
CSC BioWeek 2018: Using Taito cluster for high throughput data

analysis

7. 2. 2018

Running Jobs in CSC Servers

Exercise 1: Running a simple batch job in Taito

We will run a small alignment using BWA:

https://research.csc.fi/-/bwa

Log into taito.csc.fi

cd $WRKDIR

mkdir bwa_ex

cd bwa_ex

Copy a set of test files to your current folder:

cp /wrk/trng87/data/ex1/* .

Many of the bioinformatics tools in Taito are loaded with command: module load biokit.

There are, however, several tools that have their own set up commands, or which don't need a set

up command. You can check the software specific information from the bioscience program list:

http://research.csc.fi/bioscience_programs

Among the files you copied, is a template batch job script called bwa_run.sh Open it with a text

editor. You can use for example nano or emacs editors:

nano bwa_run.sh

emacs bwa_run.sh

Edit batch job script so that:

- It reserves 4 cores in one node, 8 GB memory and 30 min time

- loads the biokit module as described on the program web page

Submit the job with command:

 sbatch bwa_run.sh

After submission you can follow the status of your job with commands:

 squeue -u trngXX

 squeue -l -u trngXX

Exercise 2: Running an array job

(http://research.csc.fi/taito-array-jobs)

In this exercise we will run quality analysis on some fastq files using fastqc software using array

batch job approach.

Log into Taito.csc.fi

First copy and unpack the input data set:

cd $WRKDIR

mkdir array_ex

cd array_ex

cp /wrk/trng87/data/ex2/* .

Now you should have 6 new files in your directory.

There is also a template batch job file array_run.sh Next open a text editor and edit the batch

job script so that it

- loads the biokit module

-

- reserves 1 core, 1 GB memory/core and 20 min time

- runs an array job of 6 sub jobs

And then submit the job with command sbatch.

Use squeue to check what the job looks like.

Use sacct and seff to look at used resources

The provided template works only with files named in this very specific way. In real-world

applications this is typically not the case.

Look at the lecture hand-outs for details, and change the batch job script so that it uses a list of file

names instead.

First make a list of the input files:

ls *.gz > list.txt

In the script you can use for example:

name=$(sed -n ${SLURM_ARRAY_TASK_ID}p list.txt)

fastqc ${name}

After submission you can follow the status of your job with commands:

 squeue -u trngXX

 squeue -l -u trngXX

Exersice 3: Array job using sbatch_commandlist

Do the same task as Exersice 2, but using sbatch_commandlist

As an optional extra task you can write a script that first writes the commandlist file

Exercise 4: Looking at used resources

After the jobs in Exercises 2 -3 have finished, you can check what resources it used with

 seff <jobid>

(If your jobs have not finished, you can use jobids 18314555 and 18315642 instead.)

Were the resource requests reasonable?

Another tool to look at resource usage is sacct

To see details of a single job you can use

sacct –l –j <jobid>

sacct lists a rather long list of values, many of which are of interest mainly to sysadmins. To get a

more manageable output you can use the –o option to define which fields you want to see.

sacct -o jobid,jobname,maxrss,maxvmsize,state,elapsed -j <jobid>

Here we have elected to show jobid (JobID), jobname (JobName), maximum used memory

(MaxRSS), maximum used virtual memory (MaxVMSize), state of the job (State) and elapsed time

(Elapsed). These can be helpful when we decide on the resource allocation parameters for our

next similar job.

Compare results from sacct and seff. Which datafield from sacct you need to replicate the

info from seff?

Why might sacct be preferable for array jobs?

For details on the different available fields and other options see

man sacct

More information about running batch jobs in Taito:

 http://research.csc.fi/taito-batch-jobs

As an optional extra task you re-run one of the jobs in exercises 2-3 and observe it with top.

Extra exercise: Installing your own application

We did not cover this on the lectures, but you can try this if you want. You can find more
information in the CSC Computing Environment User Guide:

https://research.csc.fi/csc-guide-user-specific-directories-at-the-servers-of-csc

In this example we install MCL Markov cluster algorithm program to users own $USERAPPL
directory in Taito.

Move to your $USERAPPL directory and create there a new directory called mcl

cd $USERAPPL

mkdir mcl

Go to the just created mcl directory and download the installation package with wget command

cd mcl

wget http://www.micans.org/mcl/src/mcl-latest.tar.gz

In this case the installation package is a tar-archive file that has been compressed with gzip program.
You can unpack this file with commands

gunzip mcl-latest.tar.gz

tar xvf mcl-latest.tar

After unpacking, the ls command shows that a new directory called mcl-14-137 has been created to
your mcl directory. This directory contains the actual installation files and documentation of the
software. Create a new empty directory called version-14-137 to the mcl directory.

ls

mkdir version-14-137

After this go to the mcl-14-137 directory and study its' content

Cd mcl-14-137

ls -l

Installation packages contain often a short installation instructions. Typically this instruction file is
called as INSTALL or README. In this case you should read the INSTALL file to find out how the
installation should be done.

less INSTALL

Many open source software tools are installed using following three steps:

1 Building up the so called Makefile with a ./configure command.
2 Running make command that compiles the source code according to the instructions in the

Makefile
3 Installing the compiled executables with command make install

Normally the installation packages assume that the user has permissions to install the software to
the locations where the standard linux commands and programs normally get installed. However, at
CSC this is not the case. You can install software only to your own disk areas. Often you can use
option --prefix=/path/ to tell to the configure command, where to the program should be installed. In
this case we wish to install the software to the version-14-137 directory in you $USERAPPL area.

Thus you must use following ./configure command:

./configure --prefix=$USERAPPL/mcl/version-14-137

The configure command checks that all the compilers and libraries, that the software needs, are
available. It is not uncommon, that ./configure reports about missing libraries or incorrect compilation
options. In those cases you can check if the missing library or program can be taken in use with the
module system. CSC environment has several compiler and program versions available. In some
cases you may for example need to use certain C-compiler or python version in order to install the
software. If you still fail with the installation, ask help from the HelpDesk of CSC.

In the case of mcl, the ./configure script runs without error messages when you use GNU-compilers.

The GNU compilers are set up with command:

module switch intel/13.1.0 gcc

Next need to compile and install the software with commands:

make

make install

If make and make install commands don't give any error messages, you have successfully installed
your software. Typically the executables, i.e. the compiled programs that can be launched, are stored
to a sub directory called bin. In this case the bin directory is created to subdirectory
$USERAPPL/mcl/version-14-137.

Running command

ls $USERAPPL/mcl/version-14-137/bin

now shows the programs you have installed:

clm clmformat mcl mclcm mclpipeline mcx mcxarray mcxassemble mcxdump mcxi mcxload mcxmap

mcxrand mcxsubs

The name of the directory that contains the executables may vary between different software. In any
case, to be able to use the programs you must tell the location of your own executables to the
command shell. This can be done by adding the directory path of you executables to the $PATH
environment variable. In this case we add path "${USERAPPL}/mcl/version-14-137/bin" to the

$PATH variable. This is done with command:

export PATH=${PATH}\:${USERAPPL}/mcl/version-14-137/bin

Note that the first PATH word in the command above is without the dollar sign. Now you can launch
the program you have installed. For example

mcl -h

Remember that also in the future, when you log in to CSC, the PATH variable must be set up before
you can use mcl command. Also in the batch job files you need to run the correct export PATH

command above before executing the program you have installed yourself.

If the software you have installed works correctly, you can remove the installation package and
temporary directories that were used during the compilation. In this case we could remove the mcl-
latest.tar file and the directory mcl-14-137/

cd $USERAPPL/mcl

rm mcl-latest.tar

rm -rf mcl-14-137/

