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Understanding data analysis - why?

• Bioinformaticians might not always be available when needed

• Biologists know their own experiments best

oBiology involved (e.g. genes, pathways, etc)

oPotential batch effects etc

• Allows you to design experiments better less money wasted

• Allows you to discuss more easily with bioinformaticians
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What will I learn?

• How to operate the Chipster software

• Analysis of single cell RNA-seq data

o Central concepts

o Analysis steps

o File formats

• Exercises

o DropSeq data preprocessing (from raw reads to expression values)

o Clustering analysis of 10X Genomics data with Seurat tools
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Introduction to Chipster



• Provides an easy access to over 360 analysis tools

o Command line tools

o R/Bioconductor packages

• Free, open source software

• What can I do with Chipster?

o analyze and integrate high-throughput data

o visualize data efficiently

o share analysis sessions

o save and share automatic workflows

Chipster



Technical aspects

• Client-server system

o Enough CPU and memory for large analysis jobs
oCentralized maintenance 

• Easy to install

oClient uses Java Web Start
o Server available as a virtual machine







Mode of operation
Select: data  tool category  tool  run  visualize



Job manager

• You can run many analysis jobs at the same time

• Use Job manager to:

o view status

o cancel jobs

o view time

o view parameters



Analysis history is saved automatically 
-you can add tool source code to reports if needed



Analysis sessions

• Remember to save the analysis session. 

oSession includes all the files, their relationships and metadata (what tool and parameters were 
used to produce each file).

oSession is a single .zip file. 

• You can save a session locally (on your computer)

• and in the cloud

obut note that the cloud sessions are not stored forever!



Workflow panel

• Shows the relationships of the files

• You can move the boxes around, and zoom in and out.

• Several files can be selected by keeping the Ctrl key down

• Right clicking on the data file allows you to 

o Save an individual result file (”Export”)  

oDelete

o Link to another data file

o Save workflow



Workflow – reusing and sharing your analysis pipeline

• You can save your analysis steps as a reusable automatic ”macro”

oall the analysis steps and their parameters are saved as a script file

oyou can apply workflow to another dataset

oyou can share workflows with other users



Saving and using workflows

• Select the starting point for your workflow

• Select ”Workflow / Save starting from selected”

• Save the workflow file on your computer with a 

meaningful name

oDon’t change the ending (.bsh)!

• To run a workflow, select

oWorkflow -> Open and run

oWorkflow -> Run recent (if you saved the workflow 
recently). 



Analysis tool overview

• 160 NGS tools for

RNA-seq

single cell RNA-seq

small RNA-seq

exome/genome-seq

ChIP-seq

FAIRE/DNase-seq

CNA-seq

Metagenomics (16S rRNA)

• 140 microarray tools for

gene expression

miRNA expression

protein expression

aCGH

SNP

integration of different data

• 60 tools for sequence analysis

BLAST, EMBOSS, MAFFT

Phylip



Visualizing the data

• Data visualization panel

o Maximize and redraw for better viewing

o Detach = open in a separate window, allows you to view several images at the same time

• Two types of visualizations

1. Interactive visualizations produced by the client program

o Select the visualization method from the pulldown menu

o Save by right clicking on the image

2. Static images produced by analysis tools

o Select from Analysis tools / Visualisation

o View by double clicking on the image file

o Save by right clicking on the file name and choosing ”Export”



Interactive visualizations by the client
• Genome browser

• Spreadsheet

• Histogram

• Venn diagram

• Scatterplot

• 3D scatterplot

• Volcano plot

• Expression profiles

• Clustered profiles

• Hierarchical clustering

• SOM clustering

Available actions:

• Select genes and create a gene list

• Change titles, colors etc

• Zoom in/out



Static images produced by R/Bioconductor

• Dispersion plot

• MA plot

• MDS plot

• Box plot

• Histogram

• Heatmap

• tSNE plot

• Violin plot

• PCA plot

• Dendrogram

• K-means clustering

• SOM-clustering

• Etc…



Options for importing data to Chipster

• Import files/ Import folder

• Import from URL

oUtilities / Download file from URL directly to server

• Open an analysis session

oFiles / Open session

• Import from SRA database

oUtilities / Retrieve FASTQ or BAM files from SRA

• Import from Ensembl database

oUtilities / Retrieve data for a given organism in Ensembl

• What kind of RNA-seq data files can I use in Chipster?

oCompressed files (.gz) and tar packages (.tar) are ok

oFASTQ, BAM, read count files (.tsv), GTF



Problems? Send us a support request 
-request includes the error message and link to analysis session (optional)



Chipster Web version



More info

• chipster@csc.fi

• http://chipster.csc.fi

• Chipster tutorials in YouTube



Acknowledgements to Chipster users and contibutors



Introduction to single cell RNA-seq



Single cell RNA-seq

• New technology, data analysis methods are actively developed

• Measures distribution of expression levels for each gene across a population of cells

• Allows to study cell-specific changes in transciptome

• Applications

o Identifying cell sub-populations within a biological condition

oStudying dynamic processes like differentiation using pseudotime ordering

o Swithces

oBranch points

oTranscriptional regulatory networks

• Datasets range from 102 to 105 cells
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Single cell RNA-seq technology

• Protocols:

oDropSeq

o InDrop

oCELL-seq

oSMART-seq

oSMARTer

oMARS-seq

oSCRB-seq

oSeq-well

oSTRT-seq

• Commercial platforms:

oFluidigm C1 (FuGU)

o10x Genomics Chromium (FIMM, BTK)
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8.2.201829 https://hemberg-lab.github.io/scRNA.seq.course/introduction-to-single-cell-rna-seq.html





DropSeq data preprocessing overview
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What can go wrong in Drop-seq?

1. Ideally there is one healthy cell in the droplet so that we get a STAMP (single-cell 

transcriptome attached to a microparticle). However, sometimes

• There is no cell in the droplet, just ambient RNA

Detect “empties” based on the small number of genes expressed and remove 

• There are two (or more) cells in a droplet

 Detect duplets (and multiplets) based on the large number of genes expressed and remove

• The cell in the droplet is broken/dead

 Detect based on high proportion of reads mapping to mitochondrial genome and remove

2. Sometimes barcodes have synthesis errors in them, e.g. one base is missing

 Detect by checking the distribution of bases at each position and fix the code or remove the cell
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Single cell RNA-seq data analysis



Single cell RNA-seq data is challenging

• The detected expression level for many genes is zero 

• Data is noisy. High level of variation due to

oCapture efficiency (percentage of mRNAs captured)

oAmplification bias (non-uniform amplification of transcripts)

oCells differ in terms of cell-cycle stage and size 

• Complex distribution of expression values

oCell heterogeneity and the abundance of zeros give rise to multimodal distributions

Many methods used for bulk RNA-seq data won’t work
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scRNA-seq data analysis steps

8.2.201836

QC of raw reads

Preprocessing

Alignment

Annotation

Read count 
(DGE matrix)

Differential 
expression

Clustering



DropSeq data preprocessing



From FASTQ to expression matrix –preprocessing of DropSeq data

• Quality control of raw reads

• Preprocessing: tagging with barcodes & filtering

• Alignment to reference genome

• Merge BAM files

• Annotate with gene names

• Estimate the number of usable cells

• Detect bead synthesis errors 

• Generate digital expression matrix
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Read1.fastq Read2.fastq

Unaligned_trimmed.bam

Import files

unaligned.fastq

Aligned.bam Aligner (STAR, HISAT)

Merged.bam Merge BAM

annotated.bam
Tag read with gene names

+ Detect bead synthesis errors

histogram.pdf

digital_expression.tsv

Estimate number of usable cells 

Create digital expression matrix

-filter bad quality
barcodes

-trim adapter 
sequences

-trim polyA tails

Combines the
barcode tags and 
the alignment info

P
re

p
ro

ce
ss

:

FASTQ to BAM

Tag BAM

Filter and trim BAM

BAM to FASTQ

Filter too short reads

FastQC.html FastQC.html

Quality control / FASTQC



From FASTQ to expression matrix –preprocessing of DropSeq data

• Quality control of raw reads

• Preprocessing: tagging with barcodes & filtering

• Alignment to reference genome

• Merge BAM files

• Annotate with gene names

• Estimate the number of usable cells

• Detect bead synthesis errors 

• Generate digital expression matrix
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What and why?

Potential problems
o low confidence bases, Ns

osequence specific bias, GC bias

oadapters

osequence contamination

ounexpected length of reads

o…

Knowing about potential problems in your data allows you to
ocorrect for them before you spend a lot of time on analysis

otake them into account when interpreting results



Software packages for quality control

• FastQC

• FastX

• PRINSEQ 

• TagCleaner

• ...



Raw reads: FASTQ file format

• Four lines per read:

@read name

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT 

+ read name

!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

• http://en.wikipedia.org/wiki/FASTQ_format

• Attention: Do not unzip FASTQ files!

oChipster’s analysis tools can cope with zipped files (.gz)



Base qualities

• If the quality of a base is 20, the probability that it is wrong is 0.01.

oPhred quality score Q = -10 * log10 (probability that the base is wrong)

T  C  A  G  T  A  C  T  C  G

40 40 40 40 40 40 40 40 37 35

• ”Sanger” encoding: numbers are shown as ASCII characters so that 33 is added to the Phred

score

oE.g. 39 is encoded as ”H”, the 72nd ASCII character (39+33 = 72)  

oNote that older Illumina data uses different encoding

o Illumina1.3: add 64 to Phred

o Illumina 1.5-1.7: add 64 to Phred, ASCII 66 ”B” means that the whole read segment has low quality

Probability: 0.0001 
Phred score: 40  
ASCII coding: I (capital i)



Base quality encoding systems

http://en.wikipedia.org/wiki/FASTQ_format



Per position base quality (FastQC)

good

ok

bad



Per position base quality (FastQC)



• Enrichment of k-mers at 
the 5’ end due to use of 
random hexamers or 
transposases in the library 
preparation

• Typical for RNA-seq data

• Can’t be corrected, 
doesn’t usually effect the 
analysis

• Now: the barcodes

Per position sequence content (FastQC)



Check also the length of the reads

• Barcode read: should be 20 bp

• Other length => BAM tagging won't work

• To get rid of shorter barcode reads:

oselect BOTH FASTQ files

otool Preprocessing / Trim reads with Trimmomatic with parameter Minimum length of reads to 
keep = 20

oContinue analysis with the files that are named “--trimmed.fq.gz” (instead of the “--
unpaired_trimmed.fq.gz” ones). 

• To trim too long barcode reads:

oafter the previous step: select read1 file, run Preprocessing / Trim reads with Trimmomatic with 
parameter Number of bases to keep from the start = 20 
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From FASTQ to expression matrix –preprocessing of DropSeq data

• Quality control of raw reads

• Preprocessing: tagging with barcodes & filtering

• Alignment to reference genome

• Merge BAM files

• Annotate with gene names

• Estimate the number of usable cells

• Detect bead synthesis errors 

• Generate digital expression matrix
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Preprocessing single cell DropSeq FASTQ files

• This tool is a combination of several tools: 

oDropSeq (TagBamWithReadSequenceExtended, FilterBam) 

oPicard (FASTQ to BAM, BAM to FASTQ) and

o Trimmomatic (MINLEN)

• The steps are:

1. Convert the FASTQ files into an unaligned BAM file

2. Tag the reads in the BAM file with the cellular and 
molecular barcodes

3. Filter and trim the reads in the BAM file

4. Convert the tagged and trimmed BAM file back into a 
FASTQ file for the alignment

5. Filter out too short reads of the FASTQ file

8.2.201851

Why FASTQ-BAM-FASTQ-BAM?

-FASTQ format cannot hold the 
information about the cellular and 
molecular barcodes. BAM format has 
tag fields which can be used to hold 
this information

-In BAM format we can also do some 
trimming and filtering for the reads. 

-However, the aligners take as input 
only FASTQ format, which is why we 
need to transform the trimmed & 
filtered BAM back to FASTQ format.

-Later on, after alignment, we merge 
the two!



Read1.fastq Read2.fastq

Unaligned_trimmed.bam

Import files

unaligned.fastq

Aligned.bam Aligner (STAR, HISAT)

Merged.bam Merge BAM

annotated.bam
Tag read with gene exon

Detect bead synthesis errors
histogram.pdf

digital_expression.tsv

BAM tag histogram

Digital expression

-filter bad quality
barcodes

-trim adapter 
sequences

-trim polyA tails

Combines the
barcode tags and 
the alignment info

P
re

p
ro

ce
ss

:

FASTQ to BAM

Tag BAM

Filter and trim BAM

BAM to FASTQ

Filter too short reads

FastQC.html FastQC.html

Quality control / FASTQC



Preprocessing single cell DropSeq FASTQ files, parameters

o Convert the FASTQ files into an unaligned 
BAM file

o Tag the reads in the BAM file with the 
cellular and molecular barcodes

o Filter and trim the reads in the BAM file

o Convert the tagged and trimmed BAM file 
back into a FASTQ file for the alignment

o Filter out too short reads of the FASTQ file

• Base range for cell barcode [1-12] 

• Base range for molecule barcode [13-20]

• Base quality [10]

• Adapter sequence 
[AAGCAGTGGTATCAACGCAGAGTGAATGGG]

• Mismatches in adapter [0]

• Number of bases to check in adapter [5]

• Mismatches in polyA [0]

• Number of bases to check in polyA [6]

• Minimum length of reads to keep [50]
8.2.201853



Preprocessing DropSeq FASTQ files –Tagging reads

• BAM tags

oXM = molecular barcode

oXC = cellular barcode

oXQ = number of bases that fall below 
quality threshold

• After this, we can forget the 

barcode read 

• You need to tell the tool which 

bases correspond to which 

barcode

8.2.201854



Preprocessing DropSeq FASTQ files –Trimming and filtering

• Quality: filter out reads where more 

than 1 base have poor quality

• Adapters: Trim away any user 

determined sequences

oSMART adapter as default

oHow many mismatches allowed (0)

oHow long stretch of the sequence there 
has to be at least (5 )

• polyA: hard-clip polyA tails 

oHow many A’s need to be there before 
clipping happens (6 )

omismatches allowed (0)

• Minimum length: filter out short 

reads from the FASTQ file55



From FASTQ to expression matrix –preprocessing of DropSeq data

• Quality control of raw reads

• Preprocessing: tagging with barcodes & filtering

• Alignment to reference genome

• Merge BAM files

• Annotate with gene names

• Estimate the number of usable cells

• Detect bead synthesis errors 

• Generate digital expression matrix

8.2.201856



Alignment to reference genome

• Goal is to find out where a read originated from
oChallenge: variants, sequencing errors, repetitive sequence

• Many organisms have introns, so RNA-seq reads map to genome non-contiguously 
 spliced alignments needed
oBut sequence signals at splice sites are limited and introns can be thousands of bases long

• Splice-aware aligners

oHISAT2, TopHat

oSTAR



HISAT2

• HISAT = Hierarchical Indexing for Spliced Alignment of Transcripts

• Fast spliced aligner with low memory requirement

• Reference genome is indexed for fast searching

• Uses two types of indexes

oOne global index: used to anchor each alignment (28 bp is enough)

oThousands of small local indexes, each covering a genomic region of 56 Kbp: used for 
rapid extension of alignments (good for reads with short anchors over splice sites)

• Uses splice site information found during the alignment of earlier reads in 

the same run
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HISAT2 parameters

8.2.201859



STAR

STAR (Spliced Transcripts Alignment to a Reference) uses a 2-pass mapping process

• splice junctions found during the 1st pass are inserted into the genome index, and all reads are re-
mapped in the 2nd mapping pass

• this doesn't increase the number of detected novel junctions, but it allows more spliced reads 
mapping to novel junctions.

 Maximum alignments per read -parameter sets the maximum number of loci the read is allowed 
to map to

• Alignments (all of them) will be output only if the read maps to no more loci than this. Otherwise 
no alignments will be output.

 Chipster offers an Ensembl GTF file to detect annotated splice junctions

• you can also give your own, for example GENCODE GTFs are recommended

 Two log files

• Log_final.txt lists the percentage of uniquely mapped reads etc.

• Log_progress.txt contains process summary



• SAM (Sequence Alignment/Map) is a tab-delimited text file containing 
aligned reads. BAM is a binary (and hence more compact) form of SAM.

optional header section

alignment section: one line per read, 
containing 11 mandatory fields, followed by optional tags

BAM file format for aligned reads



Fields in BAM file

read name HWI-EAS229_1:2:40:1280:283
flag 272
reference name 1
position 18506
mapping quality 0
CIGAR 49M6183N26M
mate name *
mate position 0
insert size 0
sequence 

AGGGCCGATCTTGGTGCCATCCAGGGGGCCTCTACAAGGAT
AATCTGACCTGCTGAAGATGTCTCCAGAGACCTT
base qualities 

ECC@EEF@EB:EECFEECCCBEEEE;>5;2FBB@FBFEEFCF@
FFFFCEFFFFEE>FFEFC=@A;@>1@6.+5/5
tags MD:Z:75  NH:i:7 AS:i:-8 XS:A:-



BAM index file (.bai)

• BAM files can be sorted by chromosomal coordinates and indexed for efficient 

retrieval of reads for a given region. 

• The index file must have a matching name. (e.g. reads.bam and reads.bam.bai)

• Genome browser requires both BAM and the index file. 

• The alignment tools in Chipster automatically produce sorted and indexed BAMs.

• When you import BAM files, Chipster asks if you would like to preproces them 

(convert SAM to BAM, sort and index BAM). 



Mapping quality

• Confidence in read’s point of origin

• Depends on many things, including 

ouniqueness of the aligned region in the genome

o length of alignment

onumber of mismatches and gaps

• Should be expressed  in Phred scores, like base qualities 

• Q = -10 * log10 (probability that mapping location is wrong)

• Values differ in different aligners. E. g. unique mapping is

• 60 in HISAT2

• 255 in STAR

• 50 in TopHat

• https://sequencing.qcfail.com/articles/mapq-values-are-really-useful-but-their-
implementation-is-a-mess/



• Checks coverage uniformity, read distribution between different genomic 

regions, novelty of splice junctions, etc.

• Takes a BAM file and a BED file

oChipster has BED files available for several organisms

oYou can also use your own BED if you prefer

Quality check after alignment with RseQC



Visualize alignments in genomic context: 
Chipster Genome Browser

• Integrated with Chipster analysis environment

• Automatic coverage calculation (total and strand-specific)

• Zoom in to nucleotide level

• Highlight variants

• Jump to locations using BED, GTF, VCF and tsv files

• View details of selected BED, GTF and VCF features

• Several  views (reads, coverage profile, density graph)







From FASTQ to expression matrix –preprocessing of DropSeq data

• Quality control of raw reads

• Preprocessing: tagging with barcodes & filtering

• Alignment to reference genome

• Merge BAM files

• Annotate with gene names

• Estimate the number of usable cells

• Detect bead synthesis errors 

• Generate digital expression matrix

8.2.201869



Read1.fastq Read2.fastq

Unaligned_trimmed.bam

Import files

unaligned.fastq

Aligned.bam Aligner (STAR, HISAT)

Merged.bam Merge BAM

annotated.bam
Tag read with gene exon

Detect bead synthesis errors
histogram.pdf

digital_expression.tsv

BAM tag histogram

Digital expression

-filter bad quality
barcodes

-trim adapter 
sequences

-trim polyA tails

Combines the
barcode tags and
the alignment info
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ss

:

FASTQ to BAM

Tag BAM

Filter and trim BAM

BAM to FASTQ

Trim too short reads

FastQC.html FastQC.html

Quality control / FASTQC



Merge BAM files

• Why was this again…?

o In the alignment, we lost the molecular 
and cellular tag information (because 
aligners only eat FASTQ format). We have 
that info in the unaligned.BAM file, so 
now we combine the two.

• Before merging, the tool sorts the 

files in queryname order

• Secondary alignments are ignored!

• Remember to…

oChoose the reference

oMake sure the files are correctly assigned!

8.2.201871



From FASTQ to expression matrix –preprocessing of DropSeq data

• Quality control of raw reads

• Preprocessing: tagging with barcodes & filtering

• Alignment to reference genome

• Merge BAM files

• Annotate with gene names

• Estimate the number of usable cells

• Detect bead synthesis errors 

• Generate digital expression matrix

8.2.201872



Annotate

• GE-tag  = name of the gene, if the read overlaps an exon

• XF-tag = location (intron, exon…)

• Choose the annotation file (GTF) OR use your own

8.2.201873



From FASTQ to expression matrix –preprocessing of DropSeq data

• Quality control of raw reads

• Preprocessing: tagging with barcodes & filtering

• Alignment to reference genome

• Merge BAM files

• Annotate with gene names

• Estimate the number of usable cells

• Detect bead synthesis errors 

• Generate digital expression matrix

8.2.201874



Estimate the number of usable cells

• How many cells do you want to keep?

• To estimate this: the inflection point

1. extract the number of reads per cell (barcode)

2. plot the cumulative distribution of reads 

3. select the “knee” of the distribution (knee = 
inflection point)

oThe number of STAMPs (=beads exposed to a 
cell in droplets): cell barcodes to the left of the 
inflection point 

oEmpties (=beads only exposed to ambient RNA 
in droplets): to the right of the inflection point

8.2.201875

Inflection point

STAMPS

“empties”



Inflection point also computed using the inflection R -package

• Sometimes visual 

estimation can be tricky, 

so the tool also gives a 

numerical estimate

• Finds the inflection point 

using extreme distance 

estimator (ede) from 

inflection R-package

• Thank you Dawit

Yohannes!

8.2.201876

=> ”The first 503 cells with most reads
have 81% of all the reads.”
Thus we can assume that the 
rest of the “cells” are actually 
beads without any cells in them 
(but just some loose RNA)

v

v



From FASTQ to expression matrix –preprocessing of DropSeq data

• Quality control of raw reads

• Preprocessing: tagging with barcodes & filtering

• Alignment to reference genome

• Merge BAM files

• Annotate with gene names

• Estimate the number of usable cells

• Detect bead synthesis errors 

• Generate digital expression matrix

8.2.201877



Read1.fastq Read2.fastq

Unaligned_trimmed.bam

Import files

unaligned.fastq

Aligned.bam

Merged.bam Merge BAM

annotated.bam
Tag read with gene exon

Detect bead synthesis errors
histogram.pdf

digital_expression.tsv

BAM tag histogram

Digital expression

-filter bad quality
barcodes

-trim adapter 
sequences

-trim polyA tails

To combine the
barcode tags and the 
alignment info
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:

FASTQ to BAM

Tag BAM

Filter and trim BAM

BAM to FASTQ

Trim too short reads

FastQC.html FastQC.html

Quality control / FASTQC

Aligner (STAR, HISAT)



Detect bead synthesis errors

• Known problem with ChemGenes beads: a percentage of beads did not undergo all twelve 

split-and-pool bases.

o A mixed base at base 12 (=actually 1st base of UMI) and a fixed T base at base 20 (=actually the 1st base of  the 
polyT segment)

• DropSeq-tool DetectBeadSynthesisErrors fixes this: 

oThe last base is trimmed off and all cell barcodes with identical sequence at the first 11 bases are merged

o If any other UMI base is fixed, the reads with that cell barcode are discarded 

• Parameter: number of barcodes on which to perform the correction

oroughly 2 times the anticipated number cells (empirically found that this allows to recover nearly every 
defective cell barcode). 

8.2.201879

ATTC GAGT TAT? CAGC GTAAT TTTT
Cell (12) UMI (8)



Error types

• SYNTHESIS_MISSING_BASE

o1 or more bases missing from cell barcode => T’s at the end of UMIs

oFix: insert an “N”  (reading frame fixed) and merge. If more than 1 missing, discard these reads

• SINGLE_UMI_ERROR

oAt each position of the UMIs, single base appears in >80% of the UMIs for that cell. 

oFix: cell barcodes with this property are dropped

• PRIMER_MATCH

oSame as with SINGLE_UMI_ERROR, + the UMI matches one of the PCR primers

oFix: these barcodes are dropped

• OTHER

oUMIs are extremely skewed towards at least one base, but not at all 8 positions

oFix: these barcodes are dropped

8.2.201880



Synthesis statistics

• synthesis_stats.txt contains a bunch of useful information:

1. CELL_BARCODE the 12 base cell barcode

2. NUM_UMI the number of total UMIs observed

3. FIRST_BIASED_BASE the first base position where any bias is observed (-1 for no detected 
bias)

4. SYNTH_MISSING_BASE as 3 but specific to runs of T’s at the end of the UMI 

5. ERROR_TYPE

6. For bases 1-8 of the UMI, the observed base counts across all UMIs. This is a “|” delimited 
field, with counts of the A,C,G,T,N bases. 

• synthesis_stats.summary.txt contains a histogram of the 

SYNTHESIS_MISSING_BASE errors*, as well as the counts of all other errors, 

the number of total barcodes evaluated, and the number of barcodes ignored. 
*1 or more bases missing from cell barcode => T’s at the end of UMIs

8.2.201881 A | C | G | T | N



From FASTQ to expression matrix –preprocessing of DropSeq data

• Quality control of raw reads

• Preprocessing: tagging with barcodes & filtering

• Alignment to reference genome

• Merge BAM files

• Annotate with gene names

• Estimate the number of usable cells

• Detect bead synthesis errors 

• Generate digital expression matrix

8.2.201882



Digital expression matrix

• To digitally count gene transcripts:

1. a list of HQ UMIs in each gene, within each cell, is assembled

2. UMIs within edit distance = 1 are merged together

3. The total number of unique UMI sequences is counted 

=> this number is reported as the number of transcripts of that gene for a given cell

8.2.201883



Filtering the data for DGE

• Why don’t we just take all the cells? 

othe aligned BAM can contain hundreds of thousands of 
cell barcodes 

oSome of them are “empties”

oSome cell (barcode)s contain just handful of reads

o It is painful to deal with a huge matrix.

• Filtering based on:

oNumber of core barcodes (top X cells with most reads)

oMinimum number of expressed genes per cell

8.2.201884

Inflection point

STAMPS

“empties”

NOTE: You can always also choose to have a bigger 
number of cells and use that for further analysis (Seurat 
has it’s own filtering tools)

NOTE: ”read” is a molecule here, which may 
or may not have the same/almost same UMI 
as another molecule



Filtering the data for DGE –huge number of reads

• What do you do if this happens?

oUse the “minimum number of expressed genes 
per cell” as a requirement

oDo you know how many cells to expect? Use 
that number!

oTake a large number of cells and filter in the 
Seurat tools

• Why this happens?

8.2.201885



Read1.fastq Read2.fastq

Unaligned_trimmed.bam

Import files

unaligned.fastq

Aligned.bam Aligner (STAR, HISAT)

Merged.bam Merge BAM

annotated.bam
Tag read with gene exon

Detect bead synthesis errors
histogram.pdf

digital_expression.tsv

BAM tag histogram

Digital expression

-filter bad quality
barcodes

-trim adapter 
sequences

-trim polyA tails

Combines the
barcode tags and
the alignment info

P
re

p
ro

ce
ss

:

FASTQ to BAM

Tag BAM

Filter and trim BAM

BAM to FASTQ

Trim too short reads

FastQC.html FastQC.html

Quality control / FASTQC



Clustering analysis with Seurat tools



Seurat http://satijalab.org/seurat

• Seurat combines dimensionality reduction and graph-based 

partitioning algorithms for unsupervised clustering of single cells. 

• The approach can be described briefly:

1. Identification of highly variable genes

2. Linear dimensionality reduction (PCA, principal component analysis) on 
variable genes

3. Determine significant principal components

4. Graph based clustering to classify distinct groups of cells

5. Non-linear dimensional reduction (t-SNE, t-Distributed Stochastic Neighbor 
Embedding) for cluster visualization

6. Marker gene discovery, visualization, and downstream analysis

8.2.201889



Clustering analysis with Seurat tools 

• Setup & preprocessing (filtering, log normalization)

• Quality control

• Filter cells

• Regress unwanted sources of variation

• Detect variable genes

• Linear dimensional reduction (PCA)

• Determine statistically significant principle components 
(=identify the true dimensions of the data)

• Cluster the cells

• Non-linear dimensional reduction (tSNE)

• Find differentially expressed genes (biomarkers for the 
clusters)

8.2.201891

• Setup & QC

• Filtering, regression 
& detection of 
variable genes

• Linear dimensional 
reduction (PCA)

• Clustering the cells

• Visualize biomarkers



Setting up Seurat object

• In these tools, we are working with an R object (.Robj)

oCan’t be opened in Chipster, can be exported & imported to R

• Import one of the following

oTar package of three 10X Genomics output files 

oDGE matrix from the DropSeq tools

oCheck that the input file is correctly assigned!

• Log normalization 

onormalizes the gene expression measurements for each cell by the total expression, multiplies this by a 
scale factor (10,000 by default), and log transforms the result

• Filtering

oKeep genes which are detected at least in X cells

oKeep cells where at least Y genes are detected

• Give a name for the project (used in some plots)
8.2.201892



Quality control & filtering for empties, multiplets and broken cells

• Empty (no cell in droplet) 

low gene count (<200)

• Multiplet (more than one cell 

in droplet) large gene 

count (>2500)

• Broken cell in droplet  

large percentage of 

mitochondrial transcripts 

(>5%)

8.2.201893



Clustering analysis with Seurat tools 

• Setup & preprocessing (filtering, log normalization)

• Quality control

• Filter cells

• Regress unwanted sources of variation

• Detect variable genes

• Linear dimensional reduction (PCA)

• Determine statistically significant principle components 
(=identify the true dimensions of the data)

• Cluster the cells

• Non-linear dimensional reduction (tSNE)

• Find differentially expressed genes (biomarkers for the 
clusters)

8.2.201894

• Setup & QC

• Filtering, regression 
& detection of 
variable genes

• Linear dimensional 
reduction (PCA)

• Clustering the cells

• Visualize biomarkers



Remove unwanted sources of variation

• Single cell data typically contains 'uninteresting' variation

otechnical noise

obatch effects

ocell cycle stage, etc

• Removing this variation improves downstream analysis 

• Seurat constructs linear models to predict gene expression based on user-defined 

variables 

obatch, cell alignment rate, no of detected molecules per cell, mitochondrial transcript percentage

oSeurat regresses the given variables individually against each gene, and the resulting residuals are 
scaled 

oscaled z-scored residuals of these models are used for dimensionality reduction and clustering

oChipster currently uses the no of detected molecules per cell and mitochondrial transcript percentage

8.2.201895



Detection of variable genes

• Downstream analysis focuses on highly variable genes

• Seurat finds them in the following way 

1. calculate the average expression and dispersion for each gene

2. place genes into bins based on expression

3. calculating a z-score for dispersion within each bin

• Set the parameters to mark visual outliers on the 

dispersion plot

oexact parameter settings may vary based on the data type, 
heterogeneity in the sample, and normalization strategy

oThe default parameters are typical for UMI data that is 
normalized to a total of 10 000 molecules

8.2.201896



Clustering analysis with Seurat tools 

• Setup & preprocessing (filtering, log normalization)

• Quality control

• Filter cells

• Regress unwanted sources of variation

• Detect variable genes

• Linear dimensional reduction (PCA)

• Determine statistically significant principle components 
(=identify the true dimensions of the data)

• Cluster the cells

• Non-linear dimensional reduction (tSNE)

• Find differentially expressed genes (biomarkers for the 
clusters)

8.2.201897

• Setup & QC

• Filtering, regression 
& detection of 
variable genes

• Linear dimensional 
reduction (PCA)

• Clustering the cells

• Visualize biomarkers



Linear dimensionality reduction (PCA) on variable genes

• Principal Component Analysis = PCA

• Reduce the numerous, possibly 

correlating variables (=counts for 

each gene) into a smaller number of 

linearly uncorrelated dimensions 

(=principal components)

• Essentially, each PC represents a 

robust ‘metagene’ — a linear 

combination of hundreds to 

thousands of individual transcripts

8.2.201898

A dot = a cell



Determine significant principal components

• A key step to this clustering approach involves selecting a set of 

principal components (PCs) for downstream clustering analysis

• However, estimating the true dimensionality of a dataset is a 

challenging and common problem in machine learning.

• The tool provides a couple plots to aid in this:

oElbow plot

oPCHeatmap

8.2.201899



Determine significant principal components 1: Elbow plot

• The elbow in the plot tends to 

reflect a transition from 

informative PCs to those that 

explain comparatively little 

variance. 

8.2.2018100

“How much variance 
each PC explains?”

Gaps?
Plateau?



Determine significant principal components 2: PCHeatmap

• Displays the extremes across both 

genes and cells, and can be useful 

to help exclude PCs that may be 

driven primarily by 

ribosomal/mitochondrial or cell 

cycle genes.

8.2.2018101

“Is there still a difference
between the extremes?”



Clustering analysis of with Seurat tools 

• Setup & preprocessing (filtering, log normalization)

• Quality control

• Filter cells

• Regress unwanted sources of variation

• Detect variable genes

• Linear dimensional reduction (PCA)

• Determine statistically significant principle components 
(=identify the true dimensions of the data)

• Cluster the cells

• Non-linear dimensional reduction (tSNE)

• Find differentially expressed genes (biomarkers for the 
clusters)

8.2.2018103

• Setup & QC

• Filtering, regression 
& detection of 
variable genes

• Linear dimensional 
reduction (PCA)

• Clustering the cells

• Visualize biomarkers



Clustering -why is it so tricky?

• Need to use unsupervised methods (we don’t 

know beforehand, how many clusters there are)

• Our data is big and complex:

oLots of cells

oLots of dimensions (=genes)

oLots of noise (both technical and biological)

• …which is why:

o the algorithm is a bit tricky, and 

oWe reduce and select the dimensions to use in 
clustering (= we do the PCA and select X components to 
use, instead of using all thoudans of genes)

8.2.2018105

KNN in 2D with know clusters 
–this would be nice and easy!



• Seurat clustering = similar to 

oSNN-Cliq (C. Xu and Su, Bioinformatics 2015) and 

oPhenoGraph (Levine et al. Cell 2015)

• ...which are graph based methods:

1. Identify k-nearest neighbours of each cell

oDistance measure: Euclidean + Jaccard distance

2. Calculate the number of Shared Nearest Neighbours 
(SNN) between each pair of cells

3. Build the graph: add an edge between cells, if they have 
at least one SNN

4. Clusters: group of cells with many edges between them

o Smart Local Moving algorithm (SLM, Blondel et al., 
Journal of Statistical Mechanics)

8.2.2018106

Graph based clustering to classify distinct groups of cells

KNN:

Graph:

cell

edge

cell



Clustering parameters

• Lots of parameters!

• Dims.use = number of principal components

• Resolution = “granularity”:  

o increased values lead to a greater number of clusters. 

oValues 0.6-1.2 typically returns good results for single cell datasets of 
around 3K cells

oOptimal resolution often increases for larger datasets

o (If you get very few or very many clusters, try adjusting)

8.2.2018107

FindClusters(object, genes.use = NULL, reduction.type = "pca", 
dims.use = NULL, k.param = 30, k.scale = 25, plot.SNN = FALSE, 
prune.SNN = 1/15, print.output = TRUE, distance.matrix = NULL, 
save.SNN = FALSE, reuse.SNN = FALSE, force.recalc = FALSE, 
modularity.fxn = 1, resolution = 0.8, algorithm = 1, n.start = 100, 
n.iter = 10, random.seed = 0, temp.file.location = NULL)



Non-linear dimensional reduction (t-SNE) for cluster visualization

8.2.2018108

• T-SNE  = t-distributed Stochastic Neighbor 

Embedding

oNon-linear algorithm, different transformations to 
different regions

• Why do we now use t-SNE, why not the good 

old PCA?

oWe give the selected PCA “pseudo-genes” to t-SNE

oT-SNE also reduces dimensions, but it is “more 
faithful to the original data”

oPCA can find clusters too, but t-SNE does just that –
it reduced the dimensions so that the clusters 
become visible

• Good text about readingT-SNE’s: 

https://distill.pub/2016/misread-tsne/



Finding differentially expressed genes (biomarkers for the clusters) 

• Parameters:

omin.pct : requires a gene to be detected at least THIS minimum percentage in 
either of the two groups of cells (default: 0.25)

o thresh.test : requires a gene to be differentially expressed (on average) by THIS 
amount between the two groups (default: 0.25)

o You can set both of these to zero, but with a dramatic increase in time (this will 
test a large number of genes that are unlikely to be highly discriminatory)

oOptions for tests: bimod, roc, Students t-test, Tobit-test, Poisson, negative-
binomial distribution

8.2.2018109

NOTE:
We are now 
comparing
a cluster to all other 
cells.
So for example 
cluster 1 vs all 
others.



Markers for a particular cluster

• You can filter the resulting list to get only the biomarkers for a 

certain cluster:

8.2.2018110



Visualize biomarkers

• Select a marker gene 

from the lists

8.2.2018111



Clustering analysis with Seurat tools 

• Setup & preprocessing (filtering, log normalization)

• Quality control

• Filter cells

• Regress unwanted sources of variation

• Detect variable genes

• Linear dimensional reduction (PCA)

• Determine statistically significant principle components 
(=identify the true dimensions of the data)

• Cluster the cells

• Non-linear dimensional reduction (tSNE)

• Find differentially expressed genes (biomarkers for the 
clusters)

8.2.2018112

• Setup & QC

• Filtering, regression 
& detection of 
variable genes

• Linear dimensional 
reduction (PCA)

• Clustering the cells

• Visualize biomarkers


