
Introduction to Linux: Exercises 1/10

Introduction to Linux: Exercises

In these instructions the first character "$" in the command examples should not be typed, but it
denotes the command prompt.

Some command lines are too long to fit a line in printed form. These are indicated by a backslash “\” at
the end of line. It should not be included when typing in the command. For example

$ example command \
continues \
and continues

Should be typed in as:

example command continues and continues

Download and unpack the exercise files (do that first time only):
Go to the workshop home page (http://www.csc.fi/training -> click at the workshop name link at the
right column, scroll down and download the tar archive from the link, save as …)

Open a terminal, cd to the folder where you downloaded the archive, unzip and untar the file:

$ tar xzvf linux-exercise.tar.gz

The v (verbose) flag in the tar command shows the files with the path that are untarred. You see, that
you'll get a number of files in a subdirectory named linux-exercises. Go to that directory with the cd
command.

Moving around in the directory tree
Metadata: commands in this exercise: cd, mkdir, ls, mv, more, less, cat, tar.
Metadata: The aim of this exercise is very simple: learn to move around with cd, look at file contents,
create directories and move files around.

0) Unpack the dirs.tar.gz file

$ cd moving-around
$ tar zxvf dirs.tar.gz

1) Find out what directories and files were created

$ ls
$ ls -l

http://www.csc.fi/training

Introduction to Linux: Exercises 2/10

$ cd inputs
$ ls -l
$ cd ..
Etc.

2) Which output file is about caffeine?

Go to the outputs subdirectory (which itself has subdirectories result{1,2,3}). The pdb-files have a line
with "TITLE somename". Below are some commands that you can try find out which file is about
caffeine. What are the other structures about?

$ grep caffeine *.pdb
$ grep caffeine */*.pdb
$ grep title */*.pdb
$ grep TITLE */*.pdb

You can view the complete file contents with either more, less or cat.

3) Create subfolders

There are only three result* -directories. Create new ones: result4 and result5 for outputfiles 4
and 5 and move the outputfiles (out_4.pdb, out_5.pdb which are in the result3 directory) to those
new directories.

 cd to the outputs -directory
 create a new subdirectory with mkdir result4
 move the out_4.pdb with the move command mv result3/out_4.pdb result4
 repeat for result5 and out_5.pdb

4) Create new compressed tar file of the new directory hierarchy

 Go to the moving-around directory where the original tar file (dirs.tar.gz) is with cd.

$ tar zvcf dirs-new.tar.gz inputs outputs

5) Confirm the tar file contents

$ tar ztf dirs-new.tar.gz

Use the man command to find flags for ls
Metadata: commands in this exercise: man, ls
Metadata: learn how to find detailed info about flags, and sort ls output

1) Open the ls man page

$ man ls

This opens the man page for ls. As there are a lot of options for ls, it is useful to search the man page.
Search is triggered by pressing / and then writing a (start of) a keyword. Pressing "enter" triggers the

Introduction to Linux: Exercises 3/10

search and pressing "n" proceeds to the next occurrence of the keyword. You can also scroll the screen
with arrow keys when needed. Exit from the man page with "q"

 Look for a flag to sort the ls output

/sort and press "enter" (note, you need to give this command while in the man page, not from
command prompt)

2) Find the flag that sorts the output by file size

Press n as many times as needed until you find the flag for sorting by file size. You can also use some
other keyword to find that (e.g. size).

3) Sort directory contents by file size

Go to the moving-around/inputs directory and sort the files by size

$ ls -S

4) Additional flags

Search for the flag that will reverse the sort order (i.e. print the largest file last). You can give the flags to
the ls command together (e.g. ls -la instead of ls -l -a).

Search for the flag that will show the file size in "human readable format" i.e. kB/MB/GB instead of
bytes (the default).

Tip: you can also search for the meaning of flags directly by /-S (which will look for occurrence of "-S"
(or even better "-S " (trailing space)) if you want to know what that flag does.

Using wildcards
Metadata: commands in this exercise: ls, cp
Metadata: targeting many files with wildcards

Linux enables wildcards or regular expressions to match files or strings that differ only in some
controlled ways.

1) Limit listing files with wildcards

Go to the moving-around/inputs directory. Check all contents.

$ ls

List only those files that have an "a" in the name and end in ".pdb"

$ ls *a*.pdb

List those files that have a name with seven characters and end in ".pdb".

Introduction to Linux: Exercises 4/10

$ ls ???????.pdb

2) Limit listing of the output files containing range of numbers

Go to the moving-around/outputs directory. List all pdb files in the subdirectories.

$ ls */*.pdb

In this command the first "*" tells to look at all subdirectories in the current directory, and the second
"*" all strings Now limit the list to only those out-files that have a number 2-5 in their name:

$ ls */out_[2-5].pdb

 What is the difference to this command?

$ ls */*[2-5].pdb

Simple backup scripts
Metadata: commands in this exercise: cp, mkdir, date, echo
Metadata: simple script that makes backup of a sup-directory to freshly created sub-directory

Change into the sub-directory linux-exercises/backupscript. In that directory you should have
the following files that are the solutions (so don’t open) for the following exercises:
enhancedbackupscript.sh simplebackupscript.sh

1) simple backup script

Based on the start from our befriendly.sh example, create a script that copies all files with a suffix
(e.g., test.dat) from your home directory automatically to a directory in /tmp/homebackup that is
first created by the same script. Use wildcards for that. Try to place some verbosity into the script by
using the echo-command, e.g.,

$ echo "Starting copying files"

Take also of the advantage of the possibility to preserve the date of the file by adding a –p to the cp
command. N.B.: if you also add a -u to the copy command, then you would make sure that upon
multiple runs of the script only files of same newer would replace the one in the backup directory. This
would be kind of an (on terms of whole files) incremental backup.

2) More versatile backup script

Using the possibility to store the output of a command in a local variable, create a directory-name that
includes the current date:

destination=/tmp/homebackup_$(date +%Y-%m-%d)

And rewrite the script to create dedicated backups that are distinguishable by this date. Hint: You can
then use the variable in connection with the mkdir command simply by $destination.

Introduction to Linux: Exercises 5/10

Linux command line exercises
Metadata: commands in this exercise: grep, tar, cat, cut, more, less, awk, sed, wc,
sort, gnuplot
Metadata: example files from computational chemistry

Change into the linux-exercises/chem directory. In that directory you should now have these files:

dimer.log : Gaussian quantum chemistry geometry optimization log file for a water dimer
dimer_scan.log : Gaussian log file for relaxed potential energy scan for stretching water dimer
distance
freq.log : Gaussian log file for a frequency calculation
cp2k.out : cp2k calculation ascii output file
cp2k.xyz : xyz format molecular structure file of liquid water

1) have look at the contents of some files

$ more cp2k.out
$ nano cp2k.out
…

2) How did the total energy change in the water dimer optimization run?
(dimer.log)

The part in the log file where the energy has converged is shown below. The final energy is printed on
the shadowed line.

 Cycle 12 Pass 1 IDiag 1:
 E= -152.637052486060 Delta-E= -0.000000000001 Rises=F Damp=F
 DIIS: error= 7.20D-08 at cycle 5 NSaved= 5.
 NSaved= 5 IEnMin= 5 EnMin= -152.637052486060 IErMin= 5 ErrMin= 7.20D-08
 ErrMax= 7.20D-08 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.02D-13 BMatP= 1.38D-12
 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
 Coeff-Com: 0.795D-03 0.448D-01 0.134D+00 0.411D+00 0.410D+00
 Coeff: 0.795D-03 0.448D-01 0.134D+00 0.411D+00 0.410D+00
 Gap= 0.182 Goal= None Shift= 0.000
 RMSDP=8.86D-09 MaxDP=9.24D-08 DE=-1.08D-12 OVMax= 9.92D-08

 SCF Done: E(RPBE-PBE) = -152.637052486 A.U. after 12 cycles
 NFock= 12 Conv=0.89D-08 -V/T= 2.0059
 KE= 1.517485854820D+02 PE=-4.434279894947D+02 EE= 9.792090969701D+01
 Leave Link 502 at Thu Jan 29 09:51:27 2015, MaxMem= 33554432 cpu: 2.3
 (Enter /appl/chem/G09RevD.01/g09/l601.exe)
 Copying SCF densities to generalized density rwf, IOpCl= 0 IROHF=0.

How to get all those lines out?

$ grep "SCF Done:" dimer.log

What is the shortest string to grep that gives only these lines?

Introduction to Linux: Exercises 6/10

3) Was there something in the output that needs attention? (cp2k.out)

Programs often print out messages in case something goes wrong or the user has chosen questionable
options. Is there anything in cp2k.out that we need to worry about?

Are there any warnings?

$ grep warning cp2k.out

What if the warning was capitalized? (or uppercase)

$ grep -i warning cp2k.out

4) look for the development of the convergence criteria, which of these is satisfied
last? (dimer.log)

 Item Value Threshold Converged?
 Maximum Force 0.057661 0.000450 NO
 RMS Force 0.022508 0.000300 NO
 Maximum Displacement 0.218107 0.001800 NO
 RMS Displacement 0.108003 0.001200 NO

Try some of these, what do they do?

$ grep "Maximum Force" dimer.log
$ grep "m Forc" dimer.log
$ grep " Force" dimer.log
$ grep " Displa" dimer.log
$ grep -E "RMS |Maximum " dimer.log
$ grep -A 4 "Threshold" dimer.log

Why bother? Sometimes the geometry optimizations with "floppy" modes (flat potential energy
surface) fail to converge and just wiggle around. Looking at the RMS force and Maximum
displacement relative to the total energy can reveal that this is actually happening.

5) Did the frequency calculation succeed? (freq.log)

Are there errors or warnings? Was the preceding geometry optimization successful i.e. the structure is a
minimum on a potential energy surface? (hint. were forces and displacements converged?)

6) How many oxygen atoms there are in the cp2k.xyz file?

A line that specifies the coordinates for an oxygen atom looks like this:

 O 7.1808680000 1.7902530000 3.7253460000

Get all lines that have a capital O in them

$ grep O cp2k.xyz

How many lines was that?

$ grep O cp2k.xyz | wc

Introduction to Linux: Exercises 7/10

What does wc (short for word count) print out? Can we give it some flags? (try man wc, or google for it)

How many atoms in total? (we know it's only hydrogen and oxygen atoms, i.e. O and H)

$ grep -E "O|H" cp2k.xyz | wc -l

You could also count all the lines in the file and subtract the first two, which don't represent atoms.

$ wc -l cp2k.xy

What if your structure had also osmium atoms (Os). How would you change your commands?

7) How long did one iteration in cp2k.out take?

 The part in the output file that shows timing is like this:

 ENSEMBLE TYPE = NVE
 STEP NUMBER = 1
 TIME [fs] = 0.500000
 CONSERVED QUANTITY [hartree] = -0.880615921354E+04

 INSTANTANEOUS AVERAGES
 CPU TIME [s] = 290.20 290.20
 ENERGY DRIFT PER ATOM [K] = -0.810224161417E+02 0.000000000000E+00
 POTENTIAL ENERGY[hartree] = -0.880838552803E+04 -0.880838552803E+04
 KINETIC ENERGY [hartree] = 0.222631448393E+01 0.222631448393E+01
 TEMPERATURE [K] = 305.326 305.326

You could try this to get the timing:

$ grep TIME cp2k.out

But that gives too many hits. To get only the line that has the wall clock time spent at each time step
give:

$ grep "CPU TIME" cp2k.out

Is energy drift per atom speeding up? How to get access to those lines?

8) How to plot those times?

First direct them to a file

$ grep "CPU TIME" cp2k.out > times

Confirm they are there and count in which column (white space separated):

$ more times

Start gnuplot with $ gnuplot and give

plot 'times' using 0:5 with points

or with lines

plot 'times' using 0:5 with lines

Introduction to Linux: Exercises 8/10

Explanation: in gnuplot the command is "plot", followed with the filename that has the data to
be plotted (as it is a string, it needs to be quoted), "using" tells gnuplot to use the following
columns in that file, "0" means the line number (first line=1, second line=2,… this will be the x-
axis), ":" means to plot the second column as the function of the first column, "5":th column will
be the y-axis, "with" is followed by what to plot at the coordinates, now it's "points" i.e. some
symbols.

Exit with quit

How to plot the energy drift per atom?

9) What is the average temperature based on cp2k.out?

The part in the output file that has this information looks like this:

 ENSEMBLE TYPE = NVE
 STEP NUMBER = 1
 TIME [fs] = 0.500000
 CONSERVED QUANTITY [hartree] = -0.880615921354E+04

 INSTANTANEOUS AVERAGES
 CPU TIME [s] = 290.20 290.20
 ENERGY DRIFT PER ATOM [K] = -0.810224161417E+02 0.000000000000E+00
 POTENTIAL ENERGY[hartree] = -0.880838552803E+04 -0.880838552803E+04
 KINETIC ENERGY [hartree] = 0.222631448393E+01 0.222631448393E+01
 TEMPERATURE [K] = 305.326 305.326

First we want to grep all lines with the temperature:

$ grep TEMPERATURE cp2k.out

To get the average we can process the output of the grep command with awk and create a cumulative
sum of the column with the temperature (+= adds the value in column 4 to the current value in variable
a), then print that instantaneous value (in column 4), the number of records processed NR and the
average up to that point:

$ grep TEMPERATURE cp2k.out | awk '{a+=$4;print $4,NR,a/NR}'

This could also be done without separate grep command with

$ awk '/TEMPERATURE/{a+=$4;n++;print $4,n,a/n}' cp2k.out

Explanation: here we use a counter "n", which is incremented each time the condition is met (the
line has the string TEMPERATURE). n can then be used to calculate the cumulative average. In
this case NR counts all lines in the file cp2k.out so we can't use that to calculate the average.

How to plot both the instantaneous temperature and the cumulative average? (hint: in gnuplot if you
use replot instead of plot, the previous plot is retained)

10) What is the smallest x-coordinate in cp2k.xyz?

Introduction to Linux: Exercises 9/10

X-coordinate is the first number, i.e. in the second column on the file. You can sort the file numerically (-
n) according to the column (-k) you want.

$ cat cp2k.xyz | sort -n -k 2 | head

What are the coordinates of the O atom that has the smallest z-coordinate? (in the 4th column)

11) Working with data columns and fixing data format

Often it is necessary to change files slightly to use them in different analysis programs. This exercise
simulates some typical changes you need to do. For example, NGS data from different sources may
come in different syntax and to use them together needs fixing one or the other. This exercise shows an
example on how to accomplish that.

Get file hsa.gff3 from mirbase.org:

$ wget ftp://mirbase.org/pub/mirbase/CURRENT/genomes/hsa.gff3

1. Remove comment lines (lines starting with #)

$ grep -v "#" hsa.gff3 > tmp_nohash

2. Remove all lines that include tag ‘miRNA_primary_transcript’

$ grep -v "miRNA_primary_transcript" tmp_nohash > tmp_nomir

3. Change chromosome names (1st column) from format chr1, chr2, .. to format 1, 2,...

$ cut -c 4- tmp_nomir > tmp_noscr

This command "cuts" i.e. prints everything from the 4th character on each line, i.e. cuts away the
first three characters. This could also be done with sed. The following command would replace
the first occurrence of "chr" if the line starts with it (^ matches the start of the line) on each line
with nothing (what is between the second and third slash), i.e. remove those. $ sed s/^chr//
tmp_nomir > tmp_noscr

4. The 9. column is now format

'ID=MIMAT0027618;Alias=MIMAT0027618;\
Name=hsa-miR-6859-5p;Derives_from=MI0022705'.

Change the first item to format 'gene_id "MI0006363_1"'

$ sed s/ID=/'gene id "'/ tmp_noscr > tmp_gene_id

Note that here we already print out the first double quote " around the gene_id. We'll print the
second " at the next stage.

5. Leave out the last three columns i.e. Alias, Name and Derives entries and add the " after the
gene_id.

Introduction to Linux: Exercises 10/10

$ awk -F ";" '{print $1 "\""}' tmp_gene_id > tmp_trimmed

First we tell awk to use ; as the field separator. $1 now matches everything up to the first ; (i.e.
until the gene_id code). Getting the " in place is a bit tricky. As " has a special meaning (it is
not just a character) we need to escape it with \ to mean just-the-character-" and not the
meaning of " and finally quote that with ":s. An alternative way to do this in two steps is to use
cut to leave out everything after the first occurrence of ; and then print the trailing " with awk
(as above).

 $ cut -d ";" -f 1 tmp_gene_id | awk '{print $0 "\""}' > tmp_trimmed

6. Sort the file by chromosome and by miRNA start position (4. column). Make sure to sort the
chromosomes in numerical order (-n), not in alphabetical (i.e. 1,2,3... not 1,10,11..)

$ sort -k1n,1 -k4n,4 tmp_trimmed > hsa.edited

Extra task. Make another file that only has entries from chromosome

It’s possible to do the above in single command line, i.e. passing the output from the previous command
as input to the next, but usually it is safer to use temporary files (until you know each of the steps work).
Here is a one-liner that does steps 1-6:

$ grep -v "#" hsa.gff3 | grep -v "miRNA_primary_transcript" | cut -c 4- | \
sed s/ID=/'gene id "'/ | awk -F ";" '{print $1"\""}' | \
sort -k1n,1 -k4n,4 > hsa.edited

	Introduction to Linux: Exercises
	0 Download and unpack the exercise files (do that first time only):
	1 Moving around in the directory tree
	2 Use the man command to find flags for ls
	3 Using wildcards
	4 Simple backup scripts
	5 Linux command line exercises
	Extra task. Make another file that only has entries from chromosome 2

