
About This Course

1

Program, March 21st

09:00 – 09:30 Morning coffee & registration
09:30 – 09:45 Introduction to the course and recap of previous courses
09:45 – 11:00 Bash scripting
11:00 – 12:00 Regular expressions & sed
12:00 – 13:00 Lunch
13:00 – 14:00 awk
14:00 – 14:30 Coffee
14:30 – 17:00 Hands-on session

2

How We Teach

All topics are presented with interactive demonstrations.

– Please, indicate immediately, if pace is too fast. We want to have
everyone with us all the time.

Additionally, exercises to each of the sections will be provided.

The Exercises and Wrap-up sections are meant for personal and
group interaction and are (with a time-limit to 17:00 or 17:30) kept
in an open end style.

3

Practicalities

Keep the name tag visible.
Lunch is served in the same building.
– Room will be locked during lunch but lobby is open, use the lockers.

Toilets are in the lobby.
Network:
– Wi-Fi: eduroam, HAKA authentication
– Ethernet cables on the tables
– CSC-Guest accounts upon request

Transportation:
– Bus stops to Kamppi/Center are located at the other side of the street (102, 103).
– Bus stops to Center/Pasila are on this side, towards the bridge (194, 195, 503-6).
– To arrive at CSC the stops are at the same positions, just on opposite sides on the street.
– If you came by car: parking is being monitored – ask for a temporary parking permit from the

reception (tell which workshop you’re participating).

Visiting outside: the doors by the reception desks are open.
Username and password for workstations: given on-site.

4

Around CSC

B1

B2

CSC

(Salad bar)
(Factory restaurant)

Restaurant You are

here

(Training

room)

B1 (551, 552) Tapiola, Otaniemi

B2 (551, 552) Pasila, Malmi

B3 (555) Lauttasaari

B4 (555) Martinlaakso

Restaurant

B3

B4

Metro

5

Bash scripting

6

Introduction

Shell scripting is the art of writing scripts that can automate
repetitive tasks

BASH is presented and it is discussed how it can be used as general
programming language

7

Different shells

sh – Bourne shell

csh/tcsh – C shell

ksh – Korn shell

zsh – Z shell

…

bash – Bourne again shell

– sh successor that includes csh and ksh features

8

When NOT to use a shell script?

Resource or compute intensive

Large-scale applications

Complex datastructures

Lot’s of I/O, need libraries, floating point arithmetic, …

use Python, C/C++ or Fortran, or
even Java or Perl instead

9

When to use a shell script?

Glue together Unix commands to automate repetitive tasks

– awk, bc, more, less, paste, …

Simple applications that do not need lots of resources

Fancy scripts for batch jobs

10

How to write a script?

Put commands that you would execute on the command-line in a file

$ cat hello.sh

echo "Hello world!"

echo "... this is my first script."

$ bash hello.sh

Hello world!

... this is my first script.

11

Pipe magic

Commands can be chained together using a pipe |

The output of the 1st command (left) is used as the input of the 2nd
command (right)

Arbitrary number of pipes can be used

$ cat hello.sh | grep my

echo "... this is my first script."

$./configure --help | less

12

Pipe magic with files

Output can be redirected to a file with

> overwrite

>> append

Input can be read from a file with

< read
$ echo "Hello world!" > hello

$ echo "... what's up?" >> hello

$ cat < hello

Hello world!

... what's up?

13

Pipes & streams

Three special streams always opened:

stdin 0< keyboard

stdout 1> screen

stderr 2> error messages (on screen)

stdout and stderr can be joined with &> or &>>

M>&N redirects file descriptor M to N

– e.g. 2>&1 joins stderr and stdout

14

separate stdout & stderr

$./myprogram > output 2> errors

joined stdout & stderr

$./myprogram &> output+errors

one-time redirect

$./myprogram > filename 2>&1

permanent redirect

$exec 2>&1

$./myprogram > filename

swap stdout and stderr

$./myprogram 3>&2 2>&1 1>&3

Pipes & streams

15

Executable script

Add a shebang to the script to define the shell that executes it
#!shell-binary

hello.sh:

#!/bin/bash

echo "Hello world!"

$ chmod u+x hello.sh

$./hello.sh

Hello world!

16

Comments

Anything after # is treated as a comment

Can be added as separate line, or at the end of a line

hello.sh:

#!/bin/bash

let's greet the world...

echo "Hello world!" # cliche

$ bash hello.sh

Hello world!

17

Variables

Like other programming languages bash has variables

Variables can be set with name=value

To use the variable precede the name with $, e.g.:

$name

– You may need to enclose the variable name in curly brackets:
${name}

18

Variable expansion

$ name=Max

$ echo "Hi $name!"

Hi Max!

$ name="Sir Max"; d=Sun

$ echo "Dear $name,"

$ echo "today is ${d}day."

Dear Sir Max,

today is Sunday.

19

Variable types

There are two types of variables

– Strings

– Integers (no native floating point type!)

Additionally variables can be

– Read-only

– An array

By default variables can hold any data we assign to it

– This can be limited with "declare"

20

declare

Declare an integer variable

declare –I name=value

Declare a read-only variable

declare –r name=value

Print the variable attributes

declare –p name

21

Arrays

bash supports 1D arrays

Defining an array

– Element-by-element: myarray[123]=456

– As a list: myarray=(456 4 apple 1)

Elements do not need to be contiguous

Value accessed as ${myarray[123]}

– Does NOT work without the curly brackets!

22

Arrays

Special array syntax

${myarray[*]} all items

${!myarray[*]} all indexes

${#myarray[*]} number of items

${#myarray[0]} length of item 0

${#myarray[1]} length of item 1

23

Command line arguments

Command line arguments are stored as special variables

$# number of arguments

$@ all arguments

$0 name of script

$1 first argument

$2 second argument

…

24

Command line arguments

#!/bin/bash

echo "args: $@"

echo "name: $0"

echo "1st argument: $1"

echo "3rd argument: $3"

$ bash cmd-args.sh one two three

args: one two three

name: cmd-args.sh

1st argument: one

3rd argument: three

cmd-args.sh:

25

Quotations

Single quotes (') preserve literal values

Double quotes (") preserve literal values, except for: $`\

$ a='hello!'

$ echo '$a'

$a

$ echo "$a"

hello!

$ echo "$a \" "

hello! "

26

Command substitution

The output of a command can be used in a script with
$(command) (or `command`)

$(command) is substituted with the output of command just like a
variable would be

$ echo "Today is $(date)."

Today is Fri Aug 26 10:58:03 EEST 2011.

$ b=20.1

$ a=$(echo "$b*10.0" | bc –l)

$ echo $a

201.00

27

Arithmetics

Simple arithmetics performed using:

((expression))

let "expression"

Variable and command expansion done on expression

$ not needed for variables in expression

$ a=10

$ ((c = a - 4))

$ echo $c

6

$ let "a += 3"

$ echo $a

13

$ echo $a

$ ((a++))

14

28

Arithmetic expansion

$((expression)) replaced by value of expression

((expression)) used for if and for constructs

$ a=10; b=20

$ echo $((a + b))

30

$ echo "$a x $b = $((a * b))"

10 x 20 = 200

$ if (($DEBUG || $MODE == "d"))

then

echo "debug mode ON"

fi

29

Arithmetic operators
Operator Meaning

+ - addition, subtraction
* / % multiplication, division, remainder
** exponentiation
VAR++ VAR-- variable post-increment and post-decrement
++VAR --VAR variable pre-increment and pre-decrement
<= >= < > comparison operators
== != equality and inequality
&& logical AND
|| logical OR
! ~ logical and bitwise negation
& bitwise AND
^ bitwise exclusive OR
| bitwise OR
<< >> left and right bitwise shifts
expr ? expr : expr conditional evaluation
= *= /= %= assignment operations
+= -= <<= >>=

&= ^= |=

30

Conditional if statements

Basic form:

if test-commands

then

do-stuff

elif test-commands

then

do-stuff

else

do-stuff

fi

$ if [[1 –eq 1]]

then

echo A

else

echo B

fi

A

$ [[1 –eq 1]] && echo A || echo B

A

31

Test commands

Four ways to do this (yes really…)

– test command or [] single brackets

– [[]] double brackets

– (()) arithmetic expansion

Double brackets are safer than test or single brackets

Operators for strings, integers, files and Boolean algebra

32

[[]] – file test operators

[[-e name]] file exist

[[-f name]] is a regular file

[[-d name]] is a directory

[[-s name]] is size of file not zero

[[-r name]] file has read permission

[[-w name]] file has write permission

[[-x name]] file has execute permission

…

33

[[]] – string operators

[["s1" == "s2"]] string equality

[["s1" != "s2"]] string inequality

[["s1" < "s2"]] string lexiographic before

[["s1" > "s2"]] string lexiographic after

[["s1" =~ "s2"]] regular expression match

[[-z "s1"]] string has zero length

[[-n "s1"]] string has non-zero length

34

[[]] – integer operators

[[1 –eq 2]] equality

[[1 –ne 2]] non-equality

[[1 –lt 2]] less than

[[1 –gt 2]] more than

[[1 -le 2]] less than or equal

[[1 -ge 2]] greater than or equal

35

[[]] – Boolean algebra

[[A || B]] (logical) A or B

[[A && B]] (logical) A and B

[[! A]] not A

36

Conditional example

#!/bin/bash

if [[($1 != $2) && \

($1 || $2)]]

then

echo True

else

echo False

fi

backslash can be used to

continue the command

on the next line

$bash xor.sh 1 0

True

$bash xor.sh 1 1

False

xor.sh:

37

Case

Branch code by matching the value of a variable against
expression(s)

case "$variable" in

expr1)

commands...

;;

expr2)

commands...

;;

*)

default commands...

;;

esac

always true!

each block

terminated with ;;

38

Case example
#!/bin/bash

DEBUG=0

case "$1" in

-d|--debug)

DEBUG=1

;;

[0-9]*)

echo "number"

;;

[[:upper:]])

echo "uppercase letter"

;;

*)

echo "something else"

;;

esac

(($DEBUG)) && echo "debug mode ON"

$ bash case.sh Z

uppercase letter

$ bash case.sh 77

number

$ bash case.sh f!

something else

$ bash case.sh --debug

debug mode ON

case.sh:

39

Loops

for loops over words in a string

for name in Alice Bob Charlie

… or over numerical indeces

for ((i=0; i<10; i++)) HUOM: {0..10}

continue jumps to next iteration

break steps out of the loop

while, until

40

Loops – over words

#!/bin/bash

for name in Alice Bob "Charlie D"

do

echo "Who? $name"

done

$ bash loop.sh

Who? Alice

Who? Bob

Who? Charlie D

loop.sh:

41

Loops – over files

loop-files.sh:

#!/bin/bash

for f in *.sh

do

l=$(wc $f | awk '{ print $1 }')

echo "$f has $l lines"

done

$ bash loop-files.sh

loop-args.sh has 7 lines

loop-files.sh has 8 lines

…

42

Loops – over arguments

loop-args.sh:

#!/bin/bash

for arg in "$@"

do

echo $arg

done

quotes needed to handle

word splitting correctly!

$ bash loop-args.sh one two "3 4"

one

two

3 4

43

Loops – over integers

loop-int.sh:

#!/bin/bash

for ((i=0; i<4; i++))

do

echo part-$i

done

$ bash loop-int.sh

part-0

part-1

part-2

part-3

44

Loops – while

loop-while.sh:

#!/bin/bash

i=0

while [[$i –lt 4]]

do

echo part-$i

let "i += 1"

done

$ bash loop-while.sh

part-0

part-1

part-2

part-3

45

Functions
(Limited) support for functions

Declaration must be before call!

funcs-hello.sh:

#!/bin/bash

hello () {

echo "Funky hello!"

}

echo "calling function hello() ..."

hello

declaration

call

$ bash funcs-hello.sh
calling function hello() ...

Funky hello!

46

Variables – scope

bash has three scopes for variables:
local, global and environment variables

Local variables are local to current codeblock

– set with: local var=value

– use local variables in functions!

Global variables are global in current shell

– set with: var=value

47

Variables – scope

Environment variables are inherited by all launched sub-shells

– Set with: export var=value

– Changes in value are not passed back!

– By convention, ALL_CAPS used for names

48

Variables – scope
variables.sh:
#!/bin/bash

scopetest() {

local lvar=20

echo "---in function---"

echo "lvar: $lvar"

echo " var: $var"

echo "EVAR: $EVAR"

}

var=30

export EVAR=40

scopetest

echo "---in main scope---"

echo "lvar: $lvar"

echo " var: $var"

echo "EVAR: $EVAR"

bash print-variables.sh

print-variables.sh:

#!/bin/bash

echo "---in next shell---"

echo "lvar: $lvar"

echo " var: $var"

echo "EVAR: $EVAR"

49

Variables – scope

$bash variables.sh

---in function---

lvar: 20

var: 30

EVAR: 40

---in main scope---

lvar:

var: 30

EVAR: 40

---in next shell---

lvar:

var:

EVAR: 40

undefined!

50

Functions – input

Input parameters work
like command-line
arguments

funcs-input.sh:

#!/bin/bash

addup() {

local total=0

while [[$# -gt 0]]

do

case "$1" in

[0-9]*)

let "total += $1"

;;

*)

echo "invalid argument: $1" >&2

;;

esac

shift

done

echo "Grand total: $total"

}

addup 4 6 12

addup 3 8 foo

$ bash funcs-input.sh

Grand total: 22

invalid argument: foo

Grand total: 11

$ bash funcs-input.sh 2>

/dev/null

Grand total: 22

Grand total: 11

51

Functions – output

No direct way to get output

Return value of function is

– 0 success

– nonzero failure

Options are

– Global variable (not recommended but fast)

– Command substitution, i.e. echo output (slow?)

– Output variable name passed as input

52

Functions - output

set global

out_a(){

val_a=$1

}

command subst

out_b(){

echo $1

}

pass output var name

out_c(){

eval $1='$2'

}

$ out_a 123

$ echo $val_a

123

$ val_b=$(out_b 123)

$ echo $val_b

123

$ out_c val_c 123

$ echo $val_c

123

eval will evaluate the line

after shell expansions

53

Here documents

Pipe an arbitrary length text block spanning over
multiple lines to a command

Same as command < file
where file includes the input above

END is an arbitrary tag that marks the end of input

$ command << END

... multiple lines

of text ...

END

54

Here documents

heredoc.sh:

cat << EndBlock

A here document can be used to print out

instructions using cat. It can also be used to

steer an interactive program as shown below...

EndBlock

gnuplot << EOF

f(x)=1/x

plot f(x)

pause 2

EOF

55

Here documents

$ bash heredoc.sh

A here document can be used to print out

instructions using cat. It can also be used to

steer an interactive program as shown below...

56

Further information

Online resources

– Bash guide for Beginners
http://tldp.org/LDP/Bash-Beginners-Guide/html/

– Advanced Bash-Scripting Guide
http://tldp.org/LDP/abs/html/

– BASH FAQ
http://mywiki.wooledge.org/BashFAQ

– GNU Bash Reference Manual
http://www.gnu.org/software/bash/manual/bashref.html

57

Sed and Regular Expressions

58

Matching Text

A number of Unix text-processing utilities let you search for, and in
some cases change, text strings.

– These utilities include the editing programs ed, ex, vi and sed, the awk
programming language, and the commands grep and egrep.

Regular expressions, or regexes for short, are a way to match text
with patterns.

Regular expressions are a pattern matching standard for string
parsing and replacement.

59

The Most Simple Regex

In it's simplest form, a regular expression is a string of symbols to
match "as is".

A simple example:
$ grep '234'

Regex Matches

abc abcabcabc

234 12345

60

Quantifiers

To match several characters you need to use a quantifier:

– * matches any number of what's before it, from zero to infinity.

– ? matches zero or one of what's before it.

– + matches one or more of what's before it.

A simple example:
$ grep '23*4'

Regex Matches

23*4 1245, 12345, 123345

23?4 1245, 12345

23+4 12345, 123345

61

Basic Regexes vs. Extended Regexes

The Basic Regular Expressions or BRE flavor standardizes a flavor
similar to the one used by the traditional UNIX grep command.

– Only supported metacharacters are . (dot), ^ (caret), $ (dollar), and *
(star). To match these characters literally, escape them with a \.

– Some implementations support \? and \+, but they are not part of the
POSIX standard.

Most modern regex flavors are extensions of the ERE flavor. By
today's standard, the POSIX ERE flavor is rather bare bones.

We will be using extended regexes, so:
$ alias grep='grep --color=auto -E'

62

Regexes Are Hoggish

By default, regexes are greedy. They match as many characters as
possible.

You can define how many instances of a match you want by using
ranges:

– {m} matches only m number of what's before it.

– {m,n} matches m to n number of what's before it.

– {m,} matches m or more number of what's before it.

Regex Matches

2 122223

63

Special Characters

A lot of special characters are available for regex building. Here are
some of the more usual ones:

– . the dot matches any single character.

– \w matches an alphanumeric character, \W a non-alphanumeric.

– \ to escape special characters, e.g. \. matches a dot, and \\ matches a
backslash.

– ^ matches the beginning of the input string.

– $ matches the end of the input string.

64

Special Character Examples

Regex Matches Does not match

1.3 1234, 1z3, 0133 13

1.*3 13, 123, 1zdfkj3

\w+@\w+ a@a, email@oy.ab ,.-!"#€%&/

^1.*3$ 13, 123, 1zdfkj3 x13, 123x, x1zdfkj3x

65

Character Classes

You can group characters by putting them between square brackets.
This way, any character in the class will match any one character in
the input.

– [abc] matches any of a, b, and c.

– [a-z] matches any character between a and z.

– [^abc] matches anything other than a, b, or c.

 Note that here the caret ^ at the beginning indicates "not" instead of
beginning of line.

– [+*?.] matches any of +, *, ? or the dot.

 Most special characters have no meaning inside the square brackets.

66

Character Class Examples

Regex Matches Does not match

[^ab] c, d, abc, sadvbcv a, b, ab

[̂1-9][0-9]*$ 1, 45, 101 0123, -1, a1, 2.0

[0-9]*[,.]?[0-9]+ 1, .1, 0.1, 1,000, 0,0,0.0

67

Grouping and Alternatives

It might be necessary to group things together, which is done with
parentheses (and).

– Grouping itself usually does not do much, but combined with other
features turns out to be very useful.

The OR operator | may be used for alternatives.

Regex Matches Does not match

(ab)+ ab, abab, aabb aa, bb

Regex Matches Does not match

(aa|bb)+ aa, bbaa, aabb abab

68

Subexpressions

With parentheses, you can also define subexpressions to store the
match after it has happened and then refer to it later on.

You can store up to nine matches and refer back to the matches
using \1, \2,… \9 notation.

Regex Matches Does not match

(ab)\1 ababcdcd ab, abcabc

(ab)c.*\1 abcabc, abcdefabcdef abc, ababc

69

Some Practical Examples

Check for a valid format for email address:
$ grep '[A-Za-z0-9_-][A-Za-z0-9_.-]*[^.]@[A-Za-z0-9][A-
Za-z0-9.-]+\.[A-Za-z]{2,}'

– [A-Za-z0-9_-][A-Za-z0-9_.-]*[^.] matches a positive number of
acceptable characters not starting or ending with dot.

– @ matches the @ sign.

– [A-Za-z0-9][A-Za-z0-9\.-]+ matches any domain name, incl. dots.

– \.[A-Za-z]{2,}$ matches a literal dot followedby two or more
characters at the end.

Check for a valid format for Finnish social security number:
$ grep '[0-9]{6}[+-A][0-9]{3}[A-Z0-9]'

70

The Stream Editor – sed

Sed is a non-interactive – or stream oriented – editor.

Sed comes standard with every POSIX-compliant Unix.

Mastering sed can be reduced to understanding and manipulating
the four spaces of sed. These four spaces are:

– Input stream

– Pattern space

– Hold buffer

– Output Stream

71

How sed Works

Sed reads data from the input stream until it finds the newline
character \n.

Then it places the data read so far, without the newline, into the
pattern space. Most of the sed commands operate on the data in
the pattern space.

– The hold buffer is there for your convenience. You can copy or
exchange data between the pattern space and the hold buffer.

Once sed has executed all the commands, it outputs the pattern
space to output stream and adds a newline character \n at the end.

72

Syntax of Sed Commands

Sed commands have the general form:
[address [,address] [!]] command [arguments]

– The optional addresses specify to which input lines the command will
be applied to, the default is every line.

– The commands consists of a single letter or symbol.

– The arguments are optional and only a few commands accept them.

73

A Simple sed Program

This program replaces text "foo" with "bar" on every line:
$ sed 's/foo/bar/'

Sed opens the file as the input stream and starts reading the data.

– After reading the first line it finds a newline \n and it then places the
text read in to the pattern space without the newline.

Next sed applies the s/foo/bar/ command for the pattern space.

– If there is no "foo" anywhere, sed does nothing to the pattern space.

– If there is "foo", it will be replaced by "bar".

The default action when all the commands have been executed is to
print the pattern space, followed by a newline.

74

Options -n and -e, and Command p

If you specify option -n then sed will no longer print the pattern
space when it reaches the end of the script:
$ sed -n 's/foo/bar/'

– If you run this program, there will be no output.

You now must use sed’s p command to force sed to print the line:
$ sed -n 's/foo/bar/; p'

– Sed commands are separated by the semicolon ; character.

– You can also use the option -e to separate the commands:
$ sed -n -e 's/foo/bar/' -e 'p'

75

Danger: the Option -i

Option -i forces sed to do in-place editing of the file:
$ sed -i 's/foo/bar/' file

– This means sed reads the contents of the file, executes the commands,
and places the new contents back into the file.

Be very careful when using -i as it’s destructive and it’s not
reversible!

– It’s always safer to run sed without -i, and then replace the file
yourself.

76

Addresses

The simplest form of an address is a single number that limits sed
commands to the given line number:
$ sed -n '5p'

– Only the 5th line of the input stream will be printed.

The addresses can be inverted with the ! after the address:
$ sed -n '5!p'

– Print all but 5th line.

You can also limit sed commands to a range of lines by specifying
two numbers, separated by a comma:
$ sed -n '5,10p'

– Print only lines 5 – 10, inclusive.

77

Regular Expressions as Addresses

There is also a regular expression address match, /regex/.

If you specify a regular expression as an address, then the command
will only get executed on those lines matching the regex:
$ sed -n '/-/p'

– Print only lines containing hyphen (or minus) character -.

You can also use expressions to match a range between two regexes:
$ sed -n '/May/,/Aug/p'

– This matches all lines between the first line that matches "May" regex
and the first line that matches "Aug" regex, inclusive.

78

The Last Line and Mixing Address Types

The special address $ matches the last line of the input stream:
$ sed -n '$p'

– Prints only the last line of the input stream.

Addresses can also be combined:
$ sed -n '5,$p'

– From 5th line to the end of file.

 $ sed -n '/regex/,$p'

– From line matching regex to the end of file.

 $ sed -n '5,/regex/p'

– From 5th line to the line matching regex.

79

Command Grouping

With command grouping {…} it is possible to apply one set of
commands to specific lines and another set of commands for all the
rest of the input lines.

– It says, execute all the commands in {…} on the line(s) that matches
the restriction.

E.g. to print the line after regex, but not the line containing the
regex:
$ sed -n '/regex/{n; p}'

– The n command will empty the current pattern space and read in the
next line of input.

80

The Hold Buffer

With hold buffer you can save the current line to the hold buffer,
and then let sed read in the next line.

The command for copying the current pattern space to the hold
buffer is h and the command for copying the hold buffer back to
pattern space is g.

– The command for exchanging the contents of the hold buffer and the
pattern space is x.

E.g. to print the line before the line that matches regex:
$ sed -n '/regex/{x; p; x}; h'

81

Text Substitution

The substitute command s/// is used to find and replace text:
$ sed 's/foo/bar/'

– Change the first occurrence of "foo" with "bar".

Substitute the 4th occurrence of "foo" with "bar" on each line:
$ sed 's/foo/bar/4'

– With a numeric flag like /1, /2, etc. only that occurrence is substituted.

Substitute all occurrences of "foo" with "bar" on each line:
$ sed 's/foo/bar/g'

– With global flag /g set, substitute command does as many
substitutions as possible, i.e., all.

82

Find and Replace vs. Substitute

You can use any regex to match (i.e. find) the text you want:
$ sed 's/\(.*\)foo/\1bar/'

– Replace only the last occurrence of "foo" with "bar".

– Note that sed uses basic regular expressions, hence \(and \)!

 You can use extended regexes with the -r option:
$ sed -r 's/(.*)foo/\1bar/'

You can also refer back to the matched string with the & character:
$ sed 's/^\(.*\)$/(&)/'

– Adds parenthesis around the line.

83

Translate Characters

The translate command y/src/dst/ does transliteration, a 1:1
mapping of symbols in src to symbols in dst:
$ sed 'y/abc/xyz/'

– Change every instance of a to x, b to y, and c to z.

The command always acts on the whole pattern space so you can't
use regexes to match the parts of the line you would want to.

– You can still use addressing to limit the command to specific lines:
$ sed '/regex/,$y/src/dst/'

 Translate only from the first line matching regex to the end of the file.

84

Deleting Text

The d command

– deletes the current pattern space;

– reads in the next line into the pattern space; and

– aborts the script execution and starts the execution at the first sed
command.

 $ sed '/^$/d'

– Deletes all blank lines from the input stream.

 $ sed 'n; n; n; d'

– Deletes every 4th line.

85

Labels and Branching

The command :name creates a named label name, which you can
branch to with the b command:
$ sed ':a $s/\n/ /g; N; ba'

– The :a command creates a named label a.

– The $ restricts the next command only to the last line of input.

– The s/\n/ /g substitutes all newline character to space characters.

– The N command first appends a newline to the current pattern space
and then appends the next input line.

– The ba command branches back to the label a.

– Effectively, this will join all input lines into a single line.

86

Sed Is Good for…

A Turing machine is a hypothetical machine thought of by the
mathematician Alan Turing in 1936. Despite its simplicity, the
machine can simulate any computer algorithm, no matter how
complicated it is!

– Sed has been demonstrated1 to be Turing complete so in theory, you
can use sed for any computational problem:
$ sed -f sedtris.sed
$ sed -nf arkanoid.sed

Sed is mainly used for its text substitution capabilities.

1 Blaeess, Christophe, Implementation of a Turing Machine as Sed Script,

http://www.catonmat.net/ftp/sed/turing.txt

87

awk– a versatile text processing language

88

awk – text processing

Developed at Bell Labs in 1977 by

Aho (not Esko, but Alfred Vainö!), Weinberger, Kernighan

A versatile scripting language which resembles C (surprise! -
Kernighan & Ritchie)

Powerful with spread-sheet / tabulated data

Typical usage perhaps in one-liners with
matching/reordering/formatting/calculating fields from the existing
tables of data

awk command scripting is also available

89

awk line command

To print a certain column ($2 refers to 2nd column in row – will be
explained later), type the following to the terminal

$ awk '{print $2}' /etc/netconfig

– by default you assume that the file is separated by blank spaces

You can redirect the output (using the > symbol) to store the result
into a new file

$ awk '{print $2}' /etc/netconfig >

netconfig2ndcolumn.txt

You can also use it within a pipe (feeding it with stdout)

$ cat /etc/netconfig | awk '{print $2}'

90

awk-scripts

You can save your awk-directives in a text file (a.k.a. script). Why?

– Sometimes one-liners get too long

– You want to be able to easily reproduce your awk-command

– May be useful if you need to declare user defined functions through
command scripts

– Not mandatory, but useful to give suffix .awk

– Triggered by option -f

Can be used in connection with redirected output:

$ awk -f myscript.awk inputfile.txt > outputfile.txt

91

awk commands essentially match a pattern from a text and apply an
action to it:

!/ pattern / { action }

(the exclamation mark inverts match)

For example, we want to print all relevant lines in /etc/netconfig,
i.e., exclude all commented lines that start with #

$ awk '!/#/' /etc/netconfig

– Or the 2nd column (action) of all relevant lines:

$ awk '!/#/ {print $2}' /etc/netconfig

awk pattern

92

Another example given by a script to display all nologin-accounts in
the system (save into file slide3.awk):

BEGIN {x = 0}

/nologin/ {x = x + 1; print x," ...", $1}

END {print "------------------";print "nologins=",x}

Use -f option to launch the script

$ awk -f slide3.awk /etc/passwd

Short exercise for the audience: Change the script such that all users
with not nologin accounts are shown

awk pattern ctd.

93

Pre- and post-processing steps

BEGIN { } and END { } statements are optional in awk
and if present, they execute code before and after reading the input

They are not tested against the input

BEGIN is often used to initialize variables before the first input line
has been read in

END is usually used to print some summary information after input
has been finished

94

Field separator

Field separator (FS), the same as -F option, can be used to indicate
character(s) used to separate consecutive fields:

$ awk -F: -f slide3.awk /etc/passwd

If you do not want to use the –F option, define inside the script

BEGIN { FS="[:,]" }

Your FS is either colon or comma, try for instance (NF is number of
columns – see next slide):

$ echo "0 1:2,3 4" | awk -F"[:,]" '{ print NF " last
column: " $NF}'

or with blank or colon

$ echo "0 1:2,3 4" | awk -F"[:]" '{ print NF " last

95

Record separator – RS

Similar to FS, the record separator (RS) can be used to turn any
character(s) into line breaks (=new rows)

There is no command line option for RS that can be passed

The following prints out not 1, but 4 lines:

$ echo "AA,BB:CC;DD" |awk
'BEGIN{RS="[,:;]"}{print}'

96

Counters of columns and rows

NF is the number of fields on each line (# columns in row)

$ awk -F: '{for (i=1; i<=NF; i++) print i,$i; printf

"\n"}' /etc/passwd

NR is the number of input records (lines)
$ awk 'END {print NR} ' /etc/passwd

Much simpler still : $ wc -l /etc/passwd

awk fields are accessed through variables $1 , $2, …, $(NF-
1), $(NF)

– $0 refers to the whole input row

97

Counters of columns and rows ctd.

Print whole line only if number of fields (=columns in row) exceeds 7

$ awk '(NF > 7) {print }' /etc/netconfig

Try also with NF > 6 and spot the difference

Print first 7 rows

$ awk '(NR <=7) {print }' /etc/netconfig

this is the same as

$ head –n 7 /etc/netconfig

98

Print statement in awk

Instead of using generic print in awk, it is possible to use C-
language like printf

This gives you a full spectrum of C-like formatting capabilities, e.g.

$ date | awk -F"[:]" '{printf("Time= %2d hours and %2d

minutes\n",$5,$6)}'

– Please do not forget to supply the newline "\n" in printf ! The
generic print already adds that for you – automatically

99

Variables in awk

awk has predefined variables, user defined variables and arrays

Predefined variables are fields columns ($1,$2,…), the whole line ($0)
or internal variables (kept in capital letters) like NF, NR, FS, RS

User defined variables are usually typed in a lowercase to avoid mix-
up, e.g. a, b, tmp
– For instance loop counters: {for (i=1; i<=NF; i++) print $i}

– Or string variables: mytext= "jada, jada"

Variables are set either

– inside the script

– or as argument: $ awk -F: '{ print $n }' n=1 /etc/passwd

100

awk arrays are in fact associative arrays

– This means the index into an array does not have to be an integer
number

It can be anything from numerical values (even floating point) to
character strings, and can be looped through:
BEGIN{tmp[15.6]=0; tmp["sanomalehti"]="Iltasanomat"; tmp["Saab"]="car"}

END{for (i in tmp) {print i,tmp[i]}}

Save into slide12.awk and run: $ awk -f slide12.awk

– Note: the order in which the array is scanned through is arbitrary

– In order to see something you have to send an EOF (Ctrl+D) to stdin

Variables in awk, ctd.

101

Built-in functions in awk

Some numerical functions: int, exp, log, sin, cos,
sqrt, …
e.g., $ for ((x=1; x<=180; x++)); { echo $x; } |

awk '{print $1,
cos($1*3.1415927/180.0)}' > cosine.dat

Some string handling functions: substr, match, sprintf,
tolower, toupper, …

e.g. changing everything to upper-case,

$ awk '{print toupper($0)}' /etc/netconfig

Bit manipulation functions: and, or, xor, lshift,
compl,…

102

Control statements

awk contains if-else statements for conditional computation
$ awk '{printf “%f”, $2; if ($2 > 0) { print

“positive" } else { print “negative"} }'

– You can add this to the previous cosine-pipeline (or apply to cosine.dat)

Can also be programmed as a ladder:
if(condition1) {action1}; else if (condition2) {action2};…

else {actionN};

Logical operators: or ||; and &&:
if ((condition1a || condition1b) && condition2) {action};

103

Further reading

Please do read awk Unix manual pages :

$ man awk

$ info awk

Web contains a plenty of additional info

– Do google for instance on "awk tutorial"

104

