
Advanced	Linux:	Exercises	 		 1/6	

Advanced	Linux:	Exercises	
In	these	instructions	the	first	character	“$”	in	the	command	examples	should	not	be	typed,	but	it	
denotes	the	command	prompt.	

Some	command	lines	are	too	long	to	fit	a	line	in	printed	form.	These	are	indicated	by	a	backslash	“\”	at	
the	end	of	line.	It	should	not	be	included	when	typing	in	the	command.	For	example	

$ example command \
continues \
and continues

Should	be	typed	in	as:	

example command continues and continues

0	Download	and	unpack	the	exercise	files	(do	that	first	time	only):	
Go	to	the	workshop	home	page	(www.csc.fi	->	click	at	the	workshop	name	link	at	the	right	column,	scroll	
down	and	download	the	tar	archive	from	the	link,	save	as	…)	

Open	a	terminal,	cd	to	the	folder	where	you	downloaded	the	archive,	unzip	and	untar	the	file:	

$ tar xzvf advanced_linux-exercise.tar.gz

The	v	(verbose)	flag	in	the	tar	command	shows	the	files	with	the	path	that	are	untarred.	You	see	that	
you'll	get	a	number	of	files	in	a	subdirectory	named	linux-exercises.	Go	to	that	directory	with	the	cd	
command.	

1	Find	shell	scripts	
Metadata:	commands	in	this	exercise:	file,	grep,	wc	

Metadata:	Demonstrate	the	usage	of	pipes	in	simple	tasks	like	finding	the	number	of	certain	files	in	a	
directory.	

1)	How	many	shell	script	files	there	are	in	/usr/bin	directory?	

There	are	quite	a	bunch	of	files	in	/usr/bin,	but	which	of	those	files	are	actually	shell	scripts?	To	find	out	
which	type	a	file	is,	you	will	need	the	file	command,	which	quite	accurately	will	tell	you	what	is	inside	
a	particular	file.	

2	Writing	a	conversion	script	
Metadata:	commands	in	this	exercise:	cp,	convert,	tar,	animate.	

Advanced	Linux:	Exercises	 		 2/6	

Metadata:	The	aim	is	to	present	a	scripting	solution	of	systematically	manipulating	a	large	set	of	
similarly	named	files	

0)	Unpack	the	jpegs.tar		file	

$ cd FileRename
$ tar xvf jpegs.tar

1)	Find	out	what	directories	and	files	were	created	

$ ls *.jpg

You	find	out	that	the	naming	is	numbered,	but	the	numbering	is	not	in	order.	Hence,	if	you	produce	an	
animated	gif	from	this	bunch	of	files	using	the	ImageMagik	command	convert:	

$ convert –delay 30 –loop 2 *.jpg animation_small.gif

you	will	get	strange	resulst,	as	the	input	jpeg’s	are	ordered	by	the	first	digit,	i.e.		{0,	10,	11,	…,	19,	1,	20,	
21,	…,	29,	2,	30,	…,	50,	5,	6,	7,	8,	9}	

$ animate animation_small.gif

2)	Resize	and	convert	files	

This	means	we	want	to	add	a	heading	0	to	the	single-digit	numbers	to	produce	the	correct	order	
{00,01,02,03,…,09,10,11,…,50}.	Doing	that	by	hand	would	be	tedious,	as	one	would	have	to	make	10	
shell	commands	similar	to	that	on	

$ mv 0_singleframe_small.jpg 00_singleframe_small.jpg

Additionally,	we	also	can	resize	the	output	using	the	ImageMagik	command	convert.	In	a	combined	way	
that	would	read	for	single	digit	numbers	(0-9,	here	using	0):	

$ convert –resize 200% 0_singleframe_small.jpg 00_singleframe_large.jpg

as	well	as	for	double	digit	numbers	(10-50,	here	using	10):	

$ convert –resize 200% 10_singleframe_small.jpg 10_singleframe_large.jpg

which	would	force	us	to	give	51	shell	commands.	But	we	can	use	the	power	of	loops	within	bash!	You	
need	to	embed	the	commands	using	a	variable	for	the	counter	within	two	loops,	one	from	0	to	9	and	
one	from	10	to	50.	Use	the	following	syntax	as	a	starting	point	and	morph	in	the	commands	above:	

$ for i in {0..9}; do ls ${i}_singleframe_small.jpg;\
echo "converting to 0${i}_singleframe_small.jpg"; done

You	can	(later	on!!)	look	up	the	solution	in	convert.sh.	

Advanced	Linux:	Exercises	 		 3/6	

3	Creating	a	simple	cryptography	function	
Metadata:	command	in	this	exercise:	cat,	tr	

Metadata:	The	aim	is	to	create	a	shell	function,	which	can	be	used	to	crypt	and	decrypt	text	from	both	
the	standard	input	and	files	passed	as	command	line	arguments.	

Metadata:	ROT13	("rotate	by	13	places",	sometimes	hyphenated	ROT-13)	is	a	simple	letter	substitution	
cipher	that	replaces	a	letter	with	the	letter	13	letters	after	it	in	the	alphabet.	ROT13	is	a	special	case	of	
the	Caesar	cipher,	developed	in	ancient	Rome.	The	algorithm	provides	virtually	no	cryptographic	
security,	and	is	often	cited	as	a	canonical	example	of	weak	encryption.	(Wikipedia)	

1	Implement	the	crypto	algorithm	

The	tr	command	is	handy	for	translating	or	deleting	characters	from	the	input	stream.	You	provide	
set1	to	be	translated	as	the	first	argument	to	the	command	and		set2	for	the	translation	table	as	the	
second	argument:	

$ echo “Make it right for once and for all” | tr [A-Za-z0-9] [N-ZA-Mn-za-m3-
90-2]

Here	we	specify	that	all	letters	A-Z	will	be	translated	so	that	the	first	13	letters	(A-M)	will	become	N-Z	
and	the	rest	(N-Z)	will	become	A-M.	Thus,	letter	A	becomes	N,	letter	B	becomes	O	and	so	on.	Similar	
rules	will	be	applied	for	letters	a-z	and	for	numbers	0-9.	Since	there	are	26	letters	in	the	(English)	
alphabet,	the	same	algorithm	will	also	work	for	de-ciphering	–	you	can	try	it	out	by	entering	the	
ciphered	text	for	the	tr	command	again.	

2	Make	it	a	shell	function	

In	order	to	avoid	typing	the	long	tr	command	over	and	over	again,	try	making	it	a	function	so	that	one	
could	simply	type:	

$ echo “Make it right for once and for all” | rot13

3.	Improve	the	function	so	that	it	can	read	files,	too	

The	function	now	reads	its	input	only	from	standard	input.	Modify	the	function	so	that	one	can	pass	
file(s)	to	crypt	as	argument(s)	to	the	function,	as	follows:	

$ rot13 crypt_input1 crypt_input2

(Note:	tr	does	only	read	from	stdin	so	you	need	to	feed	the	files	e.g.	with	cat	command	through	a	
pipe.)	

4.	Improve	further	so	that	the	function	work	both	for	stdin	and	for	files	

Advanced	Linux:	Exercises	 		 4/6	

If	there	are	arguments	to	the	function,	then	it	should	read	input	from	the	file(s),	otherwise	it	should	use	
the	standard	input	as	a	source.	

$ rot13 <<< “Make it right once and for all”
$ rot13 crypt_input1 crypt_input2

Hint:	check	first	if	there	are	any	arguments	by	checking	$1.	Other	variables	you	need	are	$@	and	$*.	

The	solutions	to	each	step	(2..4)	can	be	found	from	the	files	Solution(2..4),	respectfully.	

4	Geographic	data	manipulation	
Metadata:	command	in	this	exercise:	wc,	head,	tail,	cat,	sort,	
gnuplot,	pipes	

Metadata:	The	aim	is	to	create	use	shell	text	utilities	to	find	certain	values	
in	a	dataset.	

We	will	use	the	dataset	from	NSDIC	that	is	https://nsidc.org/data/NSIDC-
0119/versions/1	and	systematically	investigate	some	properties	(max	
elevation,	ice	thickness)	using	UNIX	tools,	only.	The	area	(should	you	be	
interested)	we	investigate	is	part	of	the	Antarctic	ice	sheet	(see	picture	right),	called	Marie	Bird	Land.	If	
you	want	to	further	use	the	data	in	any	way,	please	check	the	NSDIC	web	services	for	their	conditions.	
Data	could	be	downloaded	using	the	command	(just	as	an	example.	DON’T	DO	THAT!	–	we	do	not	want	
to	blow	up	our	and	NSDIC’s	network).	

$ wget ftp://sidads.colorado.edu/pub/DATASETS/AGDC/luyendyk_nsidc_0119/*

INSTEAD	untar-gzip	the	provided	file:	

$ tar xvzf luyendyk_nsidc_0119.tgz

Now	we	have	two	ASCII	files:	

$ ls -l *.txt
-rwxrwxrwx 1 root root 170M Mar 9 2004 srfelev.txt
-rwxrwxrwx 1 root root 114M Mar 9 2004 icethick.txt

They	are	large.	Check	the	number	of	entries	(=	number	of	lines)	using	the	wc	command.	We	just	want	to	
work	with	a	smaller	sub-set	of	the	data.	Hence	we	reduce	the	size	to	the	first	10000	lines,	only.	

$ head –n 10000 srfelev.txt > srfelev_reduced.txt
$ head –n 10000 icethick.txt > icethick_reduced.txt

The	problem	now	is,	that	we	do	not	have	a	consistent	dataset	at	places	(see	gnuplot	script)	

$ gnuplot showdata1.gp

Advanced	Linux:	Exercises	 		 5/6	

If	nothing	shows,	you	might	have	to	install	the	X11	version	of	gnuplot,	which	is	done	with	

$ sudo apt-get install gnuplot-X11

(just	answer	“Y”	if	asked	to	download	the	packages	and	install).	

	

Hence	we	would	like	to	reduce	the	range	of	both	datasets	to	be	confined	within	-79.6	and	-79.2	degrees	
(southern	latitude).	Let’s	inquire	the	position	within	the	file	for	the	lower	bound:	

$ cat -n srfelev_reduced.txt |grep "79.6000"

Output:	

 2879 -79.600072 -144.39008 360.9 1137.4 1998 358 10256.30 RTZ8/32\
Wy-Y11a

And	the	same	for	ice	thickness:	

$ cat -n icethick_reduced.txt |grep "79.6000"
 1962 -79.600072 -144.39008 681.5 1998 358 10256.30 RTZ8/32\
 Wy-Y11a

So,	we	have	to	use	the	last		(10000	–	2879)	=	7121	and	(10000	–	1962)	=	8038	entries.	

$ tail -n 7121 srfelev_reduced.txt > srfelev_reduced2.txt
$ tail -n 8038 icethick_reduced.txt > icethick_reduced2.txt
$ gnuplot showdata2.gp

Now,	the	same	for	the	upper	bound	of	-79.2	degrees:	

$ cat -n srfelev_reduced2.txt |grep "79.2000"
 5892 -79.200076 -147.74868 …
$ cat -n icethick_reduced2.txt |grep "79.2000"
 5739 -79.200076 -147.74868 …

Advanced	Linux:	Exercises	 		 6/6	

But	now	we	need	the	heading	lines,	not	the	trailing	and	spare	us	the	math!

$ head -n 5892 srfelev_reduced2.txt > srfelev_reduced3.txt
$ head -n 5739 icethick_reduced2.txt > icethick_reduced3.txt
$ gnuplot showdata3.gp

NB.:	from	the	deviation	of	these	two	figures	you	can	already	tell	that	you	still	have	153	missing	ice	
thickness	entries.	

Let’s	sort	the	lines	according	to	the	thickest	ice	and	the	highest	elevation	and	extract	the	100	maximum	
values	

$ sort -n -k3 -r srfelev_reduced3.txt|head -n 100 > srfelev_max.txt
$ sort -n -k3 -r icethick_reduced3.txt|head -n 100 > icethick_max.txt

Let’s	check	how	max	ice	thickness	and	elevation	correlate	in	their	positions	(they	don’t)	

$ gnuplot showdata4.gp

	

Give	the	exact	value	of	maximum	thickness	and	elevation.	

Do	the	same	for	minimum	values	and	check	this	correlation.	

