
About this course

1

Program, September 27th

09:30 – 10:00 Morning coffee & registration

10:00 – 10:15 Introduction to the course (whereabouts, etc.)

10:15 – 10:45 What is UNIX/Linux (basic concepts, multi-user, multi-tasking, multi-processor)

10:45 – 11:30 Linux on my own computer (native installation, dual-boot, virtual appliances)

11:30 – 12:00 1st utilization of Linux - GUI based (opening terminal from GUI, creating shortcuts)

12:00 – 13:00 Lunch

13:00 – 14:15 A first glimpse of the shell (simple navigation, listing, creating/removing files and

directories)

14:15 – 14:45 Coffee

14:45 – 15:15 Text editors (vi, emacs and nano)

15:15 – 16:00 File permissions (concepts of users and groups, changing permissions/groups)

16:00 – 16:30 Troubleshooter: Interactive session to deal with open questions and specific

problems

2

Program, September 28th

09:00 – 09:30 Job management (scripts and executables, suspending/killing jobs, monitoring)

09:30 – 10:00 Coffee

10:00 – 11:15 Setup of your system (environment variables, aliases, rc-files)

11:15 – 12:15 Lunch

12:15 – 13:30 A second look at the shell (finding content, accessing and copying from/to remote

hosts)

13:30 – 14:00 Linux security (best practices, user management, firewall, ssh keys)

14:00 – 14:30 Coffee

14:30 – 15:30 Hands-on exercises

15:30 – 16:15 Troubleshooter: Interactive session to deal with open questions and specific

problems

3

How we teach

• All topics are presented with interactive demonstrations

oThis is a course for beginners, hence we try to adopt a possibly slow pace

oPlease, indicate immediately, if pace is too fast. We want to have everyone
with us all the time

• Additionally, exercises to each of the sections will be provided

• The Troubleshooter section is meant for personal interaction and is

(with a time-limit to 16:30 or 16:15) kept in an open end style

4

P• Keep the name tag visible

• Lunch is served in the same building

• Toilets are in the lobby

• Network:
o WIFI: eduroam, HAKA authentication

o Ethernet cables on the tables

o CSC-Guest accounts upon request

• Public transport:
o Other side of the street (102,103) -> Kamppi/Center

o Metro station at Keilaranta (but no metro!)

o Same side, towards the bridge (194,195,503-6) ->
Center/Pasila

o Bus stops to arrive at CSC at the same positions, just on
opposite sides

• If you came by car: parking is being

monitored - ask for a temporary parking

permit from the reception (tell which

workshop you’re participating)

• Visiting outside: doors by the reception

desks are open

• Room locked during lunch
o You can leave stuff inside room

o else, use lockers in lobby

o lobby remains open

• Username and password for workstations:

given on-site

Practicalities

5

Around CSC

B1
B2

CSC

(Factory restaurant & salad bar)

Restaurant You are here
(Training
room)

B1 (102,103) Kamppi
B2 (194/5,503/4/…  Pasila,…

Restaurant (soup & salad)Mind the changes
introduced by the
construction work

6

What is UNIX/Linux

7

Linux = UNIX

• Linux is a free and open-source software operating system built

around the Linux kernel.

oThe kernel is a computer program that is the core of a computer's operating
system, with complete control over everything in the system.

• Linux was originally developed for personal computers based on

the Intel x86 architecture, but has since been ported to

more platforms than any other operating system.

• Linux is a derivative of the original AT&T Unix operating system.

• The Linux kernel is an Unix-like operating system kernel.

Linux ≠ UNIX®

By lewing@isc.tamu.edu
Larry Ewing and The GIMP

8

The “Unix philosophy”

• Unix was designed to be portable, multi-tasking and multi-user in

a time-sharing configuration.

• Unix (and thus, unix-like) systems are characterized by various

concepts:

othe use of plain text for storing data;

oa hierarchical file system;

otreating devices as files;

othe use of a large number of small programs that can be strung together
through a command-line interpreter, as opposed to using a single
monolithic program that includes all of the same functionality.

9

Multitasking

• Multitasking is the concurrent execution of multiple tasks (also

known as processes) over a certain period of time.

oAs a result, a computer executes segments of multiple tasks in an
interleaved manner.

• Multitasking automatically interrupts the running program, saving

its state (partial results, memory contents and computer register

contents) and loading the saved state of another program and

transferring control to it.

oThis is called context switching.

Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4 Task 1

Time

10

Multi-user

• Multi-user system is operating system software that allows access

by multiple users of a computer, typically simultaneously.

• The operating system provides isolation of each user's processes

from other users, while enabling them to execute concurrently.

• The filesystem supports multiple users by providing permissions

or access rights to specific users and groups for all the files stored

on the system.

11

• Unix-like operating systems create a virtual file system,

which makes all the files on all the devices appear to

exist in a single hierarchy. This means there is one root

directory, and every file existing on the system is

located under it somewhere.

oTo gain access to files on another device, the operating system
must be informed where in the directory tree those files should
appear. This process is called mounting a file system.

• Linux supports numerous file system formats, most

common ones being ext* family (ext2, ext3 and ext4),

XFS, ReiserFS and btrfs.

Filesystem

12

Linux Distributions

• A Linux distribution (often abbreviated as distro) is an operating

system made from a software collection , which is based upon

the Linux kernel and, often, a package management system.

• A typically comprises of a Linux kernel, GNU tools and libraries,

additional software, documentation, and a desktop environment.

• Almost six hundred Linux distributions exist, with close to five

hundred out of those in active development.

oDebian (Ubuntu, Mint, Knoppix) and Red Hat (Fedora, RHEL, CentOS) are
the most common ones.

oWhether Google's Android counts as a Linux distribution is a matter of
definition.

ohttp://www.distrowatch.org/

13

User Interfaces: CLI and GUI

• Command-line interfaces, or CLI shells, are text-based user

interfaces, which use text for both input and output.

oThe dominant shell used in Linux is the Bourne-Again Shell (bash).

oMost low-level Linux components use the CLI exclusively.

oThe CLI is particularly suited for automation of repetitive or delayed tasks,
and provides very simple inter-process communication.

• On desktop systems, graphical user interfaces, or GUIs, are the

most common ones providing extensive desktop environments.

oTypical ones are the K Desktop Environment (KDE), GNOME, MATE,
Cinnamon, Unity, LXDE, Pantheon and Xfce, though a variety of additional
user interfaces exist.

14

Linux on my own computer

15

Running your own Linux

• Basically, three options:

1. Run native Linux on your computer

o Includes the option of dual boot (two OS’s side-by-side, but optionally
booting into one of them)

o Not recommended: run as live-system (boot from USB/CD)

2. Run it inside a Virtual Machine

3. Run it remotely over the network

o Includes remote login and remote desktops

o Needs a network connection

16

Dual boot

• Boot loader in the beginning gives choice of which OS to load

• Pros:

onative Linux works faster and all resources of the computer are dedicated to
a single OS

oWindows file-system can be mounted in Linux

• Cons:

o changing between OS’s needs reboot of machine

oMounting of Linux/Unix file-systems on Windows at least problematic

17

Dual boot

• I have a Windows machine, what do I have to do to install Linux in parallel (as dual

boot) to it?:

1. Provide a separate disk(-partition) on computer

• It is possible (e.g., in Ubuntu) to install into existing Windows system, but you loose performance

• Some installation medias allow for live-mode (Linux running from USB/CD) and have a
repartitioning program within (always backup your data!)

2. Download the image of your favorite Linux distribution (see later)

3. Installation generally guides you also through boot-loader configuration

18

Virtual machines

• Running an application inside your native OS that emulates hardware on

which you can install another OS

• Pros:

oSeamless integration of Linux (guest) in host system

oData exchange between guest and host

oSuspend system (no new boot, leave applications open)

oBackup and portability (copy to new computer)

• Cons:

oPerformance loss of guest system (SW layer between emulated and real hardware)

oShared resources between guest and host

19

Virtual Machines

20

• The machine can be

suspended as is

• Upon relaunch, the user gets

the system as she/he left it

Virtual Machines

21

Virtual machines

• I have a Windows computer. How can I install Linux running in a Virtual

Machine (VM)?

1. Make sure you have the hardware to support a VM (CPU, memory > 2GB, disk-space)

Some older CPUs do not support virtualization

2. Download a VM software (see next slide) and install it

3. Download an image of your favorite Linux distribution (see later)

4. Mount the medium in your VM and install as if it would be a normal computer

5. Instead of 3+4: Download a ready made virtual appliance (~virtual computer system)

22

Virtual machines

• Two main vendors for VM packages:

oVMware™ Player (free-of-charge)

oOnly max 4 cores supported in VM

oRestricted to non-commercial use

oOracle (former Sun) VirtualBox (open-source)

o Supports even VMWare virtual disks

• Usually, additional tools (e.g. Vmware-tools) have to be installed

• Important to know the hardware
o especially CPU type (32- or 64bit)

oMight need adjustments in BIOS (virtualization)

• Virtual Appliances: Google or FUNET

oOnly download appliances you trust!

23

• The underlying system to your

Apple is Darwin, which is a fork

from BSD and hence UNIX

oDarwin is actually open-source

oThe rest of your Apple computer
apparently not

• You can use the terminal from

within your Mac just like a UNIX

shell

• You can even display UNIX-type

graphics (see later)

Mac OSX = UNIX + bling

System III & V family

BSD (Berkeley Software Distribution)

FreeBSD

NetBSD

OpenBSD

Solaris

NextStep

Xenix OS

GNU

Linux

CommercialUNIX

HP-UX

AIX

UnixWare

IRIX

BSD family

1970 1980 1990 2000 Time

Microsoft/SCO

Richard Stallman

Darwin

GNU/Hurd

Linus Torvalds

Andrew S. Tanenbaum

Minix

3.3

6.5.30

4.1.4

Research UNIX 10.5

Bell Labs: Ken Thompson,

Dennis Ritchie, et al.

Bill Joy

AT&T

IBM

SGI

Univel/SCO

2010

4.4

6.1

11.0

macOS 10.12

7.1

11.3

7.2

11i v 3

4.11

3.4

16.4

Sun/Oracle

Apple

Theo de Raadt

0.9

Matthew Dillon

DragonFly BSD 4.8

SunOS

https://ixquick-proxy.com/do/spg/show_picture.pl?l=english&rai...

1 of 1 11/09/2018, 7.41

24

Remote connection

• From OS X:

ossh and X available – like from a Linux machine

• From Windows ®:

oNeeds a ssh client: e.g. PuTTY

o If graphics, needs a X11-emulator: e.g. Xming

• Remote desktops:

oNeeds a server running (and network connection)

oCertain software (client + server)

oCSC is maintaining such a service (see CSC environment course): NoMachine, NX

25

Remote Connections from Windows

Insert host
computer here

26

Remote Connections from Windows

Tick here to
forward X11
(=graphics);
needs X11
emulator
installed and
activated

27

Remote Connections from Windows

28

1st Utilization of Linux

29

Starting

•Terminal
• Network
• Web browser
• Install new software
• Text editor, e.g., gedit, nano

• Take a note of what you’ve learnt

30

Linux Mint 18

network
Menu (can

be activated

with

windows
button)

Frequently

used

programs;

here
terminal

File GUI

Search

31

network

Same thing on RHEL
Menu

32

Installation of software package

Press

1) Administration

2) Synaptic …

33

Installation of software package

1) Press Search

2) Give “gedit”

3) Mark

4) Press apply

34

Short exercise

• Try to now find gedit from the menu and launch

• Start to fill in the opened blank file with a log of your actions

• First entry could be:

o Installation of new software: synaptic

35

A first glimpse of the shell

36

Contents

• What is a shell?

• What is a command?

• Listing of directories: ls

• Contents of a file: cat, less

• Moving around in file tree: cd, pwd

• Directories (creating, changing into and out, removing): mkdir, rmdir

• Files (creating, redirecting, re/moving):

37

What is a shell?

• “A shell in computing provides a user interface for access to an

operating system’s kernel services.” (Wikipedia)

• Remote login:

oNormally no GUI (Graphical User Interface)

oText shell: Terminal with a set of commands

• Different flavours:

obash (default), tcsh (old default), zsh, corn-shell, …

programmable

38

What is a shell?

39

What is a command?

• A command is a small program provided by the shell

• The over-all structure of a command is:

command -option [optional input]

• Example:

$ ls –lsh /etc/init.d (we will see later)

• Case sensitive? Try: Ls –lsh /etc/init.d

• How to find a command? $ apropos list

• How to find all options? $ man ls

”$” is not part of the command, but depicts the command prompt

40

Listing of directories

41

Listing of directories

• Print contents of a directory or information on a file

• Detailed list of directory:

$ ls –lthr /etc/

-l displays additional information (detailed list in Windows)

-h displays size in human readable format

-t orders by date (use –r to reverse order, i.e., oldest first)

-d keeps from going into sub-directories

• Only print directory/filenames matching a wildcard expression:

$ ls –d /etc/*.d

• Only print directory/filenames with a 4 char suffix: $ ls –l /etc/*.????

42

Contents of a file

• Prints contents of file to screen:

$ cat /etc/group

• -n to precede lines with line numbers

What if the file doesn’t fit on the screen?:

• Open a scrollable view of a file:

$ less /etc/group

• Press q to quit

• / to search forward, ? to search backwards

• n to find the next match, N for previous

43

• change directory: $ cd /etc/

• print work directory: $ pwd →/etc

• go to subdirectory: $ cd ./init.d

$ pwd → /etc/init.d

• Relative path: $ cd ../

$ pwd → /etc

• Absolute path: $ cd /etc/init.d

• Combination: $ cd ../../usr

$ pwd → /usr

• Where is home?: $ cd or cd ~/

Moving around in directories

44

Creating and (re-)moving directories

• Make a new directory: $ mkdir test1

• Relative to (existing) path: $ mkdir test1/anotherone

• Recursively: $ mkdir –p test2/anotherone

• moving a directory: $ mv test2 test3

• removing a directory: $ cd test1

$ rmdir anotherone

$ cd ..

$ rmdir test1

$ rmdir test3

• Recursively: $ rmdir –p test3/anotherone

45

Creating and (re-)moving directories

46

Creating/copying/(re-)moving files

• In UNIX: everything is text

• Redirecting redirecting output of command/programs into files:

$ echo "hello world" > mytest.txt

• Important: if file exists, it will be overwritten!

oTo prevent it: $ set -o noclobber

oTo enable it back: $ set +o noclobber

• Appending to existing files:

$ echo "hello again" >> mytest.txt

$ cat mytest.txt

$ cat mytest.txt > othertest.txt

47

Creating/copying/(re-)moving files

• copy a file: $ cp mytest.txt othertest2.txt

• Same recursively with directory:

$ mkdir –p test/anotherone

$ cp –r test test2

• move a file (renaming):

$ mv mytest.txt othertest3.txt

$ mv othertest3.txt test2/anotherone

• remove file(s): $ rm –f mytest.txt (-f forces the action)

• Remove recursively: $ rm –r test2

48

Further resources

• CSC’s online user guide: http://research.csc.fi/csc-guide

• All the man-pages of the commands mentioned in these

slides

•The UNIX-wiz sitting by your side

•Else:
ohttp://www.ee.surrey.ac.uk/Teaching/Unix/index.html

ohttp://en.wikipedia.org/wiki/List_of_Unix_utilities

ohttps://v4.software-carpentry.org/shell/index.html

49

Text Editors: Nano, Emacs, vi

50

Nano — the Basic (But Still a Good) Editor for Terminal

• For opening and creating files, type:
$ nano filename

o If you are editing a configuration file use the -w switch to disable wrapping
on long lines as it might render the configuration file unparseable by
whatever tools depend on it:
$ nano -w /etc/fstab

• If you want to save the changes you've made, press ^O.

oThe carrot symbol ̂ denotes control key, ctrl. Therefore ^O ought to be read
as ctrl+o, meaning hold down the control key while pressing the o key.

• To exit nano, type ^X.

o If you ask nano to exit from a modified file, it will ask you if you want to save
it. Just press n in case you don't, or y in case you do. It will then ask you for a
filename. Just type it in and press Enter.

51

Learning to Fly with Nano

• To cut a single line, you use ^K. The line disappears. To paste it,

you simply move the cursor to where you want to paste it and

punch ^U. The line reappears.

oTo move multiple lines, simply cut them with several ^K in a row, then paste
them with a single ^U. The whole paragraph appears wherever you want it.

o If you need a little more fine-grained control, then you have to mark the
text. Move the cursor to the beginning of the text you want to cut. Hit ^6.
Now move your cursor to the end of the text you want to cut: the marked
text gets highlighted. Press ^K to cut the marked text. Use ^U to paste it.

o If you need to cancel your text marking, simply hit ^6 again.

• To search for a string, hit ^W, type in your search string, and

press Enter. To search for the same string again, hit M-W.

oNotion 'M-' means meta key, which typically is the alt key.

52

Editor MACroS for TECO — the GNU Emacs Editor

• For opening and creating files, type:
$ emacs filename

oEmacs will detect whether you are working on a GUI and opens in a separate
window if you are. To disregard the GUI, use the -nw option:
$ emacs -nw filename

• If you want to save the changes you've made, press C-x C-s.

o In Emacs, C- denotes the control key. M- is the meta (usually alt) key.

• A file can also be opened while already in Emacs with C-x C-f.

oA new file will be created if it does not exist yet.

• To exit Emacs, type C-x C-c.

o If you ask Emacs to exit from a modified file, it will ask you if you want to
save it. Just press n in case you don't (and confirm with yes), or y in case you
do.

53

Abort! And Some Other Useful Stuff in Emacs

• You can abort any command by hitting C-g.

• If you have multiple files open in Emacs you can switch between

them with C-x ← and C-x →, or list all the buffers with C-x C-b.

oTo actually use the buffer list you need to switch to that window with C-x o.

o Type C-x 1 to close other windows, and C-x 0 to close the current window.

• Emacs' cursor movement commands are useful also in bash!

oUse C-a and C-e to jump to the beginning/end of current line.

oM-b takes you backwards a word at a time, and M-f moves forward.

oHit M-backspace or M-d to delete the word left/right to the cursor.

oOr, to kill the rest of the line from the cursor, hit C-k.

• Typos and editing errors are inevitable, hence C-/ aka Undo helps.

oAlso C-_ and C-x u.

54

Not for the Faint-Hearted — the vi Editor

• For opening and creating files, type:
$ vi filename

• vi is a modal editor and it always opens in command mode, so it

only understands commands.

o In this mode, you can do everything else but insert or edit the text.

oYou switch to insert mode with commands like insert, open, or append, and
back to command mode with esc.

• To save the changes you've made, type esc : w enter.

• To exit vi, type esc : q

ovi will not allow you to exit from a modified file. If you really want to discard
your changes, you need to type esc : q !

oTo save and exit on one go type esc : w q

55

File Permissions

56

File permissions

• UNIX distinguishes between users, groups and others

oCheck your groups: $ groups

• Each user belongs to at least one group

• ls –l displays the attributes of a file or directory

-rw-r--r-- 1 userid groupid 0 Jan 29 11:04 name

o
th
ers

u
se
r

r = read, w=write, x=execute

The above configuration means: user can read + write, group and all others only read

typ
e

gro
u
p

57

File permissions

$ cp /etc/group lala

• Changing permissions with chmod

$ ls –l lala

→ rw-r--r-- 1 userid groupid 0 Jan 29 11:04 lala

$ chmod o-r,g+w,u+x lala

$ ls –l lala

→ rwxrw---- 1 userid groupid 0 Jan 29 11:04 lala

$ chmod u-xrw lala

$ less lala

”$” is not part of the command, but depicts the command prompt

58

File permissions

• Changing group chgrp and user chown

$ chgrp othergrp lala

$ chown otherusr lala

$ ls –l name

$ rwxrw---- 1 otherusr othergrp 0 Jan 29 11:04 lala

59

File permissions

• You can make a simple text file to be executed – your first script

oScripts are useful for workflows, when you repeatedly have to do the same
sequence of commands

• Open file befriendly.sh and insert following lines:

• Change to executable:

$ chmod u+x befriendly.sh

$./befriendly.sh

#!/bin/bash

echo "Hello and welcome"

echo "today is:"

date

echo "have a nice day"

60

Job management (in shell)

61

Managing jobs

• By default commands (jobs) are run in foreground, e.g.,

$ emacs newfile

• Now, try to enter something in your shell

o It does not respond. Why?

oemacs (the currently running program) blocks the shell as long as you do not
quit it

• Killing a job: in shell press Ctrl + C

oThat is not usually recommended, as you might lose data

oDo that only when program gets unresponsive

62

Managing jobs

• Launch again into foreground

$ emacs newfile

• Type something into emacs

• Suspending a job: in shell press Ctrl + Z

oShell reports on stopped job

otype a command into the shell: $ ls -ltr

oTry to type something into emacs. What happens?

oThe process of emacs is suspended, hence does not accept any input*)

*) In fact, the input buffer keeps the typed stuff and will fill it
into emacs, once it is active again

63

Managing jobs

• Sending the suspended job to background: $ bg

otype a command into the shell: $ ls -ltr

otype something into emacs

o It works now for both!

• Fetching back to foreground: $ fg

oShell is blocked again

oemacs accepts input (but press exit)

• Launching directly into background:

$ xterm –T "no 1" &

$ xterm –T "no 2" &

64

Managing jobs

• Listing jobs of shell: $ jobs

• Explicitly bring to foreground: $ fg %2

• Send it back again: Ctrl + Z $ bg

• Killing job: $ kill -9 %2

$ jobs

• Playing terminator: $ for i in {1..5};do xterm & done

$ pkill xterm

[1] - Running xterm -T "no 1" &
[2]+ Running xterm -T "no 2" &

[1] - Running xterm -T "no 1" &
[2]+ Killed xterm -T "no 2"

65

Setup of your system

66

The Environment

• When interacting with a host through a shell session, there are

many pieces of information that your shell compiles to determine

its behaviour and access to resources.

• The way that the shell keeps track of all of these settings and

details is through an area it maintains, called the environment.

• Every time a shell session spawns, a process takes place to gather

and compile information that should be available to the shell

process and its child processes.

67

How the Environment Works

• The environment is implemented as strings that represent key-

value pairs and they generally will look something like this:
KEY=value1:value2:...

oBy convention, these variables are usually defined using all capital letters.

• They can be one of two types, environmental variables or shell

variables.

oEnvironmental variables are variables that are defined for the current shell
and are inherited by any child shells or processes.

oShell variables are contained exclusively within the shell in which they were
set or defined.

68

• We can see a list of all of our environmental variables by using the

printenv command.

• The set command can be used for listing the shell variables.

o If we type set without any additional parameters, we will get a list of all shell
variables, environmental variables, local variables, and shell functions.

oThe amount of information provided by set is overwhelming and there is no
way limiting the output to shell variables only.

oYou can still try with
$ comm -23 <(set -o posix; set | sort) <(printenv | sort)

Printing Shell and Environmental Variables

69

Common Environmental and Shell Variables

• Some environmental and shell variables are very useful and are

referenced fairly often. Here are some common environmental

variables that you will come across:

oSHELL: This describes the shell that will be interpreting any commands you
type in. In most cases, this will be bash by default.

oUSER: The current logged in user.

oPWD: The current working directory.

oOLDPWD: The previous working directory. This is kept by the shell in order to
switch back to your previous directory by running 'cd -'.

70

Common Environmental and Shell Variables (cont’d)

o LS_COLORS: This defines colour codes that are used to optionally add
coloured output to the ls command. This is used to distinguish different file
types and provide more info to the user at a glance.

oPATH: A list of directories that the system will check when looking for
commands. When a user types in a command, the system will check
directories in this order for the executable.

o LANG: The current language and localization settings, including character
encoding.

oHOME: The current user's home directory.

o_: The most recent previously executed command.

71

Common Environmental and Shell Variables (cont’d)

oCOLUMNS: The number of columns that are being used to draw output on
the screen.

oDIRSTACK: The stack of directories that are available with the pushd and
popd commands.

oHOSTNAME: The hostname of the computer at this time.

oPS1: The primary command prompt definition. This is used to define what
your prompt looks like when you start a shell session.

o The PS2 is used to declare secondary prompts for when a command spans
multiple lines.

oUID: The UID of the current user.

72

• Defining a shell variable is easy to accomplish; we only need to

specify a name and a value:
$ TEST_VAR='Hello World!'

oWe now have a shell variable. This variable is available in our current session,
but will not be passed down to child processes. We can see this by grepping
for our new variable within the set output:
$ set | grep TEST_VAR

oWe can verify that this is not an environmental variable by trying the same
thing with printenv:
$ printenv | grep TEST_VAR

Setting Shell and Environmental Variables

73

• Let's turn our shell variable into an environmental variable. We can

do this by exporting the variable:
$ export TEST_VAR

oWe can check this by checking our environmental listing again:
$ printenv | grep TEST_VAR

• Environmental variables can also be set in a single step like this:
$ export NEW_VAR="Testing export"

• Accessing the value of any shell or environmental variable is done

by preceding it with a $ sign:
$ echo $TEST_VAR

Setting Shell and Environmental Variables (cont’d)

74

• Demoting an environmental variable back into a shell variable is

done by typing:
$ export -n TEST_VAR

o It is no longer an environmental variable:
$ printenv | grep TEST_VAR

oHowever, it is still a shell variable:
$ set | grep TEST_VAR

• To completely unset a variable, either shell or environmental, use

the unset command:
$ unset TEST_VAR

Demoting and Un-setting Variables

75

Setting Variables at Login

• We do not want to have to set important variables up every time

we start a new shell session, so how do we make and define

variables automatically?

• Shell initialization files are the way to persist common shell

configuration, such as:

o $PATH and other environment variables;

oshell tab-completion;

oaliases, functions; and

okey bindings.

76

Shell Modes

• The bash shell reads different configuration files depending on

how the session is started. There are four modes:

oA login shell is a shell session that begins by authenticating the user. If you
start a new shell session from within your authenticated session, a non-login
shell session is started.

oAn interactive shell session is a shell session that is attached to a terminal. A
non-interactive shell session is one that is not attached to a terminal session.

• Each shell session is classified as either login or non-login and

interactive or non-interactive.

77

Some Common Operations and Shell Modes

Operation Shell modes

log in to a remote system via SSH: $ ssh user@host login, interactive

execute a script remotely: $ ssh user@host 'echo $PWD' non-login, non-interactive

execute a script remotely and request a terminal:
$ ssh user@host -t 'echo $PWD'

non-login, interactive

start a new shell process: $ bash non-login, interactive

run a script: $ bash myscript.sh non-login, non-interactive

run an executable with #!/usr/bin/env bash shebang non-login, non-interactive

open a new graphical terminal window/tab on Mac OS X login, interactive

open a new graphical terminal window/tab on Unix/Linux non-login, interactive

78

Shell Initialization Files

• A session started as a login session will read configuration details

from the /etc/profile file first.

o It then reads the first file that it can find out of ~/.bash_profile, ~/.bash_login,
and ~/.profile.

• A session defined as a non-login shell will read /etc/bash.bashrc and

then the user-specific ~/.bashrc file to build its environment.

• Non-interactive shells read the environmental variable called

BASH_ENV and read the file specified to define the new

environment.

79

The Aliases

• An alias is a (usually short) name that the shell translates into

another (usually longer) name or command.

• Aliases allow you to define new commands by substituting a string

for the first token of a simple command.

• They are typically placed in the ~/.bashrc file so that they are

available to interactive subshells.

80

• The general syntax for the alias command varies somewhat

according to the shell. In the case of the bash shell it is
alias [name="value"]

oname is the name of the new alias and value is the command(s) which the
alias will initiate.

oThe alias name and the replacement text can contain any valid shell input
except for the equals sign '='.

• When used with no arguments, alias provides a list of aliases that

are in effect for the current user:
$ alias

Listing and Creating Aliases

81

• An example of alias creation could be the alias p for the commonly

used pwd command:
$ alias p="pwd"

• An alias can be created with the same name as the core name of a

command; it is the alias that is called, rather than the command:
$ alias ls="ls --color=auto -F"

oSuch an alias can be disabled temporarily by preceding it with a backslash:
$ \ls

oAn alias does not replace itself, which avoids the possibility of infinite
recursion.

Listing and Creating Aliases (cont'd)

82

• You can nest aliases:
$ alias l="ls -1"

$ alias lc="l | wc -l"

oNow you can even change the alias for l and have the changed behaviour in
alias lc, too.

• Use the unalias built-in to remove an alias:
$ unalias l lc

• Aliases are disabled for non-interactive shells (that is, shell

scripts); you have to use the actual commands instead.

Listing and Creating Aliases (cont'd)

83

Bringing It All Together

$ cat .bashrc

.bashrc

set +o noclobber

umask 0027

PS1='\h:\W\$ '

export PS1

alias ls='ls --color=auto -F'

alias guc=globus-url-copy

unalias ll 2> /dev/null

unalias rm 2> /dev/null

function ll() { ls --color -laF "$@" | more; }

function psg() { ps -fp $(pgrep -d, -f "$@"); }

function rot13() { if [-r $1]; then cat $1 | tr '[N-ZA-Mn-za-m5-90-4]' '[A-Za-z0-9]';

else echo $* | tr '[N-ZA-Mn-za-m5-90-4]' '[A-Za-z0-9]'; fi }

84

A second look at the shell

85

Recap: what is shell?

• text-only user interface

oUnix: Shell, Mac: Terminal, Windows: DOS prompt

oOptimized to work with files --- and everything is a file in Linux

• Interactive programming

oBash language

o It is very easy to write new small programs/commands, scripts

 Programmable UI

o That makes it powerful and that’s why we love it!

Be a programmer, not a computer!

86

What happens when you press ENTER?

Bash

• expands variables and file name wildcards (globbing)

• splits the line into “words”

• Connects files and pipes

• Interprets the first word as the name of the command, and the

rest of the words as the arguments to the command

…etc. See man bash for details.

…and don’t worry if this is not immediately clear...

87

What is a command?

echo “one two” > foo.txt

stdin
stdout: foo.txt

stderr

First word is the
command!

Stdout is
connected to a
file, here!

Argument(s) to the command.

Could be
keyboard, file
or pipe. Not
used here.

Exit code, $?
Success: 0
Fail: not 0

Two arrows in, three arrows out!

Errors would
go here

stdout and
stderr are
connected to
the terminal by
default.

88

Quoting and escaping special characters, i.e. control expansions and
word splitting!

• Try to write “Lisa” to a file named “Lunch company”. How does

bash interpret the command

$ echo Lisa > Lunch company

• We use single (’) or double quotes (”), or escape the special

meaning of space character with backslash (\), or for file names,

preferrably, snake_case or CamelCase:

$ echo Lisa > ’Lunch company’

$ echo Lisa > Lunch\ company

$ echo Lisa > LunchCompany

89

$ command [arguments]

• Arguments are strings that the command can interpret as it

pleases. There are conventions, though.

• Command options usually begin with one or two hyphens,

$ ls –q

• Some options are followed by an argument,

$ tar –x –f foo.tar.gz

• Anything without a hyphen is often a file name,

$ cat foo

6

90

Finding files

• The hard way: cd yourself through the tree and ls

• The elegant way:

$ find /etc –name ’*.conf’

osearches given directories recursively and prints matching file names

oStresses file system. If the search takes more than a second or two, CTRL-C,
and redefine the search directories

• The quicker and “safe” (cached) alternative:

$ locate .conf

91

Search the contents of the files

• Search for word ”network”

$ grep network /etc/init.d/*

• Recursive search:

$ grep –r network /etc

• Discard error messages:

$ grep –r network /etc 2> /dev/null

• Multiple filters using pipes

$ grep –r network /etc 2> /dev/null | grep start | less

92

Managing space

• How much space is left on my filesystem?

$ df -h

• What are the sub-directories that consume the most disk-space?

$ du -sh ./*

Filesystem Size Used Avail Use% Mounted on

/dev/sda5 22G 20G 903M 96% /

/dev/sda1 447M 27M 396M 7% /boot

.host:/ 12G 8.0G 4.1G 66% /mnt/hgfs

1.4M bin

6.3M core

44K Desktop

696M Documents

1.2G Downloads

…

93

Login to a remote machine from the local terminal

• Secure Shell (SSH):

$ ssh –X name@target.computer.fi

oe.g.

$ ssh –X trngXX@taito.csc.fi

ooption -X (or –Y) allows “tunneling” application windows so that they open
on your local machines screen. Requires also that you have X-server (Xming
for Windows, Xquartz for Mac) running locally

94

Copying files to or from a remote machine

• Copy a file to a remote machine:

$ scp lala user@taito.csc.fi:'$HOME’

• Copy a file from remote machine:

$ scp user@taito.csc.fi:'$HOME/lala' .

• If you know a source (=URL) on the internet1) :

oUsually: Open browser and download

• Elegantly from the shell:

$ wget http://ftp.gnu.org/gnu/hello/hello-2.7.tar.gz

95

Compressing files and entire directories with tar

• Check contents of an archive file:

$ tar tvf hello-2.7.tar.gz

• Unpack:

$ tar xvf hello-2.7.tar.gz

• Take the whole sub-tree and make a single compressed file:

$ tar cvzf myhello.tar.gz hello-2.7/

t – text/contents, v – verbose, f – file name, x – extract, c – create

96

Ideology

• Simple tool programs, commands

• Easy composability of commands (pipes)

• Complex tasks are solved by composing commands together

• And there is a command for everything: top, ps, head, tail, wc,
which, time, sort, uniq, cut, paste, sed, awk, bzip2, make,…

97

Extra tip: Executable notes

• Open one terminal window and one editor window

• Test commands on the terminal – and cut’n’past the working ones

to the editor window --> executable notes!

• For example, open an editor and create file notes.bash:

#!/bin/bash

echo “Counting the number of lines in files $@”

wc –l “$@”

• Count the lines: $ bash notes.bash notes.bash

…and don’t worry if this takes a bit of time to digest...

98

Introduction to Linux Security

99

Information Security

• Information security is the practice of preventing unauthorized

access, use, disclosure, disruption, modification, inspection,

recording or destruction of information. (Wikipedia)

• Primary focus is the balanced protection of the confidentiality,

integrity and availability of data while maintaining efficiency and

productivity.

oConfidentiality: don't let others access your data.

o Integrity: don't let others modify your data.

oAvailability: make data available when it is needed.

100

• Computer crime

• Vulnerability

• Eavesdropping

• Malware

• Spyware

• Ransomware

• Trojans

• Viruses

• Worms

• Rootkits

• Bootkits

• Keyloggers

• Screen scrapers

• Exploits

• Backdoors

• Logic bombs

• Payloads

• Denial of service

How You Will Be Hacked – If You Do Nothing

101

One Risk to Rule Them All

• The single most common risk for you: loss of data.

• It's just a matter of a small typo in a command:
rm -rf ./ *

• This will delete every file and directory on the system without

asking anything.

• Make backups – and keep them up-to-date!

102

System Administration

• Do not run any unnecessary services, like www or email servers.
$ service --status-all

• Enable firewall.

oFirewall is a process that monitors and controls incoming and outgoing
network traffic.

$ sudo ufw enable && sudo ufw default deny incoming

• Install patches regularly.

$ sudo apt update && sudo apt upgrade

103

• Users can be managed from

command line:

$ sudo useradd -m -G cdrom \

-c "Joe Cool" someone

$ sudo passwd someone

• Most systems have an administrative

graphical user interfaces for doing

that job.

• Grant only permissions that are

really needed, assign a password and

make sure it's a good one.

User Administration

104

A Word About Passwords

• Do not use same password(s) for

different services.

• Use password managers, e.g.

KeePassX.

oPros: single master password to remember,
cross-platform encrypted vault for all your
passwords, great password generator,
integration with browsers,…

oCons: you can loose all your passwords in
one go.

105

SSH –The Secure Shell

• SSH offers a secure remote login (and more) over unsecure

networks.

oComes (almost) always by default with Linux and macOS. On a Windows
computer a 3rd party client, e.g. PuTTY, is needed.

• It ensures that all communication to and from the remote server

happens in an encrypted manner, and is based on something

called ssh keys.

oKeys eliminate the need for passwords.

oYou win twice: higher convenience and increased security!

106

SSH keys

• First you need to create a key pair (unless you already have one),

which are used to encrypt and decrypt data:
$ ssh-keygen -t rsa -b 4096

• This creates two files: .ssh/id_rsa and .ssh/id_rsa.pub in your home

directory.

oThe id_rsa is your private key. Keep it only to yourself. It's private.

oThe id_rsa.pub is your public key. You may think of it as a lock, which opens
only with your private key. You may place it anywhere you want; it's public.

• You may have as many key pairs as you wish but typically only one

is enough.

107

Using SSH

• The public key needs to be copied over to a specific file,

~/.ssh/authorized_keys, on the remote host (server) you intend to

log in with ssh.
$ scp ~/.ssh/id_rsa.pub user@host:

$ ssh user@host

host$ cat id_rsa.pub >> .ssh/authorized_keys

• The next time you log in to the remote host ssh will be using your

keys instead of your password on that host.

oNote: If you assigned a passphrase for your keys (highly recommended!) ssh
will ask for that passphrase. In that case use ssh-agent.

108

Encryption

• Encryption is the process of encoding information in such a way

that only authorised parties can access it.

• There are two common methods to encrypt your data:

oFilesystem stacked level encryption, where files and directories are encrypted
individually with tools like eCryptfs and EncFS.

oBlock device level encryption, where the whole block device (usually a disk) is
encrypted using e.g. dm-crypt and LUKS.

109

Example using eCryptfs

$ mkdir Private

$ sudo mount -t ecryptfs Private Private

• Enter a good passphrase and memorize it. There is no way getting

your data back should you forget your passphrase.

• Without further ado just accept the default settings.

• Anything you save in the directory Private will now be encrypted.

$ sudo umount Private

110

