
About this course

1

Program, April 19th

09:30 – 10:00 Morning coffee & registration

10:00 – 10:15 Introduction to the course (whereabouts, etc.)

10:15 – 10:45 What is UNIX/Linux (basic concepts, multi-user, multi-tasking, multi-processor)

10:45 – 11:30 Linux on my own computer (native installation, dual-boot, virtual appliances)

11:30 – 12:00 1st utilization of Linux - GUI based (opening terminal from GUI, creating shortcuts)

12:00 – 13:00 Lunch

13:00 – 14:15 A first glimpse of the shell (simple navigation, listing, creating/removing files and

directories)

14:15 – 14:45 Coffee

14:45 – 15:15 Text editors (vi, emacs and nano)

15:15 – 16:00 File permissions (concepts of users and groups, changing permissions/groups)

16:00 – 16:30 Troubleshooter: Interactive session to deal with open questions and specific

problems

2

Program, April 20th

09:00 – 09:30 Job management (scripts and executables, suspending/killing jobs, monitoring)

09:30 – 10:00 Coffee

10:00 – 11:15 Setup of your system (environment variables, aliases, rc-files)

11:15 – 12:15 Lunch

12:15 – 13:30 A second look at the shell (finding content, accessing and copying from/to remote

hosts)

13:30 – 14:00 Linux security (best practices, user management, firewall, ssh keys)

14:00 – 14:30 Coffee

14:30 – 15:30 Hands-on exercises

15:30 – 16:15 Troubleshooter: Interactive session to deal with open questions and specific

problems

3

How we teach

• All topics are presented with interactive demonstrations

oThis is a course for beginners, hence we try to adopt a possibly slow pace

oPlease, indicate immediately, if pace is too fast. We want to have everyone
with us all the time

• Additionally, exercises to each of the sections will be provided

• The Troubleshooter section is meant for personal interaction and is

(with a time-limit to 16:30 or 16:15) kept in an open end style

4

P• Keep the name tag visible

• Lunch is served in the same building

• Toilets are in the lobby

• Network:
o WIFI: eduroam, HAKA authentication

o Ethernet cables on the tables

o CSC-Guest accounts upon request

• Public transport:
o Other side of the street (102,103) -> Kamppi/Center

o Metro station at Keilaranta (but no metro!)

o Same side, towards the bridge (194,195,503-6) ->
Center/Pasila

o Bus stops to arrive at CSC at the same positions, just on
opposite sides

• If you came by car: parking is being

monitored - ask for a temporary parking

permit from the reception (tell which

workshop you’re participating)

• Visiting outside: doors by the reception

desks are open

• Room locked during lunch
o You can leave stuff inside room

o else, use lockers in lobby

o lobby remains open

• Username and password for workstations:

given on-site

Practicalities

5

Around CSC

B1
B2

CSC

(Factory restaurant & salad bar)

Restaurant You are here
(Training
room)

B1 (102,103) Kamppi
B2 (194/5,503/4/… Pasila,…

Restaurant (soup & salad)Mind the changes
introduced by the
construction work

6

What is UNIX/Linux?

7

Linux = UNIX

• Linux is a free and open-source software operating system built

around the Linux kernel.

oThe kernel is a computer program that is the core of a computer's operating
system, with complete control over everything in the system.

• Linux was originally developed for personal computers based on

the Intel x86 architecture, but has since been ported to

more platforms than any other operating system.

• Linux is a derivative of the original AT&T Unix operating system.

• The Linux kernel is an Unix-like operating system kernel.

Linux ≠ UNIX®

By lewing@isc.tamu.edu
Larry Ewing and The GIMP

8

The “Unix philosophy”

• Unix was designed to be portable, multi-tasking and multi-user in

a time-sharing configuration.

• Unix (and thus, unix-like) systems are characterized by various

concepts:

othe use of plain text for storing data;

oa hierarchical file system;

otreating devices as files;

othe use of a large number of small programs that can be strung together
through a command-line interpreter, as opposed to using a single
monolithic program that includes all of the same functionality.

9

Multitasking

• Multitasking is the concurrent execution of multiple tasks (also

known as processes) over a certain period of time.

oAs a result, a computer executes segments of multiple tasks in an
interleaved manner.

• Multitasking automatically interrupts the running program, saving

its state (partial results, memory contents and computer register

contents) and loading the saved state of another program and

transferring control to it.

oThis is called context switching.

Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4 Task 1

Time

10

Multi-user

• Multi-user system is operating system software that allows access

by multiple users of a computer, typically simultaneously.

• The operating system provides isolation of each user's processes

from other users, while enabling them to execute concurrently.

• The filesystem supports multiple users by providing permissions

or access rights to specific users and groups for all the files stored

on the system.

11

• Unix-like operating systems create a virtual file system,

which makes all the files on all the devices appear to

exist in a single hierarchy. This means there is one root

directory, and every file existing on the system is

located under it somewhere.

oTo gain access to files on another device, the operating system
must be informed where in the directory tree those files should
appear. This process is called mounting a file system.

• Linux supports numerous file system formats, most

common ones being ext* family (ext2, ext3 and ext4),

XFS, ReiserFS and btrfs.

Filesystem

12

Linux Distributions

• A Linux distribution (often abbreviated as distro) is an operating

system made from a software collection , which is based upon

the Linux kernel and, often, a package management system.

• A typically comprises of a Linux kernel, GNU tools and libraries,

additional software, documentation, and a desktop environment.

• Almost six hundred Linux distributions exist, with close to five

hundred out of those in active development.

oDebian (Ubuntu, Mint, Knoppix) and Red Hat (Fedora, RHEL, CentOS) are
the most common ones.

oWhether Google's Android counts as a Linux distribution is a matter of
definition.

ohttp://www.distrowatch.org/

13

User Interfaces: CLI and GUI

• Command-line interfaces, or CLI shells, are text-based user

interfaces, which use text for both input and output.

oThe dominant shell used in Linux is the Bourne-Again Shell (bash).

oMost low-level Linux components use the CLI exclusively.

oThe CLI is particularly suited for automation of repetitive or delayed tasks,
and provides very simple inter-process communication.

• On desktop systems, graphical user interfaces, or GUIs, are the

most common ones providing extensive desktop environments.

oTypical ones are the K Desktop Environment (KDE), GNOME, MATE,
Cinnamon, Unity, LXDE, Pantheon and Xfce, though a variety of additional
user interfaces exist.

14

Background material for UNIX history

15

What Is UNIX®?

• UNIX is a family of computer operating systems, which are

o… multitasking,

oMultitasking is a concept of performing multiple tasks over a certain period
of time by executing them concurrently. This allows many more tasks to be
run simultaneously than there are CPUs available.

o… multi-user,

oMulti-user software is software that allows access by multiple users of a
computer at any given time.

o… derived from original Unix developed at AT&T Bell labs; and

o… conforms to Single UNIX Specification from The Open Group.

16

Unix-like Operating Systems

• The Open Group owns the UNIX trademark and administers the

Single UNIX Specification.

oCurrently (5/2017) there are six operating systems branded as UNIX:
Oracle Solaris, Inspur K-UX, IBM AIX, HP HP/UX 11i, Huawei EulerOS, and
Apple macOS.

• A Unix-like (referred to as UN*X or *nix) operating system is one

that behaves in a manner similar to a Unix system, while not

conforming to or being certified to Single UNIX Specification.

oAny system that is roughly consistent with the UNIX specification:
Minix, Plan 9, all BSD variants, GNU/Hurd, GNU/Linux, Cray Linux
Environment, …

17

In the Beginning…

• Unix was born at AT&T’s Bell Labs in 1969 as AT&T backed from

developing the Multics operating system.

oA team of Bell Labs researchers developed a hierarchical file system, the
concepts of computer processes and device files, a command-line
interpreter, and some small utility programs.

oStarted as a non-official project, it was called Unics as a pun for being an
emasculated Multics.

• In 1970, text editing and word processing capabilities were added

and Bell Labs started using the operating system, now named

Unix, internally.

18

Out from the Labs

• AT&T could not commercialize Unix because an old antitrust

decree denied Bell – a part of AT&T – from entering computer

business.

oAT&T began licensing Unix source code for educational institutes.

• Being distributed in source code made Unix a perfect study and

research operating system for universities.

• During the turn to 1980s, the influence of Unix in academic circles

led to a large-scale adoption of Unix by commercial start-ups.

oSome notable ones being Solaris by Sun Microsystems, HP-UX by HP, AIX by
IBM and Xenix by Microsoft.

19

Unix Impact

• Unix was written in a high level programming language rather

than assembly language.

oThe C programming language soon spread beyond Unix.

• Unix had a drastically simplified file model.

oUnix popularized the hierarchical file system.

• A fundamental simplifying assumption of Unix was its focus on

text for nearly all file formats.

• The TCP/IP networking protocol spread quickly on versions of Unix

running on relatively inexpensive computers, which contributed to

the Internet explosion.

20

The Raise and Fall

• By the early 1980s thousands of people used Unix at AT&T and

elsewhere.

oUnix was seen as a potential universal operating system, suitable for all
computers.

• In 1983, the antitrust ban for AT&T was lifted and they

immediately commercialised Unix, nearly killing it with poor

licensing terms.

• Since the new UNIX licensing terms were not so favourable for

academic use, Berkeley continued to develop BSD Unix.

oMany contributions to Unix first appeared in BSD releases, most notably the
implementation of TCP/IP network code.

21

The Unix Wars

• Although AT&T created Unix, by the 1980s Berkeley was the

leading non-commercial Unix developer.

oThe two common versions of Unix were Berkeley’s BSD and AT&T’s System
V and each vendor’s version of Unix was different from others’.

• Since 1996, the Single UNIX Specification, the current standard for

branded Unix, is now the responsibility of the Open Group.

• Meanwhile, Unix had got competition from the open source Linux

operating system, a reimplementation of Unix from scratch, using

parts of the GNU project that had been underway since the mid-

1980s.

22

A Brief Unix Timeline

• The (somewhat) complete Unix

history timeline can be found at

http://www.levenez.com/unix/unix_a

4.pdf

Beware, it’s 32 pages

Updated regularly

Makes a nice poster

23

Linux

• Linux is a Unix-like and mostly POSIX-compliant operating

system.

oThe defining component of Linux is the Linux kernel, first released on 5
October 1991 by Linus Torvalds.

• Linux was developed as a free operating system for personal

computers based on the Intel x86 architecture, but has since been

ported to more computer hardware platforms than any other

operating system.

o It is the leading operating system on servers, mainframe computers and
supercomputers.

oLinux has the largest installed base of all general-purpose operating
systems, due to Android being build on top of Linux kernel.

24

Linux Distributions

• Typically, Linux is packaged in a form known as a Linux

distribution.

oDistributions include the kernel, utilities and libraries, and usually a large
amount of applications to fulfil the distribution’s intended use.

• Because Linux is freely redistributable, anyone may create a

distribution for any intended use – and there are numerous.

oSome popular mainstream distributions include Debian, Ubuntu, Fedora,
and the commercial Red Hat Enterprise Linux.

• Distributions for desktop use typically include X11 windowing

system, and an accompanying desktop environment such as

GNOME or the KDE Software Compilation.

25

Linux on my own computer

26

Running your own Linux

• Basically, three options:

1. Run native Linux on your computer

o Includes the option of dual boot (two OS’s side-by-side, but optionally
booting into one of them)

o Not recommended: run as live-system (boot from USB/CD)

2. Run it inside a Virtual Machine

3. Run it remotely over the network

o Includes remote login and remote desktops

o Needs a network connection

27

Dual boot

• Boot loader in the beginning gives choice of which OS to load

• Pros:

onative Linux works faster and all resources of the computer are dedicated to
a single OS

oWindows file-system can be mounted in Linux

• Cons:

o changing between OS’s needs reboot of machine

oMounting of Linux/Unix file-systems on Windows at least problematic

28

Dual boot

• I have a Windows machine, what do I have to do to install Linux in parallel (as dual

boot) to it?:

1. Provide a separate disk(-partition) on computer

• It is possible (e.g., in Ubuntu) to install into existing Windows system, but you loose performance

• Some installation medias allow for live-mode (Linux running from USB/CD) and have a
repartitioning program within (always backup your data!)

2. Download the image of your favorite Linux distribution (see later)

3. Installation generally guides you also through boot-loader configuration

29

Virtual machines

• Running an application inside your native OS that emulates hardware on

which you can install another OS

• Pros:

oSeamless integration of Linux (guest) in host system

oData exchange between guest and host

oSuspend system (no new boot, leave applications open)

oBackup and portability (copy to new computer)

• Cons:

oPerformance loss of guest system (SW layer between emulated and real hardware)

oShared resources between guest and host

30

Virtual Machines

31

• The machine can be

suspended as is

• Upon relaunch, the user gets

the system as she/he left it

Virtual Machines

32

Virtual machines

• I have a Windows computer. How can I install Linux running in a Virtual

Machine (VM)?

1. Make sure you have the hardware to support a VM (CPU, memory > 2GB, disk-space)

Some older CPUs do not support virtualization

2. Download a VM software (see next slide) and install it

3. Download an image of your favorite Linux distribution (see later)

4. Mount the medium in your VM and install as if it would be a normal computer

5. Instead of 3+4: Download a ready made virtual appliance (~virtual computer system)

33

Virtual machines

• Two main vendors for VM packages:

oVMware™ Player (free-of-charge)

oOnly max 4 cores supported in VM

oRestricted to non-commercial use

oOracle (former Sun) VirtualBox (open-source)

o Supports even VMWare virtual disks

• Usually, additional tools (e.g. Vmware-tools) have to be installed

• Important to know the hardware
o especially CPU type (32- or 64bit)

oMight need adjustments in BIOS (virtualization)

• Virtual Appliances: Google or FUNET

oOnly download appliances you trust!

34

Remote connection

• From OS X:

ossh and X available – like from a Linux machine

• From Windows ®:

oNeeds a ssh client: e.g. PuTTY

o If graphics, needs a X11-emulator: e.g. Xming

• Remote desktops:

oNeeds a server running (and network connection)

oCertain software (client + server)

oCSC is maintaining such a service (see CSC environment course): NoMachine, NX

35

Remote Connections from Windows

Insert host
computer here

36

Remote Connections from Windows

Tick here to
forward X11
(=graphics);
needs X11
emulator
installed and
activated

37

Remote Connections from Windows

38

1st Utilization of Linux

39

Starting

•Terminal
• Network
• Web browser
• Install new software
• Text editor, e.g., gedit, nano

• Take a note of what you’ve learnt

40

Linux Mint 18

network
Menu (can

be activated

with

windows
button)

Frequently

used

programs;

here
terminal

File GUI

Search

41

network

Same thing on RHEL
Menu

42

Installation of software package

Press

1) Administration

2) Synaptic …

43

Installation of software package

1) Press Search

2) Give “gedit”

3) Mark

4) Press apply

44

Short exercise

• Try to now find gedit from the menu and launch

• Start to fill in the opened blank file with a log of your actions

• First entry could be:

o Installation of new software: synaptic

45

A first glimpse of the shell

46

Contents

• What is a shell?

• What is a command?

• Listing of directories

• Contents of a file

• Moving around in file tree

• Directories (creating, changing into and out, removing)

• Files (creating, redirecting, re/moving)

47

What is a shell?

• “A shell in computing provides a user interface for access to an

operating system’s kernel services.” (Wikipedia)

• Remote login:

oNormally no GUI (Graphical User Interface)

oText shell: Terminal with a set of commands

• Different flavours:

obash (default), tcsh (old default), zsh, corn-shell, …

48

What is a shell?

49

What is a command?

• A command is a small program provided by the shell

• The over-all structure of a command is:

command -option [optional input]

• Example:

$ ls –lsh /etc/init.d (we will see later)

• Case sensitive? Try: Ls –lsh /etc/init.d

• How to find a command? $ apropos list

• How to find all options? $ man ls

”$” is not part of the command, but depicts the command prompt

50

Listing of directories

51

Listing of directories

• Print contents of a directory or information on a file

• Detailed list of directory:

$ ls –lthr /etc/

-l displays additional information (detailed list in Windows)

-h displays size in human readable format

-t orders by date (use –r to reverse order, i.e., oldest first)

-d keeps from going into sub-directories

• Only print directory/filenames matching a wildcard expression: $ ls –d

/etc/*.d

• Only print directory/filenames with a 4 char suffix: $ ls –l /etc/*.????

52

Contents of a file

• Prints contents of file to screen:

$ cat /etc/group

• -n to precede lines with line numbers

What if the file doesn’t fit on the screen?:

• Open a scrollable view of a file:

$ less /etc/group

• Press q to quit

• / to search forward, ? to search backwards

• n to find the next match, N for previous

53

• change directory: $ cd /etc/

• print work directory: $ pwd →/etc

• go to subdirectory: $ cd ./init.d

$ pwd → /etc/init.d

• Relative path: $ cd ../

$ pwd → /etc

• Absolute path: $ cd /etc/init.d

• Combination: $ cd ../../usr

$ pwd → /usr

• Where is home?: $ cd or cd ~/

Moving around in directories

54

Creating and (re-)moving directories

• Make a new directory: $ mkdir test1

• Relative to (existing) path: $ mkdir test1/anotherone

• Recursively: $ mkdir –p test2/anotherone

• moving a directory: $ mv test2 test3

• removing a directory: $ cd test1

$ rmdir anotherone

$ cd ..

$ rmdir test1

$ rmdir test3

• Recursively: $ rmdir –p test3/anotherone

55

Creating and (re-)moving directories

56

Creating/copying/(re-)moving files

• In UNIX: everything is text

• Redirecting redirecting output of command/programs into files:

$ echo “hello world” > mytest.txt

• Important: if file exists, it will be overwritten!

oTo prevent it: $ set -o noclobber

oTo enable it back: $ set +o noclobber

• Appending to existing files:

$ echo “hello again” >> mytest.txt

$ cat mytest.txt

$ cat mytest.txt > othertest.txt

57

Creating/copying/(re-)moving files

• copy a file: $ cp mytest.txt othertest2.txt

• Same recursively with directory:

$ mkdir –p test/anotherone

$ cp –r test test2

• move a file (renaming):

$ mv mytest.txt othertest3.txt

$ mv othertest3.txt test2/anotherone

• remove file(s): $ rm –f mytest.txt (-f forces the action)

• Remove recursively: $ rm –r test2

58

Further resources

• CSC’s online user guide: http://research.csc.fi/csc-guide

• All the man-pages of the commands mentioned in these

slides

•The UNIX-wiz sitting by your side

•Else:
ohttp://www.ee.surrey.ac.uk/Teaching/Unix/index.html

ohttp://en.wikipedia.org/wiki/List_of_Unix_utilities

ohttps://v4.software-carpentry.org/shell/index.html

59

Text Editors: Gedit, Nano, Emacs, vi

60

Nano Text Editor

• Nano is an ncurses-based editor that focuses on simplicity.

oncurses (new curses) is a programming library which allows the programmer
to write text-based user interfaces

o…which means it must be run in a terminal window.

oNano is a clone of the Pico text editor, the editor for the Pine email client
that was very popular, back in the early '90s.

• Nano may be thought as a shell version on Gedit.

o It is not as powerful as Windows based editors, as it does not rely on the
mouse, but still has many useful features.

• Not all systems ship with Nano installed.

• To start Nano: $ nano filename

61

GNU Emacs

• GNU Emacs is an advanced, self-documenting, customizable ,

extensible text editor — and more.

• The features of GNU Emacs include:

oContent-sensitive editing modes, including syntax colouring.

oComplete built-in documentation, including a tutorial for new users.

oFull Unicode support for nearly all human languages and their scripts.

oHighly customizable, using Emacs Lisp code or a graphical interface.

oA large number of extensions that add other functionality, including a
project planner, mail and news reader, debugger interface, calendar, and
more.

62

• At the top is a menu bar.

• On a graphical display, directly below

the menu bar is a tool bar.

• The main area is called the window.

oWindow is where the buffer — the text you
are editing — is displayed.

• At the very bottom is an echo area.

Organization of the Screen

63

Kinds of User Input

• Emacs is primarily designed for use with the keyboard.

oYou can use mouse and the menus as well.

• Commands are entered using modifier keys:

oControl (labelled Ctrl), e.g. C-a, which means Ctrl + a

oMeta (labelled Alt), e.g. M-a, which means Alt + a

oYou can also type Meta characters using two-character sequences starting
with Esc. Thus, you can enter M-a by typing Esc a and C-M-a by typing Esc Ctrl
+ a.

oA key sequence is a sequence of one or more input events that is meaningful
as a unit, e.g. C-x C-h.

64

Keys and Commands

• Emacs does not assign meanings to keys directly. Instead, Emacs

assigns meanings to named commands, and then gives keys their

meanings by binding them to commands.

oThe command next-line does a vertical move downward. The key C-n has this
effect because it is bound to next-line. If you rebind C-n to the command
forward-word, C-n will move forward one word instead.

oThe bindings between keys and commands are recorded in tables called
keymaps.

• This subtle distinction is irrelevant in ordinary use, but vital for

Emacs customization – and for reading the help or manual.

65

Entering Emacs

• The usual way to invoke Emacs is with the shell command emacs.

oWhen Emacs starts up, the window displays a special buffer named '*GNU
Emacs*'. This startup screen contains information about Emacs and links to
common tasks that are useful for beginning users.

o If the variable inhibit-startup-screen is non-nil, Emacs does not display the
startup screen but a scratch buffer instead.

• Using a command line argument, you can tell Emacs to visit one or

more files as soon as it starts up, e.g. emacs foo.txt.

66

• Killing Emacs means terminating the

Emacs program. To do this, type C-x C-

c (save-buffers-kill-terminal).

o If there are any modified file-visiting buffers
when you type C-x C-c, Emacs first offers to
save these buffers – with eight (!) different
options.

• To kill Emacs without being prompted

about saving, type M-x kill-emacs.

y Save this buffer and ask about the rest of the
buffers

n Don’t save this buffer, but ask about the rest of
the buffers

! Save this buffer and all the rest with no more
questions

. Save this buffer, then exit save-some-buffers
without even asking about other buffers

q Terminate save-some-buffers without any
more saving

C-r View the buffer that you are currently being asked
about

d Diff the buffer against its corresponding file, so
you can see what changes you would be saving

C-h Display a help message about these options

Exiting Emacs

67

Moving Around

Character
C-b / ←

Word
M-b / Alt + ←

Line
C-a / Home

Character
C-f / →

Line
C-e / End

Word
M-f / Alt + →

Line
C-p / ↑

Page
M-v / PgUp

Line
C-n / ↓

Page
C-v / PgDn

Beginning of Buffer
M-< / C-Home

End of Buffer
M-> / C-End

Go to line
M-g g

68

The quick brown fox jumps over the lazy dog.

Erasing

backward-kill-word

M-Backspace

kill-word

M-d

delete-backward-char

Backspace

delete-forward-char

Delete / C-d

kill-line

C-k

69

Undoing Changes

• Emacs records a list of changes made in the buffer text, so you can

undo recent changes. This is done using the undo command, which

is bound to C-/ (as well as C-x u and C-_).

oNormally, this undoes the last change, moving cursor back to where it was
before the change. The undo command applies only to changes in the
buffer; you can't use it to undo cursor motion.

• If you repeat C-/, each repetition undoes another, earlier change,

back to the limit of the undo information available.

o If all recorded changes have already been undone, the undo command
displays an error message and does nothing.

70

Files

• To begin editing a file in Emacs, type C-x C-f FILENAME

oEmacs obeys this command by visiting the file: it creates a new buffer,
copies the contents of the file into the buffer, and then displays the buffer
for editing.

oTo create a new file, just visit it with C-x C-f as if it already existed.

• If you alter the text, you can save the text in the buffer by typing

C-x C-s (save-buffer). This copies the altered buffer contents back

into the file, making them permanent.

71

Buffers

• Emacs can easily handle hundreds of buffers simultaneously.

oTypically there are a few buffers at any given time as Emacs holds internal
buffers such as *Messages* and *Scratch*.

• Switching buffers can be done with C-x b (switch-to-buffer) , which

command reads a buffer name using the minibuffer, then makes

that buffer current, and displays it in the currently-selected

window.

o C-x ← and C-x → selects previous/next buffer respectfully.

• Use C-x k (kill-buffer) to close buffers.

• To get a list of buffers hit C-x C-b (list-buffers)

72

Windows (Not the Microsoft Product)

• Each Emacs window displays one Emacs buffer at any time.

oAt any time, one Emacs window is the selected window; the buffer this
window is displaying is the current buffer.

oA single buffer may appear in more than one window.

• Switching between windows is done with C-x o (other-window).

• To delete a window you have (more than) two options:

oDelete the selected window with C-x 0 (delete-window)

oDelete all windows except the selected one C-x 1 (delete-other-windows)

• Use C-x 2 and C-x 3 to split a window into two.

73

Help

• If you forget what a key does, you can find it out by typing C-h k

(describe-key), followed by the key of interest.

oE.g. C-h k C-n tells that C-n runs the command next-line.

• The prefix key C-h stands for "help".

oThe key F1 (usually) serves as an alias for C-h.

• You can visit the built-in Emacs tutorial at any time by typing C-h t.

oExit the tutorial by killing the buffer by typing C-x k.

74

vi

• vi is the de facto standard Unix editor; essentially all Unix and Unix-

like systems come with vi (or a variant, like vim) built in.

oSystem rescue environments, embedded systems and other constrained
environments often include only vi.

• vi is different from many editors in that it has two main modes of

operation: command mode, and insert mode. This is the cause of

much of the confusion when a new user is learning vi.

oRegarding vi's modal nature, some joke that vi has two modes – "beep
repeatedly" and "break everything".

75

• Start vi by typing: vi

oBy default you are in command mode.

• Switch to the insert mode by pressing

the i key.

• When you have finished entering your

sample text, press Esc to return to the

command mode.

• To save the file enter command :w this-

is-my-vi-test-file

An Exercise

76

Quitting vi

• The command to quit vi is :q

oYou need to be in command mode. If you’re not already in command mode,
or you're not sure which mode you’re in, press Esc.

• Sometimes, you may have made changes to a file that you do not

want to save. To exit vi without saving, and ignoring any warnings

about unsaved data, use a variation of the :q command, :q!

oThis will return you to the prompt, without saving any changes to the file,
and with no warnings about unsaved data. Use this command carefully.

77

Basic Editing in vi

• To enter insert mode and insert text at current position, type i, or

to append text after current position, type a.

• To delete characters while in insert mode, use Backspace and

Delete keys.

• The power of editing text with vi, however, lies in using the

command mode. You will find yourself switching between the

insert mode and command mode constantly!

78

• On some systems, to move the

cursor around the screen you must

be in command mode and use the

commands instead of the cursor

keys.

This is mainly due to historical
reasons, dating back to when not all
terminals had cursor keys.

h Left

j Down

k Up

l Right

w Forward one word

b Back one word

e End of the word

(Beginning of current sentence

) Beginning of next sentence

{ Beginning of current paragraph

} Beginning of next paragraph

0 Start of current line

$ End of current line

^ First non-white character of current

line

Cursor Movement

79

• By combining edit commands with

cursor movement commands, you

can quickly edit just the parts of

the text you want.

E.g. 8cw will replace the next eight
words in text with the new text you
type, and 2y}P will duplicate the next
two paragraphs.

a Append after cursor

A Append to end of current line

i Insert before cursor

I Insert at the beginning of line

o Insert (open) line above cursor

O Insert (open) line below cursor

cw Change word

cc Change line

C Change from cursor to end of line

dw Delete word

dd Delete current line

D Delete from cursor to end of line

p Insert buffer at cursor

yw Copy word to buffer

u Undo last change

Editing

80

:w Write file

:w! Write file ignoring any warnings

:w fileWrite file as file

:q Quit vi

:q! Quit even if changes are not saved

:wq Write file and quit

:x Quit and write file if changed

% Display current filename

:r fileInsert file after cursor

:r !cmdRun cmd and insert output after

current line

File Handling

81

File Permissions

82

File permissions

• UNIX distinguishes between users, groups and others

oCheck your groups: $ groups

• Each user belongs to at least one group

• ls –l displays the attributes of a file or directory

-rw-r--r-- 1 userid groupid 0 Jan 29 11:04 name

o
th
ers

u
ser

r = read, w=write, x=execute

The above configuration means: user can read + write, group and all others only read

typ
e

gro
u
p

83

File permissions

• Changing permissions with chmod

$ ls –l lala

→ rw-r--r-- 1 userid groupid 0 Jan 29 11:04 lala

$ chmod o-r,g+w,u+x lala

$ ls –l lala

→ rwxrw---- 1 userid groupid 0 Jan 29 11:04 lala

$ chmod u-xrw lala

$ less lala

”$” is not part of the command, but depicts the command prompt

84

File permissions

• Changing group chgrp and user chown

$ chgrp othergrp lala

$ chown otherusr lala

$ ls –l name

$ rwxrw---- 1 otherusr othergrp 0 Jan 29 11:04 lala

85

File permissions

• You can make a simple text file to be executed – your first script

oScripts are useful for workflows, when you repeatedly have to do the same
sequence of commands

• Open file befriendly.sh and insert following lines:

• Change to executable:

$ chmod u+x befriendly.sh

$./befriendly.sh

#!/bin/bash

echo "Hello and welcome"

echo "today is:"

date

echo "have a nice day"

86

Job management (in shell)

87

Managing jobs

• By default commands (jobs) are run in foreground, e.g.,

$ emacs newfile

• Now, try to enter something in your shell

o It does not respond. Why?

oemacs (the currently running program) blocks the shell as long as you do not
quit it

• Killing a job: in shell press Ctrl + C

oThat is not usually recommended, as you might lose data

oDo that only when program gets unresponsive

88

Managing jobs

• Launch again into foreground

$ emacs newfile

• Type something into emacs

• Suspending a job: in shell press Ctrl + Z

oShell reports on stopped job

otype a command into the shell: $ ls –ltr

oTry to type something into emacs. What happens?

oThe process of emacs is suspended, hence does not accept any input

89

Managing jobs

• Sending the suspended job to background: $ bg

otype a command into the shell: $ ls –ltr

otype something into emacs

o It works now for both!

• Fetching back to foreground: $ fg

oShell is blocked again

oemacs accepts input (but press exit)

• Launching directly into background:

$ xterm –T “no 1” &

$ xterm –T “no 2” &

90

Managing jobs

• Listing jobs of shell: $ jobs

• Explicitly bring to foreground: $ fg %2

• Send it back again: Ctrl + Z $ bg

• Killing job: $ kill -9 %2

$ jobs

[1] - Running xterm -T "no 1" &
[2]+ Running xterm -T "no 2" &

[1] - Running xterm -T "no 1" &
[2]+ Killed xterm -T "no 2"

91

Setup of your system

92

The Environment

• When interacting with a host through a shell session, there are

many pieces of information that your shell compiles to determine

its behaviour and access to resources.

• The way that the shell keeps track of all of these settings and

details is through an area it maintains, called the environment.

• Every time a shell session spawns, a process takes place to gather

and compile information that should be available to the shell

process and its child processes.

93

How the Environment Works

• The environment is implemented as strings that represent key-

value pairs and they generally will look something like this:
KEY=value1:value2:...

oBy convention, these variables are usually defined using all capital letters.

• They can be one of two types, environmental variables or shell

variables.

oEnvironmental variables are variables that are defined for the current shell
and are inherited by any child shells or processes.

oShell variables are contained exclusively within the shell in which they were
set or defined.

94

• We can see a list of all of our environmental variables by using the

printenv command.

• The set command can be used for listing the shell variables.

o If we type set without any additional parameters, we will get a list of all shell
variables, environmental variables, local variables, and shell functions.

oThe amount of information provided by set is overwhelming and there is no
way limiting the output to shell variables only.

oYou can still try with
$ comm -23 <(set -o posix; set | sort) <(printenv | sort)

Printing Shell and Environmental Variables

95

Common Environmental and Shell Variables

• Some environmental and shell variables are very useful and are

referenced fairly often. Here are some common environmental

variables that you will come across:

o SHELL: This describes the shell that will be interpreting any commands you
type in. In most cases, this will be bash by default.

o USER: The current logged in user.

o PWD: The current working directory.

o OLDPWD: The previous working directory. This is kept by the shell in order to
switch back to your previous directory by running 'cd -'.

96

Common Environmental and Shell Variables (cont’d)

o LS_COLORS: This defines colour codes that are used to optionally add
coloured output to the ls command. This is used to distinguish different file
types and provide more info to the user at a glance.

o PATH: A list of directories that the system will check when looking for
commands. When a user types in a command, the system will check
directories in this order for the executable.

o LANG: The current language and localization settings, including character
encoding.

o HOME: The current user's home directory.

o_: The most recent previously executed command.

97

Common Environmental and Shell Variables (cont’d)

o COLUMNS: The number of columns that are being used to draw output on
the screen.

o DIRSTACK: The stack of directories that are available with the pushd and
popd commands.

o HOSTNAME: The hostname of the computer at this time.

o PS1: The primary command prompt definition. This is used to define what
your prompt looks like when you start a shell session.

o The PS2 is used to declare secondary prompts for when a command spans
multiple lines.

o UID: The UID of the current user.

98

• Defining a shell variable is easy to accomplish; we only need to

specify a name and a value:
$ TEST_VAR='Hello World!'

oWe now have a shell variable. This variable is available in our current session,
but will not be passed down to child processes. We can see this by grepping
for our new variable within the set output:
$ set | grep TEST_VAR

oWe can verify that this is not an environmental variable by trying the same
thing with printenv:
$ printenv | grep TEST_VAR

Setting Shell and Environmental Variables

99

• Let's turn our shell variable into an environmental variable. We can

do this by exporting the variable:
$ export TEST_VAR

oWe can check this by checking our environmental listing again:
$ printenv | grep TEST_VAR

• Environmental variables can also be set in a single step like this:
$ export NEW_VAR="Testing export"

• Accessing the value of any shell or environmental variable is done

by preceding it with a $ sign:
$ echo $TEST_VAR

Setting Shell and Environmental Variables (cont’d)

100

• Demoting an environmental variable back into a shell variable is

done by typing:
$ export -n TEST_VAR

o It is no longer an environmental variable:
$ printenv | grep TEST_VAR

oHowever, it is still a shell variable:
$ set | grep TEST_VAR

• To completely unset a variable, either shell or environmental, use

the unset command:
$ unset TEST_VAR

Demoting and Un-setting Variables

101

Setting Variables at Login

• We do not want to have to set important variables up every time

we start a new shell session, so how do we make and define

variables automatically?

• Shell initialization files are the way to persist common shell

configuration, such as:

o $PATH and other environment variables;

oshell tab-completion;

oaliases, functions; and

okey bindings.

102

Shell Modes

• The bash shell reads different configuration files depending on

how the session is started. There are four modes:

oA login shell is a shell session that begins by authenticating the user. If you
start a new shell session from within your authenticated session, a non-login
shell session is started.

oAn interactive shell session is a shell session that is attached to a terminal. A
non-interactive shell session is one that is not attached to a terminal session.

• Each shell session is classified as either login or non-login and

interactive or non-interactive.

103

Some Common Operations and Shell Modes

Operation Shell modes

log in to a remote system via SSH: $ ssh user@host login, interactive

execute a script remotely: $ ssh user@host 'echo $PWD' non-login, non-interactive

execute a script remotely and request a terminal:
$ ssh user@host -t 'echo $PWD'

non-login, interactive

start a new shell process: $ bash non-login, interactive

run a script: $ bash myscript.sh non-login, non-interactive

run an executable with #!/usr/bin/env bash shebang non-login, non-interactive

open a new graphical terminal window/tab on Mac OS X login, interactive

open a new graphical terminal window/tab on Unix/Linux non-login, interactive

104

Shell Initialization Files

• A session started as a login session will read configuration details

from the /etc/profile file first.

o It then reads the first file that it can find out of ~/.bash_profile, ~/.bash_login,
and ~/.profile.

• A session defined as a non-login shell will read /etc/bash.bashrc and

then the user-specific ~/.bashrc file to build its environment.

• Non-interactive shells read the environmental variable called

BASH_ENV and read the file specified to define the new

environment.

105

The Aliases

• An alias is a (usually short) name that the shell translates into

another (usually longer) name or command.

• Aliases allow you to define new commands by substituting a string

for the first token of a simple command.

• They are typically placed in the ~/.bashrc file so that they are

available to interactive subshells.

106

• The general syntax for the alias command varies somewhat

according to the shell. In the case of the bash shell it is
alias [name="value"]

oname is the name of the new alias and value is the command(s) which the
alias will initiate.

oThe alias name and the replacement text can contain any valid shell input
except for the equals sign '='.

• When used with no arguments, alias provides a list of aliases that

are in effect for the current user:
$ alias

Listing and Creating Aliases

107

• An example of alias creation could be the alias p for the commonly

used pwd command:
$ alias p="pwd"

• An alias can be created with the same name as the core name of a

command; it is the alias that is called, rather than the command:
$ alias ls="ls --color=auto -F"

oSuch an alias can be disabled temporarily by preceding it with a backslash:
$ \ls

oAn alias does not replace itself, which avoids the possibility of infinite
recursion.

Listing and Creating Aliases (cont'd)

108

• You can nest aliases:
$ alias ls="ls -F"

$ alias lc="ls | wc -l"

oNow you can even change the alias for ls and have the changed behaviour in
alias lc, too.

• Use the unalias built-in to remove an alias:
$ unalias lm lsf

• Aliases are disabled for non-interactive shells (that is, shell

scripts); you have to use the actual commands instead.

Listing and Creating Aliases (cont'd)

109

Bringing It All Together

$ cat .bashrc

.bashrc

set +o noclobber

umask 0027

PS1='\h:\W\$ '

export PS1

alias ls='ls --color=auto -F'

alias guc=globus-url-copy

unalias ll 2> /dev/null

unalias rm 2> /dev/null

function ll() { ls --color -laF "$@" | more; }

function psg() { ps -fp $(pgrep -d, -f "$@"); }

function rot13() { if [-r $1]; then cat $1 | tr '[N-ZA-

Mn-za-m5-90-4]' '[A-Za-z0-9]'; else echo $* | tr '[N-ZA-Mn-

za-m5-90-4]' '[A-Za-z0-9]'; fi }

110

A second look at the shell

111

Recap: what is shell?

• text-only user interface

oUnix: Shell, Mac: Terminal, Windows: DOS prompt

oOptimized to work with files --- and everything is a file in Linux

• Interactive programming

oBash language

o It is very easy to write new small programs/commands, scripts

 Programmable UI

o That makes it powerful and that’s why we love it!

Be a programmer, not a computer!

112

What happens when you press ENTER?

Bash

• expands variables and file name wildcards (globbing)

• splits the line into “words”

• Connects files and pipes

• Interprets the first word as the name of the command, and the

rest of the words as the arguments to the command

…etc. See man bash for details.

…and don’t worry if this is not immediately clear...

113

What is a command?

echo “one two” > foo.txt

stdin
stdout: foo.txt

stderr

First word is the
command!

Stdout is
connected to a
file, here!

Argument(s) to the command.

Could be
keyboard, file
or pipe. Not
used here.

Exit code, $?
Success: 0
Fail: not 0

Two arrows in, three arrows out!

Errors would
go here

stdout and
stderr are
connected to
the terminal by
default.

114

Quoting and escaping special characters, i.e. control expansions and
word splitting!

• Try to write “Lisa” to a file named “Lunch company”. How does

bash interpret the command

$ echo Lisa > Lunch company

• We use single (’) or double quotes (”), or escape the special

meaning of space character with backslash (\), or for file names,

preferrably, snake_case or CamelCase:

$ echo Lisa > ’Lunch company’

$ echo Lisa > Lunch\ company

$ echo Lisa > LunchCompany

115

$ command [arguments]

• Arguments are strings that the command can interpret as it

pleases. There are conventions, though.

• Command options usually begin with one or two hyphens,

$ ls –q

• Some options are followed by an argument,

$ tar –x –f foo.tar.gz

• Anything without a hyphen is often a file name,

$ cat foo

6

116

Finding files

• The hard way: cd yourself through the tree and ls

• The elegant way:

$ find /etc –name ’*.conf’

osearches given directories recursively and prints matching file names

oStresses file system. If the search takes more than a second or two, CTRL-C,
and redefine the search directories

• The quicker and “safe” (cached) alternative:

$ locate .conf

117

Search the contents of the files

• Search for word ”network”

$ grep network /etc/init.d/*

• Recursive search:

$ grep –r network /etc

• Discard error messages:

$ grep –r network /etc 2> /dev/null

• Multiple filters using pipes

$ grep –r network /etc 2> /dev/null | grep start | less

118

Managing space

• How much space is left on my filesystem?

$ df -h

• What are the sub-directories that consume the most disk-space?

$ du -sh ./*

Filesystem Size Used Avail Use% Mounted on

/dev/sda5 22G 20G 903M 96% /

/dev/sda1 447M 27M 396M 7% /boot

.host:/ 12G 8.0G 4.1G 66% /mnt/hgfs

1.4M bin

6.3M core

44K Desktop

696M Documents

1.2G Downloads

…

119

Login to a remote machine from the local terminal

• Secure Shell (SSH):

$ ssh –X name@target.computer.fi

oe.g.

$ ssh –X trngXX@taito.csc.fi

ooption -X (or –Y) allows “tunneling” application windows so that they open
on your local machines screen. Requires also that you have X-server (Xming
for Windows, Xquartz for Mac) running locally

120

Copying files to or from a remote machine

• Copy a file to a remote machine:

$ scp lala user@taito.csc.fi:'$HOME’

• Copy a file from remote machine:

$ scp user@taito.csc.fi:'$HOME/lala' .

• If you know a source (=URL) on the internet1) :

oUsually: Open browser and download

• Elegantly from the shell:

$ wget http://ftp.gnu.org/gnu/hello/hello-2.7.tar.gz

121

Compressing files and entire directories with tar

• Check contents of an archive file:

$ tar tvf hello-2.7.tar.gz

• Unpack:

$ tar xvf hello-2.7.tar.gz

• Take the whole sub-tree and make a single compressed file:

$ tar cvzf myhello.tar.gz hello-2.7/

t – text/contents, v – verbose, f – file name, x – extract, c – create

122

Ideology

• Simple tool programs, commands

• Easy composability of commands (pipes)

• Complex tasks are solved by composing commands together

• And there is a command for everything: top, ps, head, tail, wc,
which, time, sort, uniq, cut, paste, sed, awk, bzip2, make,…

123

Extra tip: Executable notes

• Open one terminal window and one editor window

• Test commands on the terminal – and cut’n’past the working ones

to the editor window --> executable notes!

• For example, open an editor and create file notes.bash:

#!/bin/bash

echo “Counting the number of lines in files $@”

wc –l “$@”

• Count the lines: $ bash notes.bash notes.bash

…and don’t worry if this takes a bit of time to digest...

124

Introduction to Linux Security

125

What is Security all about actually?

• Security is a set of appropriate procedures (controls) to protect your resources

(your data, your account, your services and your reputation) against risks

• The main aspects of security are

oConfidentiality (don’t let others access or forward your
confidential data, such as passwords, personal data, business secrets)

o Integrity (don’t let others change your data without permission, beware of malware and
hackers)

oAvailability (keep your data and services available for yourself and those who should have
access to it)

126

• Compromised account

oUse only good passwords (hard to guess, easy
to remember)

o8 chars min, (large alphabet, no dictionary
worlds), use password managers (such as
KeePass)

oBe careful with public systems and services
(never recycle passwords)

oUser keys instead of passwords (but protect
your keys too!)

• System compromise

oPatch your own system regularly, keep firewall
(iptables, ufw) on, use only necessary services
and allow only minimal incoming connections

• Denial of Service

oSystem getting overwhelmed (and
unusable) due to large number of external
requests

oOffer only the necessary services to others

• Surveillance

oDon’t store any confidential information on
international cloud services

• Bad user and system administration

oBeware of forgotten test accounts, patch
your system regularly

How to protect yourself against risks?

127

• Typical risks for Linux users:

oCompromised account (#1!)

oSystem compromise and spying

oLoss of data

oSurveillance

oInfrastructure related issues/
Downtime

oBad user and system administration

oLegal issues

• You must comply with laws and

Terms of Use:

oDo not endanger other users or
the Infrastructure

oProtect personal data and other
confidential information

oAs a User, you are responsible to
protect your account

oAs an administrator (e.g., on your
own PC) you are responsible for all
accounts

Security Risks and Compliance

128

• You can add users form the

command line (tedious)

• Most systems have administrative

graphical user interfaces for doing

that job

• Dangerous sometimes if default

settings there are not tight enough

User administration

129

User administration

Think, if you really need
Administrator group
for each user

Always set a password

Better remove

Make password long
(enough) and difficult
to guess, yet easy to
remember

130

Patch and secure your own computer!

• Do not run any unnecessary services

oEmail, WWW, SMB, telnet

• Do not keep test accounts with bad passwords

oSystems are continuously scanned by intruders

• Install patches regularly:

oEven a virtual machine is a potential target for intruders

oDebian: apt-get update && apt-get upgrade

oRHEL/Centos: yum update

oGUI and scheduled updates

131

Patch and secure your own computer!

Indicates that updates
are waiting

Click to load list of to-
be-updated packages
Click to load list of to-
be-updated packages

132

Patch and secure your own computer!

You need your
password

133

Patch and secure your own computer!

Click to launch update
of tagged packages

Number indicates
importance of update
(1 = lowest);
Untag to skip upgrade

134

Patch and secure your own computer!

Warns, if additional
packages due to new
dependencies have to
be uploaded

135

Patch and secure your own computer!

Shows progress (first
download, then
installation)

If new kernel-modules
have to be compiled,
this can last a little bit
longer

Better not to interrupt
now, although error
handling is quite good

136

Patch and secure your own computer!

Sometimes you will be
asked to overwrite
system files (here for
default applications)

137

Patch and secure your own computer!

Indicates that updates
are in order

138

How long are Linux distributions supported?

LTS = Long Term Support
After the dates no patches will be
distributed

139

Enable a Firewall

• What is a firewall?

oA program (process) that handles network traffic with respect to
security (filtering, blocking)

• Enable local firewall

oIptables, yum (Redhat)

oufw enable

oufw allow ssh, ufw default deny incoming

• Most Linux systems have a graphical user interface for

setting up their built-in firewall

140

Enable a Firewall

GUI access to
Firewall settings

141

Enable a Firewall

Changing rules
for incoming
traffic

By default
(almost) all
incoming ports
are closed

142

Enable a Firewall

Reports the ports
that are open

By default
(almost) all
incoming ports
are closed

143

• Do not use the same password for

different platforms/services

oOnce hacked, you loose it all

• Keyword Management: Keepass (or

cross-platform KeepassX) is a handy

tool for managing passwords

• You have to remember a single master

password (or even better create a key)

• You can create extremely complicated

passwords for services

About Passwords

144

About Passwords

145

SSH keys

• Keys are a nice way to circumvent the hassle of

remembering/typing long and complicated passphrases

• You win twice:

1. Higher convenience (no typing)

2. Increased security

• There are key-gen programs

• Here, we demonstrate how it is done from the command line

146

• ssh-keygen

command

• Usually OK to go with

default destination,

except you want to be

sure not to overwrite

something (but you

should be asked)

SSH keys

147

• You have to type a key-

passphrase

• Generally, you would

have this one

distinguished from

your system

passphrase

• This passphrase will be

requested by the

system the first time

you use ssh-key to

connect

SSH keys

148

SSH keys

Two files
• Id_rsa is your private

key, which under no
circumstance you should
reveal to outside world

• Id_rsa.pub is your
public key

149

In order to be able to use the

key-pair for connecting to

another system, you have to

place the public key in the file

~/.ssh/authorized_keys

on the remote computer (e.g.,

on taito)

The login then should work

without any password inquiry

SSH keys

150

Encrypt your data

• Use native encryption on your workstation

o Improves basic protection

oUsually you can choose upon installation

• Encrypt confidential email with PGP/GnuPG

oCan be a little bit difficult to
implement for non-technical
people

oNo centralized key-management

oPlug-ins for email clients

• Encrypting cloud content

o Some solutions available

151

