
Using CSC Environment Efficiently, 17.09.2018 1

Exercises

a) Log in to Taito either with your training or CSC user account, either from a terminal (with X11

forwarding) or using NoMachine client

b) Go to working directory and untar the exercises file (which you have copied/retrieved earlier)
$ cd $WRKDIR

$ tar xvf exercise-file-name.tar.gz

Note. The not bolded dollar sign "$" at the beginning of some lines is not to be typed, but

marks the command prompt. What follows is to be typed on the command prompt. Text in

italics is not a command and you can choose what to put there (but you need to be

consistent later).

1. Simple batch job script

a) Create a batch job script that prints the compute node on which it is running.
Using nano editor (use whichever editor you like):

$ nano test_hostname.sh

Put this into the file.

#!/bin/bash -l

#SBATCH -J print_hostname

#SBATCH -o output.txt

#SBATCH -e errors.txt

#SBATCH -t 00:01:00

#SBATCH -p test

#SBATCH -n 1

#SBATCH --mem-per-cpu=500

echo "This job runs on the host: "; hostname

To exit from the nano editor:

CTRL+O (enter); CTRL+X (confirm save)

Submit the batch script to Taito

$ sbatch test_hostname.sh

Using CSC Environment Efficiently, 17.09.2018 2

b) Check the job status.

In the following command replace <your username> with the training account or your CSC

username, which ever you used to log in to Taito. If you are not sure which it is, you can check it

with whoami or with this command echo $USERNAME).

$ squeue –u your username

c) What and where did the job print out?
$ less output.txt (type q to quit)

$ less errors.txt (type q to quit)

2. Simple R job
Run a simple R job from a script. The script will fit a straight line through a file containing some

x,y value pairs.

a) Create a script containing the R commands.

Go to the directory "r-job", where you have the data (a file called data.csv). In that

directory, create the following R script file (R commands to be executed). Name the file

"fit.R"

mydata <- read.csv("data.csv")

fit <- lm(y~x,mydata)

fit$coefficients

b) Set up the R environment with the module command
$ module load r-env

c) Run the script with
$ R --no-save --no-restore -f fit.R

d) Did the job succeed? What are the fit coefficients?

3. Simple R job as a batch job
Run the previous R script as a batch job.

a) Create a batch job script, which will submit the job to the queue.

Start with the batch script file from the first exercise. Copy it to the current folder and edit it as

follows. Add to the batch script file the module load ... command and then the

command to run the R-script (the commands you gave in the command line in the previous

exercise, you can remove the hostname command if you like). The other SLURM requirements

can be as in the previous example.

Using CSC Environment Efficiently, 17.09.2018 3

b) Submit the batch script with
$ sbatch your_script_name

c) Check the job results.

Did the job succeed? Where are the fit constants?

4. Run tens of R batch jobs as an array job

In this example, we will repeat the previous fitting job for 20 datasets using the array job

functionality of SLURM.

a) Prepare a list of files to process.
Go to the folder named r-array. Create there a file called datanames.txt. This file will contain the

names of all those files that will be used as input to the fitting. Run the following commands to create it.

$ cd data_dir

$ ls * > ../datanames.txt

b) Write the R script, that will do the fitting.
Go back to the r-array folder, create a script named modelscript.R and put the following

commands to it (you can copy the previous script and edit that, or start from scratch).

dataname <- commandArgs(trailingOnly = TRUE)

mydata <- read.csv(paste0("data_dir/",dataname))

fit <- lm(y~x,mydata)

write(fit$coefficients,file=paste0("result_dir/",dataname,"_result.txt

"))

The first line will extract from the batch command the name of the dataset to be fitted. The next line

reads that data into the variable mydata. Then we fit, like in the previous example, and finally write the

coefficients into a file.

c) Create a batch script to submit the job.
Name it R_array.sh. Copy the contents from the previous example. Add the following line among

the other lines starting #SBATCH:

#SBATCH -a 1-20

It will ask SLURM to run an array of 20 jobs. Edit the output and error files to go to their own directories

and files by editing/adding:

#SBATCH -o out/output%a.txt

#SBATCH -e err/errors%a.txt

After the line with module load r-env, add the following line

Using CSC Environment Efficiently, 17.09.2018 4

dataname=$(sed -n "$SLURM_ARRAY_TASK_ID"p datanames.txt)

and replace the line to run the R command into:

R --no-save --no-restore -f modelscript.R --args $dataname

You should now have:

1) datanames.txt, which has the names of your datafiles

2) modelscript.R, which contains the R code to do the fitting

3) R_array.sh, which is the batch script to submit the job

4) (and the folders out, err, data_dir, result_dir which were there already)

d) run the batch script with
$ sbatch R_array.sh

You should get the fit coefficients in separate files in the result_dir. Let's now use interactive R to

look at the results.

e) Initialise R and Rstudio and start RStudio
$ module load r-env # (if you did this already, no need to repeat)

$ module load rstudio

$ rstudio

f) Collect the results and plot them.
In the GUI that opens, click "File", "Open File", choose analyse.R and accept. The script contents will

appear in the top left window. To execute the commands move your mouse to the line, and press "ctrl -

Enter" to run them. Run them in order. The original data was created by calculating the y values by y=2x

+ some random noise.

e) How do the fit coefficients match that?

5. Copying files to hpc_archive

You can access hpc_archive only from Taito and Sisu. You can access IDA also from your

computer after installing the required tools.

Log in to Taito. Check the contents of your hpc_archive:
$ ils

Show the directory that you're in in hpc_archive:
$ ipwd

Using CSC Environment Efficiently, 17.09.2018 5

Show the directory that you're in in taito:
$ pwd

Create a directory in hpc_archive
$ imkdir test

Move to test directory in hpc_archive
$ icd test

Confirm where you are in hpc_archive
$ ipwd

Copy (put) a file to the test directory in hpc_archive:
$ iput <filename>

Confirm that the file is in hpc_archive
$ ils

Copy the file back from hpc_archive, but to a local folder called localtest

$ mkdir localtest

$ cd localtest

$ iget <filename>

6. Archive a file
Make a new directory in hpc_archive home directory (not under test) called mysafe. Copy

there your files, e.g., test_hostname.sh and R_array.sh from previous exercises.

Compress and archive them to a file, e.g., fit.tar.gz using a command tar -zcvf , and

copy it to mysafe.

7. Batch job with thread parallelization
Some applications can be run in parallel to speed them up. In this example you run the HMMER

software to describe and analyze related or similar sequence areas both in serial and parallel to

see if the jobs speed up.

HMMER uses a database that is already installed, but the protein sequences you want to study

need to be copied first to be used as input:

$ cp /appl/bio/hmmer/example.fasta .

Using CSC Environment Efficiently, 17.09.2018 6

Let's first run the job with just one core. Copy one of the old batch scripts to current directory,

and change / add the following items in it:

1) Output to out_%j.txt

2) error to err_%j.txt

3) run time 10 minutes

4) load the hmmer -module

5) run command:
hmmscan $HMMERDB/Pfam-A.hmm example.fasta >

example_1.result

Submit the job with:

$ sbatch jobscript.sh

Submitting the job echoes the SLURM job id number to the screen, but that is also shown in the

output and error filenames (out_<SLURM_JOBID>.out). Check if the job is running with

$ squeue -u <your username>

Or

$ squeue -j <SLURM_JOBID>

Once the job is finished you can check how much memory and time it used:

$ sacct -j <SLURM_JOBID> -o elapsed,reqmem,maxrss

Did you reserve a good amount of memory? (not excessively too much, but enough to not be

close to memory running out and terminating the job).

Now, let's try with 4 cores. At this point we'll also switch to using the environment variable

$SLURM_CPUS_PER_TASK to avoid mistakes and the need to change that in many places.

Add this line to the batch script:

#SBATCH --cpus-per-task=4

Change the run command to:

hmmscan --cpu $SLURM_CPUS_PER_TASK $HMMERDB/Pfam-A.hmm \

example.fasta > example_$SLURM_CPUS_PER_TASK.result

Using CSC Environment Efficiently, 17.09.2018 7

As you've asked for 4 cpus per task, the environment variable $SLURM_CPUS_PER_TASK

evaluates to 4 when the script is run, and you only need to change the number on the

#SBATCH line.

Submit the job and check with the sacct command how long it took to run the hmmer job

and how did the memory usage change and try to answer these questions:

a) Does it make sense to use 4 cores instead of 1?

b) Was the memory reservation ok?

c) Does it make sense to use more than 4 cores?

d) How to speed up the job?

8. Batch job memory consumption
Create a new R-script (like in exercise 3) named mem-test.R. It should have the following

contents:

dim=10

dim_end=1000

while (dim < dim_end) {

 mat <- matrix(rnorm(dim*dim), dim)

 print("passed dimension")

 print(dim)

 dim=dim*2

}

print("all done")

Variable dim is the dimension of the square matrix, which will be filled with normal distributed

random numbers. The script increases the dim until it exceeds dim_end. Make a new batch
script to run your R-script mem-test.R. In addition to the resource requests your script needs

to load the R-environment and then run the R-script (as in exercise 3). Submit the script with
the sbatch command.

Once the job has been completed (how can you check if it is running or queuing?), check with
sacct or seff how much memory was used as in the previous exercise. If the job completed

successfully, increase the dim_end variable in your script i.e. make a bigger matrix and rerun
the job. Note also the time it takes to run the job. How does the time and memory needed by

the job depend on the number of elements in the array?

max(dim) # of elements Time [s] (Elapsed) Memory used (MaxRSS)

Using CSC Environment Efficiently, 17.09.2018 8

a) How big matrix is needed to exceed the default allowed memory of the batch job?

9. Scaling test for an MPI parallel job

Before running parallel jobs it is important to determine how the job scales. It does not make

sense to use many cores, if this does not speed up the job. The speedup depends on the

application but also input. In this tutorial we'll use cp2k which can use thousands of cores for

certain job types and model systems (but not for this one). Therefore, it is important to test the

scaling for each different job type (or model system type). The idea is not to run production

simulations, but quick short simulations (i.e. using the actual production systems) but only for

like 1-5 minutes, which will be enough to reveal the performance.

First copy the input file to your working directory:

$ cp /appl/chem/cp2k/tests/QS/benchmark/H2O-32.inp .

Then create the following batch script and submit it with sbatch

#!/bin/bash -l

#SBATCH -t 00:15:00

#SBATCH -J cp2k-1

#SBATCH -p serial

#SBATCH -C snb # limiting to Sandy Bridge nodes

#SBATCH -o ocp2k_%j.txt

#SBATCH -e ecp2k_%j.txt

#SBATCH -n 1

module load cp2k-env/4.1-snb

srun cp2k.popt H2O-32.inp > H2O-32_$SLURM_NPROCS.out

After running the job with one core, edit the batch script to use more cores/mpitasks (e.g.
2,4,8,16, ... this is the -n flag) and rerun the job. The output files will be named with the
number of cores used to run them ($SLURM_NPROCS). In the script, we limit the jobs to

use Sandy Bridge nodes (-C snb) to make the performance comparable. Instead of the serial

partition you can also use the test partition. If you ask for more than 16 cores, you need to

Using CSC Environment Efficiently, 17.09.2018 9

switch to parallel partition. In that case it also makes sense to limit the number of Nodes so

#SBATCH -N 2-2 which asks for a minimum and maximum of 2 nodes, so that the job is not

spread about more than necessary.

With the following command you can sum the time spent at different steps for each job.

$ grep "CPU TIME" H2O-32_snb_1.out | awk '{a+=$5;print a}'

Check with seff JOBID how much memory the simulation used and fill in the data in the

following table. If your code does not print out either the performance or used time, you can
use the sacct command (sacct -j JOBID -o elapsed)

A rule of thumb for good scaling is that when you double the resources, the job should speed
up at least 1.5 fold. Ideally it would speed up linearly with resources i.e. 2 fold.

The speedup at some core counts may be off the trend. There may be variation due to load on
the system or because the code/system does not parallelize well for that particular core count.
Sometimes rerun helps. If you know the code parallelizes well, there is no point to start testing
from 1 core, but where you think the code runs well. Bad speedup will show if optimal number

of cores is less in any case.

cores Time [s] (Elapsed) Speedup Ideal speedup Memory used

 - -

a) How many cores can you use efficiently? (i.e. how far does the job scale)

b) How does the required memory depend on the number of cores?

c) Why are the elapsed times reported by sacct slightly different to the sum of "CPU TIME" lines?

d) Why did we limit the acceptable nodes to Sandy Bridge? What else could we have done?

e) If we want to run a different cp2k system do we need to rerun the scaling test?

