Program, March 215t ‘

csc

09:00 - 09:30 Morning coffee & registration

09:30 - 09:45 Introduction to the course and recap of previous courses
09:45 - 11:00 Bash scripting

11:00-12:00 Regular expressions & sed

12:00-13:00 Lunch

13:00-14:00 awk

14:00 - 14:30 Coffee

14:30-17:00 Hands-on session

How We Teach J Practicalities ‘

cscC cscC

@ All topics are presented with interactive demonstrations. N fj:‘c’ht:‘sesmztﬁ::':;':]e bulding

- p|ease' indicate immediate|y, if pace is too fast. We want to have — Roomwill be locked during lunch but lobby is open, use the lockers.
. . v Toiletsarein the lobby.
everyone with us all the time.

@ Network:
@ Additionally, exercises to each of the sections will be provided. — Wi-Fi: eduroam, HAKA authentication
— Ethernet cables on the tables
@ The Exercises and Wrap-up sections are meant for personal and o CSC-Guest accounts upon request
. . . z oW @ Transportation:
group interaction and are (Wlth a time-limit to 17:00 or 17:30) kept — Bus stops to Kamppi/Center are located at the other side of the street (102, 103).
in an open end ster. — Bus stops to Center/Pasila are on this side, towards the bridge (194, 195, 503-6).

— To arrive at CSC the stops are at the same positions, just on opposite sides on the street.

— If you came by car: parking is being monitored — ask for a temporary parking permit from the
reception (tell which workshop you’re participating).

@ Visitingoutside: the doors by the reception desks are open.
@ Usernameand password for workstations: given on-site.

Around CSC +

csc

B1 (551, 552)-> Tapiola, Otaniemi

B2 (551, 552)-> Pasila, Malmi

B3 (555)> Lauttasaari

B4 (555)> Martinlaakso
Restaurant You are

here

(Training

room)

ey

\ Restafi’r ant

(Salad bar)

(Factory restaurant)

Introduction |

csc

o Shell scripting is the art of writing scripts that can automate
repetitive tasks

@ BASH is presented and it is discussed how it can be used as general
programming language

Different shells ﬁL ﬁL

When NOT to use a shell script?
sh — Bourne shell
csh/tesh — C shell
ksh — Korn shell
zsh — Z shell

@ Resource or compute intensive

@ Large-scale applications

@ Complex datastructures

@ Lot’s of I/0, need libraries, floating point arithmetic, ...

¢ ¢ ¢ ¢ ¢ ¢

bash — Bourne again shell
— sh successor that includes csh and ksh features

use Python, C/C++ or Fortran, or
even Java or Perl instead

When to use a shell script? J

csc

@ Glue together Unix commands to automate repetitive tasks
— awk, bc, more, less, paste, ...
@ Simple applications that do not need lots of resources

@ Fancy scripts for batch jobs

Pipe magic J

cscC

@ Commands can be chained together using a pipe |
S cat hello.sh | grep my

"... this is my first script.'

'

S ./configure --help | less

@ The output of the 1st command (left) is used as the input of the 2nd
command (right)
@ Arbitrary number of pipes can be used

How to write a script?

+—

csc

@ Put commands that you would execute on the command-line in a file

S cat hello.sh

echo "Hello world!"

S bash hello.sh
Hello world!

this is my first script.

echo "... this is my first script.

1A

Pipe magic with files
@ Output can be redirected to a file with
> overwrite
>> append
@ Input can be read from a file with
< read

11

—

S echo "Hello world!"™ > hello
S echo "... what's up?" >> hello
S cat < hello

Hello world!

what's up?

13

Pipes & streams J

@ Three special streams always opened:

stdin 0< keyboard

stdout 1> screen

stderr 2> error messages (on screen)
¢ stdout and stderr can be joined with &> or &>>
o M>&N redirects file descriptor M to N

— e.g. 2>&1 joins stderr and stdout

csc

Executable script J

@ Add a shebang to the script to define the shell that executes it
#!shell-binary

cscC

hello.sh:
#!/bin/bash
echo "Hello world!"

S chmod u+x hello.sh
$./hello.sh
Hello world!

Pipes & streams

csc

separate stdout & stderr

joined stdout & stderr

Uy H= 0 3E

one-time redirect
permanent redirect
Sexec 2>&1

S./myprogram > filename

swap stdout and stderr

./myprogram &> output+errors

#
S./myprogram > filename 2>&1

S./myprogram 3>&2 2>&1 1>&3

./myprogram > output 2> errors

Comments

@ Anything after # is treated as a comment

@ Can be added as separate line, or at the end of a line

15

hello.sh:
#!/bin/bash

echo "Hello world!"

S bash hello.sh
Hello world!

#

let's greet the world...

cliche

17

Variables

@ Like other programming languages bash has variables

@ Variables can be set with name=value

@ To use the variable precede the name with $, e.g.:
Sname

— You may need to enclose the variable name in curly brackets:
${name}

Variable types

@ There are two types of variables
— Strings
— Integers (no native floating point type!)
@ Additionally variables can be
— Read-only
— An array
@ By default variables can hold any data we assign to it
— This can be limited with "declare"

20

Variable expansion

csc

S name=Max
S echo "Hi S$Sname!"

S name="Sir Max"; d=Sun
echo "Dear S$name,"
S echo "today is ${d}day."

U

declare

@ Declare an integer variable
declare —-I name=value

@ Declare a read-only variable
declare -r name=value

@ Print the variable attributes
declare —-p name

19

21

Arrays

@ bash supports 1D arrays
@ Defining an array
— Element-by-element: myarray[123]1=456
— Asalist: myarray=(456 4 apple 1)
@ Elements do not need to be contiguous
@ Value accessed as ${myarray[123]}
— Does NOT work without the curly brackets!

Command line arguments

@ Command line arguments are stored as special variables

S$S# number of arguments
$Q@ allarguments

S0 name of script

$1 firstargument

$2 second argument

22

cscC

24

Arrays

@ Special array syntax

S{myarray[*]} all items
S${!myarray[*]} allindexes
S{#myarray[*]} number of items
S{#myarray[0]} lengthofitemO
[1

S{#myarray[1]} lengthofitem1

Command line arguments

csc

23

cmd-args.sh:

#!/bin/bash

S bash cmd-args.sh one two three

25

Quotations J Command substitution 1

cscC cscC
o Single quotes (') preserve literal values @ The output of acommand can be used in a script with
$ (command) (or “command’
$ a='hello!' (: (i _) Pt
. . ¢ $(command) issubstituted with the output of command just like a
$ echo 'Sa .
&4 variable would be
3 ¢ S echo "Today is $ (date)."
@ Double quotes (") preserve literal values, except for: $ ™\ Today is Fri Aug 26 10:58:03 EEST 2011.
echo "Sa"
i 110! ? S b=20.1
D $ a=$ (echo "$b*10.0" | bc -1)
$ echo "Sa \" " $ echo $a
hello! " 201.00
26 27

Arithmetics J Arithmetic expansion ‘

cscC cscC
o S((expression)) replaced by value of expression

$ a=10; b=20

$ echo $((a + b))

30

$ echo "Sa x Sb = $((a * b))"

10 x 20 200

@ Simple arithmetics performed using:

((expression))
let "expression"

@ Variable and command expansion done on expression

not needed for variables in] . r
© % D e o ((expression)) used for if and for constructs

$ a=10 $ let "a += 3" $ echo $a $ e (($DEBUG || $MODE == 4"))
S ((c=a-4)) $ echo $Sa S ((at++)) then

% echo $c 13 L4 echo "debug mode ON"

0 fi

28 29

Operator

+ -

* %
VAR++
++VAR
>=

o
°

Arithmetic operators r

Meaning

addition, subtraction

multiplication, division, remainder

exponentiation
VAR-- variable post-increment and post-decrement
--VAR variable pre-increment and pre-decrement

< > comparison operators

equality and inequality

logical AND

logical OR

logical and bitwise negation

bitwise AND

bitwise exclusive OR

bitwise OR

left and right bitwise shifts

? exXpr : expr conditional evaluation

= %= assignment operations
<<= >>=

csc

30

Test commands J

@ Four ways to do this (yes really...)
— test commandor [] single brackets
— [11 double brackets
— (()) arithmetic expansion

@ Double brackets are safer than test or single brackets

@ Operators for strings, integers, files and Boolean algebra

cscC

32

@ Basic form:

Conditional if statements

+—

csc

if test-commands $if [[1 -eq 1 1]
h then
en echo A
do-stuff else
elif test-commands echo B
then fi
do-stuff
else
do-stuff S [[1 -eql]] && echo A || echo B
fi
31
[[1] - file test operators ‘
cSscC
-e name]] file exist
-f name]] is a regular file
-d name]] is a directory
-s name]] is size of file not zero
-r name]] file has read permission
-w name]] file has write permission
-x name]] file has execute permission

33

[[1] - string operators

[["sl" == "s2"]] stringequality

[["s1" != "s2"]] stringinequality

[["s1l"™ < "s2"]] stringlexiographic before

[["s1"™ > "s2"]] stringlexiographic after

[["s1" =~ "s2" 1] regularexpression match

[[-z "sl1"™ 1] string has zero length

[[-n "s1" 1] string has non-zero length
[[1] - Boolean algebra

[l A || B 1] (logical) AorB

[[A && B 1] (logical) Aand B

([! A 1] not A

34

36

[[1] — integer operators

csc

35

([1 —eq 2 1] equality

[[1 —ne 2 1] non-equality

[[1 -1t 2 7] less than

([1 -gt 2 1] more than

([1 -1le 2 1] less than or equal

([1 -ge 2 1] greater than or equal
Conditional example

xor.sh:

#!/bin/bash

backslash can be used to
continue the command
on the next line

Sbash xor.sh 1 0

Sbash xor.sh 1 1

37

Case +

@ Branch code by matching the value of a variable against csc
expression(s)
case "S$variable" in
exprl)
commands. . .

expr2)
commands. ..

)

default commands...

each block
terminated with ;;

. .
r s

esac

38

-

cscC

Loops

o for loops over words in a string

for name in Alice Bob Charlie
@ ... or over numerical indeces
((1=0; 1i<10;
@ continue jumps to next iteration

for i++)) HUOM: {0.7.4160}
@ break steps out of the loop

@ while, until

40

case.sh: Case example \
#!/bin/bash csc
- S bash case.sh Z
S Ippercass etter
S bash case.sh 77
) umber
: - S bash case.sh f!
I \ 1Q S¢€
S bash case.sh —--debug
leb1 mod ON

Loops — over words

39

—

loop.sh: csc
#!/bin/bash
for name in Alice Bob "Charlie D"
do
echo "Who? Sname"
done

$ bash loop.sh

41

Loops — over files

$ bash loop-files.sh
loop-args.sh has 7 lines
loop-files.sh has 8 lines

Loops — over integers

$ bash loop-int.sh
part-0
part-1
part-2
part-3

42

8 8 i

Loops — over arguments +

quotes needed to handle

word splitting correctly!

& &8 i

$ bash loop-args.sh one t&-@;v 4 # &

one f{il“ﬁﬁ T
two i '.i\,ﬁf 5

g L { o
3 4 £

43

Loops — while

$ bash loop-while.sh
part-0
part-1
part-2
part-3

45

Functions
@ (Limited) support for functions

funcs-hello.sh:
#!/bin/bash
| ¢ :

| ¢ call

S bash funcs-hello.sh

@ Declaration must be before call!

Variables — scope

@ Environment variables are inherited by all launched sub-shells
— Set with: export var=value
— Changes in value are not passed back!
— By convention, ALL_CAPS used for names

csc

cscC

—

46

—

48

Variables — scope

@ bash has three scopes for variables:
local, global and environment variables
@ Local variables are local to current codeblock
— set with: local var=value
— use local variables in functions!
@ Global variables are global in current shell
— set with: var=value

Variables — scope

variables.sh:
#!/bin/bash

csc

47

print-variables.sh:
#!/bin/bash

49

Variables — scope + Functions — input \
funcs-input.sh:

#!/bin/bash csc

Sbash variables.sh
@ Input parameters work

like command-line
arguments

$ bash funcs-input.sh

‘/ undefined! $ bash funcs-input.sh 2>

/dev/null

50 51

Functions — output J Functions - output ‘

cscC cscC

set global $ out _a 123

@ No direct way to get output $ echo $val a

@ Return value of function is

-0 success $ val_b=$ (out_b 123)
— nonzero failure # command subst $ echo Sval b
© Options are $ out c val c 123
— Global variable (not recommended but fast) $ echo $val c
— Command substitution, i.e. echo output (slow?) # pass output var name ‘

— Output variable name passed as input ‘ ‘ aval willevaluate the line
after shell expansions

52 53

Here documents

csc

@ Pipe an arbitrary length text block spanning over

multiple lines to a command

$ command << END
multiple lines

of text

END

v Same as command < file
where £ile includes the input above

@ END is an arbitrary tag that marks the end of input

Here documents

S bash heredoc.sh

A here document can be used to print out
instructions using cat. It can also be used to
steer an interactive program as shown below...

-

54

56

Here documents

—

CSC

heredoc.sh:

<< EndBlock
A here document can be used to print out
instructions

cat

using cat. It can also be used
steer an

EndBlock

gnuplot << EOF
f(x)=1/x

plot f(x)
pause 2

EQOF

to

interactive program as shown below...

Further information

@ Online resources

— Bash guide for Beginners
http://tldp.org/LDP/Bash-Beginners-Guide/html/

— Advanced Bash-Scripting Guide
http://tldp.org/LDP/abs/html/

— BASH FAQ
http://mywiki.wooledge.org/BashFAQ

— GNU Bash Reference Manual

http://www.gnu.org/software/bash/manual/bashref.html

55

-

57

58

-

cscC

The Most Simple Regex

@ Init's simplest form, a regular expression is a string of symbols to

match "as is".
abc abcabcabc
234 12345

@ A simple example:
$ grep '234'

60

+—

csc

Matching Text

@ A number of Unix text-processing utilities let you search for, and in
some cases change, text strings.

— These utilities include the editing programs ed, ex, vi and sed, the awk
programming language, and the commands grep and egrep.

@ Regular expressions, or regexes for short, are a way to match text
with patterns.

@ Regular expressions are a pattern matching standard for string
parsing and replacement.

59

-

cscC

Quantifiers

@ To match several characters you need to use a quantifier:

* matches any number of what's before it, from zero to infinity.
? matches zero or one of what's before it.

— + matches one or more of what's before it.

23*4 1245, 12345, 123345
23?74 1245, 12345
23+4 12345, 123345

@ A simple example:
$ grep '23*%4'

61

Basic Regexes vs. Extended Regexes J

csc

@ The Basic Regular Expressions or BRE flavor standardizes a flavor
similar to the one used by the traditional UNIX grep command.

— Only supported metacharacters are . (dot), ~ (caret), $ (dollar), and *
(star). To match these characters literally, escape them with a \.

— Some implementations support \? and \+, but they are not part of the
POSIX standard.

@ Most modern regex flavors are extensions of the ERE flavor. By
today's standard, the POSIX ERE flavor is rather bare bones.

@ We will be using extended regexes, so:
$ alias grep='grep --color=auto -E'

62

Special Characters J

cscC

@ A lot of special characters are available for regex building. Here are
some of the more usual ones:
. the dot matches any single character.

\w matches an alphanumeric character, \W a non-alphanumeric.

\ to escape special characters, e.g. \. matches a dot, and \\ matches a
backslash.

~ matches the beginning of the input string.

$ matches the end of the input string.

64

Regexes Are Hoggish 1

csc

v By default, regexes are greedy. They match as many characters as
possible.

2 122223

@ You can define how many instances of a match you want by using
ranges:

— {m} matches only m number of what's before it.
— {m,n} matches m to n number of what's before it.
— {m, } matches m or more number of what's before it.

63

Special Character Examples ‘

csc

1234, 1z3, 0133

1.*3 13, 123, 1zdfkj3
\w+@\w+ a@a, email@oy.ab ,.-I"HEW&/
A.*3% 13, 123, 1zdfkj3 x13, 123x, x1zdfkj3x

65

Character Classes J Character Class Examples ‘

cscC cscC
© You can group characters by putting them between square brackets.
This way, any character in the class will match any one character in ["ab] ¢, d, abc, sadvbev a, b, ab
the input. N1-9][0-9]*$ 1, 45, 101 0123, -1,al, 2.0
— [abc] matches any of a, b, and c. [0-9]*[,.]2[0-9]+ 1,.1,0.1, 1,000, 0,0,0.0

[a-z] matches any character between a and z.

[~abc] matches anything other than a, b, or c.
= Note that here the caret » at the beginning indicates "not" instead of
beginning of line.
— [+*?.] matches any of +, *, ? or the dot.
= Most special characters have no meaning inside the square brackets.

66 67

Grouping and Alternatives J Subexpressions ‘

cscC cscC

@ It might be necessary to group things together, which is done with @ With parentheses, you can also define subexpressions to store the
parentheses (and). match after it has happened and then refer to it later on.
(ab)+ ab, abab, aabb aa, bb (ab)\1 ababcdcd ab, abcabc
— Grouping itself usually does not do much, but combined with other (abje AL abeabe, abedefabeaef alic, ababe
features turns out to be very useful. @ You can store up to nine matches and refer back to the matches
@ The OR operator | may be used for alternatives. using \1, \2,... \9 notation.
(aalbb)+ aa, bbaa, aabb abab

68 69

—

cscC

@ Check for a valid format for email address:
$ grep '[A-Za-z0-9 -][A-Za-20-9_.-1*[".]@[A-Za-20-9][A-
Za-2z0-9.-1+\.[A-Za-z]{2,}"'
[A-Za-z0-9 -1[A-Za-z0-9 .-]1*[".] matches a positive number of
acceptable characters not starting or ending with dot.

@ matches the @ sign.

[A-Za-z0-9][A-Za-z0-9\. -]+ matches any domain name, incl. dots.
\.[A-Za-z]1{2,}$ matches a literal dot followedby two or more
characters at the end.

@ Check for a valid format for Finnish social security number:
$ grep '[0-9]1{6}[+-A]1[0-9]{3}[A-Z0-9]"'

70

-

cscC

@ Sed reads data from the input stream until it finds the newline
character \n.

@ Then it places the data read so far, without the newline, into the
pattern space. Most of the sed commands operate on the data in
the pattern space.

— The hold buffer is there for your convenience. You can copy or
exchange data between the pattern space and the hold buffer.

@ Once sed has executed all the commands, it outputs the pattern
space to output stream and adds a newline character \n at the end.

72

+—

cscC

© Sed is a non-interactive — or stream oriented — editor.
v Sed comes standard with every POSIX-compliant Unix.
@ Mastering sed can be reduced to understanding and manipulating
the four spaces of sed. These four spaces are:
— Input stream
— Pattern space
— Hold buffer
— Output Stream

71

+

cscC

@ Sed commands have the general form:
[address [,address] [!]] command [arguments]

— The optional addresses specify to which input lines the command will
be applied to, the default is every line.

— The commands consists of a single letter or symbol.
— The arguments are optional and only a few commands accept them.

73

—

cscC

© This program replaces text "foo" with "bar" on every line:
$ sed 's/foo/bar/’

© Sed opens the file as the input stream and starts reading the data.

— After reading the first line it finds a newline \n and it then places the
text read in to the pattern space without the newline.

@ Next sed applies the s/foo/bar/ command for the pattern space.
— If there is no "foo" anywhere, sed does nothing to the pattern space.
— If there is "foo", it will be replaced by "bar".

@ The default action when all the commands have been executed is to
print the pattern space, followed by a newline.

74

-

cscC

@ Option -i forces sed to do in-place editing of the file:
$ sed -1 's/foo/bar/' file

— This means sed reads the contents of the file, executes the commands,
and places the new contents back into the file.

© Be very careful when using -1i as it’s destructive and it’s not
reversible!

— It’s always safer to run sed without -1i, and then replace the file
yourself.

76

+—

cscC

o If you specify option -n then sed will no longer print the pattern

space when it reaches the end of the script:
$ sed -n 's/foo/bar/'

— If you run this program, there will be no output.

@ You now must use sed’s p command to force sed to print the line:
$ sed -n 's/foo/bar/; p'

— Sed commands are separated by the semicolon ; character.

— You can also use the option -e to separate the commands:
$ sed -n -e 's/foo/bar/' -e 'p’

75

+

cscC

« The simplest form of an address is a single number that limits sed

commands to the given line number:
$ sed -n '5p'

— Only the 5% line of the input stream will be printed.

@ The addresses can be inverted with the ! after the address:
$ sed -n 'S5!p'
— Print all but 5t line.

@ You can also limit sed commands to a range of lines by specifying

two numbers, separated by a comma:
$ sed -n '5,10p"

— Print only lines 5 — 10, inclusive.

77

—

cscC

@ There is also a regular expression address match, /regex/.

v If you specify a regular expression as an address, then the command
will only get executed on those lines matching the regex:
$ sed -n '/-/p'
— Print only lines containing hyphen (or minus) character -.

@ You can also use expressions to match a range between two regexes:
$ sed -n '/May/,/Aug/p'
— This matches all lines between the first line that matches "May" regex

and the first line that matches "Aug" regex, inclusive.

78

-

cscC

@ With command grouping {..} it is possible to apply one set of
commands to specific lines and another set of commands for all the
rest of the input lines.

— It says, execute all the commands in {..} on the line(s) that matches
the restriction.

o E.g. to print the line after regex, but not the line containing the
regex:
$ sed -n '/regex/{n; p}'

— The n command will empty the current pattern space and read in the
next line of input.

80

@ The special address $ matches the last line of the input stream:
$ sed -n '$p'
— Prints only the last line of the input stream.

@ Addresses can also be combined:
$ sed -n '5,%p"’
— From 5% line to the end of file.
$ sed -n '/regex/,$p'
— From line matching regex to the end of file.
$ sed -n '5,/regex/p'
— From 5% line to the line matching regex.

79

+

cscC

@ With hold buffer you can save the current line to the hold buffer,
and then let sed read in the next line.

@ The command for copying the current pattern space to the hold
buffer is h and the command for copying the hold buffer back to
pattern space is g.

— The command for exchanging the contents of the hold buffer and the
pattern space is x.

w E.g. to print the line before the line that matches regex:
$ sed -n '/regex/{x; p; x}; h'

81

—

cscC

o The substitute command s/// is used to find and replace text:
$ sed 's/foo/bar/’

— Change the first occurrence of "foo" with "bar".

@ Substitute the 4th occurrence of "foo" with "bar" on each line:
$ sed 's/foo/bar/4'

— With a numeric flag like /1, /2, etc. only that occurrence is substituted.

@ Substitute all occurrences of "foo" with "bar" on each line:
$ sed 's/foo/bar/g’

— With global flag /g set, substitute command does as many
substitutions as possible, i.e., all.

82

-

cscC

@ The translate command y/src/dst/ does transliteration, a 1:1

mapping of symbols in src to symbols in dst:
$ sed 'y/abc/xyz/'

— Change every instance of ato x, bto y, and c to z.
@ The command always acts on the whole pattern space so you can't
use regexes to match the parts of the line you would want to.

— You can still use addressing to limit the command to specific lines:
$ sed '/regex/,$y/src/dst/’

= Translate only from the firstline matching regex to the end of the file.

84

+—

cscC

@ You can use any regex to match (i.e. find) the text you want:
$ sed 's/\(.*\)foo/\lbar/'

— Replace only the last occurrence of "foo" with "bar".
— Note that sed uses basic regular expressions, hence \(and\)!

= You can use extended regexes with the -r option:
$ sed -r 's/(.*)foo/\1lbar/’

@ You can also refer back to the matched string with the & character:
$ sed 's/"\(.*\)$/(&)/'
— Adds parenthesis around the line.

83

+

@ The d command
— deletes the current pattern space;
— reads in the next line into the pattern space; and

— aborts the script execution and starts the execution at the first sed
command.

$ sed '/"$/d'

— Deletes all blank lines from the input stream.
$ sed 'n; n; n; d'

— Deletes every 4t line.

85

— +—

cscC cscC
@ The command :name creates a named label name, which you can @ A Turing machine is a hypothetical machine thought of by the
branch to with the b command: mathematician Alan Turing in 1936. Despite its simplicity, the
$ sed ':a $s/\n/ /g; N; ba' machine can simulate any computer algorithm, no matter how
— The :a command creates a named label a. complicated it is!
— The $ restricts the next command only to the last line of input. — Sed has been demonstrated? to be Turing complete so in theory, you
— The s/\n/ /g substitutes all newline character to space characters. can use sed for any computational problem:

$ sed -f sedtris.sed
$ sed -nf arkanoid.sed

@ Sed is mainly used for its text substitution capabilities.

— The N command first appends a newline to the current pattern space
and then appends the next input line.

— The ba command branches back to the label a.

- EffeCtively: this will jOin all inp'Jt lines into a Single line. 1 Blaeess, Christophe, Implementation of a Turing Machine as Sed Script,
http://www.catonmat.net/ftp/sed/turing.txt

86 87

csc

v Developed at Bell Labs in 1977 by
Aho (not Esko, but Alfred Vain6!), Weinberger, Kernighan

o A versatile scripting language which resembles C (surprise! -
Kernighan & Ritchie)

« Powerful with spread-sheet / tabulated data

@ Typical usage perhaps in one-liners with
matching/reordering/formatting/calculating fields from the existing
tables of data

@ awk command scripting is also available

88

awk — text processing 1

89

awk line command J awk-scripts ‘

cscC

@ To print a certain column ($2 refers to 2" column in row — will be @ You can save your awk-directives in a text file (a.k.a. script). Why?

explained later), type the following to the terminal — Sometimes one-liners get too long

$ awk '{print $2}' /etc/netconfig — You want to be able to easily reproduce your awk-command

— by default you assume that the file is separated by blank spaces — May be useful if you need to declare user defined functions through
@ You can redirect the output (using the > symbol) to store the result command scripts

into a new file — Not mandatory, but useful to give suffix .awk

$ awk '{print $2}' /etc/netconfig > — Triggered by option -f

netconfig2ndcolumn. txt @ Can be used in connection with redirected output:
@ You can also use it within a pipe (feeding it with stdout) $ awk -f myscript.awk inputfile.txt > outputfile.txt

$ cat /etc/netconfig | awk '{print $2}'

90

91

—

cscC

@ awk commands essentially match a pattern from a text and apply an
action to it:

I/ pattern / { action }

(the exclamation mark inverts match)
© For example, we want to print all relevant lines in /etc/netconfig,
i.e., exclude all commented lines that start with #
$ awk '!/#/' /etc/netconfig
— Or the 2" column (action) of all relevant lines:
$ awk '!'/#/ {print $2}' /etc/netconfig

-

cscC

o BEGIN { } andEND { } statements are optional in awk
and if present, they execute code before and after reading the input

v They are not tested against the input

@ BEGIN is often used to initialize variables before the first input line
has been read in

« END is usually used to print some summary information after input
has been finished

+—

cscC

@ Another example given by a script to display all nologin-accounts in
the system (save into file slide3.awk):

BEGIN {x = 0}
/nologin/ {x = x + 1; print x," ...", $1}
END {print "------ceemecmnnnn- ";print "nologins=",x}

¢ Use -f option to launch the script
$ awk -f slide3.awk /etc/passwd

@ Short exercise for the audience: Change the script such that all users
with not nologin accounts are shown

93

—

cscC

v Field separator (FS), the same as -F option, can be used to indicate
character(s) used to separate consecutive fields:

$ awk -F: -f slide3.awk /etc/passwd
¢ If you do not want to use the —F option, define inside the script
BEGIN { FS="[:,1" }
© Your FS is either colon or comma, try for instance (NF is number of
columns — see next slide):

$ echo "0 1:2,3 4" | awk -F"[:,]" '{ print NF " last
column: " $NF}'

or with blank or colon
¢ arhn "N 1:2 B A" | auwk -F"T- 1" 'f nrint NF " Tact

95

—

cscC

@ Similar to FS, the record separator (RS) can be used to turn any
character(s) into line breaks (=new rows)

@ There is no command line option for RS that can be passed
@ The following prints out not 1, but 4 lines:

$ echo "AA,BB:CC;DD" |awk
'"BEGIN{RS="[,:;]1"}{print}’

96

-

cscC

@ Print whole line only if number of fields (=columns in row) exceeds 7
$ awk '(NF > 7) {print }' /etc/netconfig
Try also with NF > 6 and spot the difference
@ Print first 7 rows
$ awk '(NR <=7) {print }' /etc/netconfig
this is the same as
$ head —n 7 /etc/netconfig

98

—

cscC

@ NF is the number of fields on each line (# columns in row)

$ awk -F: '{for (i=1; i<=NF; i++) print i,$i; printf
"\n"}' /etc/passwd

@ NR is the number of input records (lines)
$ awk 'END {print NR} ' /etc/passwd
Much simpler still: $wec -1 /etc/passwd

« awk fields are accessed through variables $1 , $2, .., $(NF-
1), $(NF)

— $0 refers to the whole input row

97

—

cscC

@ Instead of using generic print in awk, it is possible to use C-
language like printf
@ This gives you a full spectrum of C-like formatting capabilities, e.g.

$ date | awk -F"[:]1" '{printf("Time= %2d hours and %2d
minutes\n",$5,$6)}"

— Please do not forget to supply the newline "\n" in printf ! The
generic print already adds that for you — automatically

99

+— +—

cscC cscC

@ awk has predefined variables, user defined variables and arrays v awk arrays are in fact associative arrays

« Predefined variables are fields columns ($1,$2,..), the whole line ($0) — This means the index into an array does not have to be an integer
or internal variables (kept in capital letters) like NF, NR, FS, RS number

@ User defined variables are usually typed in a lowercase to avoid mix- @ It can be anything from numerical values (even floating point) to
up, e.g.a, b, tmp character strings, and can be looped through:
— Forinstance loop counters: {for (i=1; i<=NF; i++) print $i} BEGIN{tmp[15.61=0; tmp["sanomalehti"]="Iltasanomat"; tmp["Saab"]="car"}
— Or string variables: mytext= "jada, jada" END{f'or (5 240 TEIL) (GRS ot IR

© Variables are set either @ Save intoslidel2.awk and run: $ awk -f slidel2.awk

_ inside the script — Note: the order in which the array is scanned through is arbitrary

— orasargument: $ awk -F: '{ print $oit el Vet o= — In order to see something you have to send an EOF (Ctrl+D) to stdin

100 101

+— +—

cscC cscC
@ Some numerical functions: int, exp, log, sin, cos, @ awk contains 1f-else statements for conditional computation
sqrt, .. $ awk '{printf “sf”, $2; if ($2 > 0) { print
e.g., $ for ((x=1; x<=180; x++)); { echo $x; } | “positive" } else { print “negative"} }'
awk '{print $1, — You can add this to the previous cosine-pipeline (or apply to cosine.dat)
cos($1*3.1415927/180.0)}' > cosine.dat © Can also be programmed as a ladder:
© Some string handling functions: substr, match, sprintf, if(conditionl) {actionl}; else if (condition2) {action2};..
tolower, toupper, .. else {actionN};
e.g. changing everything to upper-case, © Logical operators: or ||; and &&:
$ awk '{print toupper($0)}' /etc/netconfig if ((conditionla || conditionlb) && condition2) {action};
@ Bit manipulation functions: and, or, xor, lshift,
comnl .

102 103

v Please do read awk Unix manual pages :
$ man awk
$ info awk

@ Web contains a plenty of additional info
— Do google for instance on "awk tutorial"

104

