement and other basic stuff
once

L] Inheriting classes in Python
class Student(object):

class PhDStudent(Student):
override __init__ but use __init__ of base class!
def __init__(self, name, age, thesis_project):
self.thesis = thesis_project
super(PhDStudent, self).__init__(self, name, age)

define a new method
def get_thesis_project(self):
return self.thesis

stu = PhDStudent(‘Pekka’, 20, ‘Theory of everything’)
use a method from the base class

stu.say_hello()

use a new method

proj = stu.get_thesis_project()

cCCx Multiple inheritance

@ In Python classes can inherit from multiple classes
@ Very powerful when used correctly
— Possible to create mixin classes

@ Method Resolution Order determines in which order the
calls to super() are processed
class Vehicle(object):

class Car(object):

class Volvo(Vehicle, Car):

L] Special methods

@ class can define methods with special names to
implement operations by special syntax (operator

overloading)

B

Special methods

class Vector(object):
def __init_ (self, x, y):

self.x = x
self.y =y

def __add__(self, other):

class Student(object):

def __1t_ (self, other):
return self.age < other.age

def __eq_ (self, other):

v Examples new_x = self.x + other.x return self.age == other.age
new_y = self.y + other.y
— add , sub , mul 3 div return Vector(new_x, new_y)
. . . * 1 = Vector(2, 4 students = [Student('Jussi', 29),
— for arithmetic operations (+, -, *, /) v o vZEt::E-B, g) ; Student('Aaron’, 27)]
— __cmp__for comparisons, e.g. sorting B = Vi & studehis g
— _ setitem__,__getitem__ for list/dictionary like syntax
using []
Exceptions Summary
@ Exceptions are just classes def atidition(a)b b): @ Objects contain both data and functionality
return a +
that inherit from Exception o class is the definition of the object
try:
@ Creating new exceptions is addition("s", 10) @ instanceis a particular realization of object
except TypeError as ex: . .
easy, because most of the BrinE e R et ()] © class can be inherited from other class(es)
things are handled in the @ Python provides a comprehensive support for object oriented
parent classes class BadDayException(Exception): programming (“Everything is an object”)
pass L . 3
@ Exceptionsinherit from the base class Exception
raise BadDayException("programmer " . . . o f
@ Python is a multiparadigm programming language, you don't

"is having a bad day")

have to use classes

— Most programmers know OOP so it may be the path of least
resistance to follow it in larger projects

