
Part I: Performance Analysis

Dr. Pekka Manninen
CSC - IT Center for Science
Finland

Performance Optimization of
Scientific Software

CSC Webinar Oct 30, 2018



WEBINAR SERIES INTRODUCTION



A day in life at CSC

CSC customer me

I’m performing simulations
with my Fortran code. It seems
to perform much worse with
MKL library in the new system
than with IMSL library in the
old system. 

Have you profiled your code?

No



A day in life at CSC

I profiled the code: 99.9% of the execution time was
being spent on these lines: 

do i=1,n
do j=1,m
do k=1,fact(x)
do o=1,nchoosek(x)

where (ranktypes(:,:)==k)
ranked(:,:,o)=rankednau(o,k)

end where
end do

end do
end do

end do



A day in life at CSC

Removing the unnecessary loops

...reduced the execution time from 17 hours to 3 seconds

do i=1,n
do j=1,m
do k=1,fact(x)
do o=1,nchoosek(x)

where (ranktypes(:,:)==k)
ranked(:,:,o)=rankednau(o,k)

end where
end do

end do
end do

end do



Performance optimization of scientific software

Part I: Performance Analysis (today)

Part II: Node-level performance tuning (Nov 6)

Part III: Improving Application Scaling (Nov 20)

The assumed platform here is CSC’s Cray XC40 
supercomputer Sisu, most of the content and 
considerations are applicable and transferable to other
platforms as well

Please be prepared that these will be a bit longer than
typical webinars

Questions preferably at the end of the session

An optional hands-on exercise provided



Improving application performance

Obvious benefits

– Better throughput => more science

– Cheaper than new hardware 

– Save energy, compute quota etc.

..and some non-obvious ones

– Potential cross-disciplinary research

– Deeper understanding of application



Performance optimization

Adapting the problem to the underlying hardware

Key factors to application performance

– Effective algorithms, doing things in a more clever way

 e.g. O(n log(n)) vs O(n2)

– High CPU cycle utilization

– Efficient memory access

– Parallel scalability

– File I/O efficiency



Performance optimization

Important to understand dependencies

– Algorithm – code – compiler – libraries – hardware

Performance is not portable

Optimize only the parts of code that are relevant for the
total execution time!

– ”The 90/10 rule”: most of the time (~90%) is typically
being spent in executing a very limited number of code
lines (~10%)



PERFORMANCE ANALYSIS: FIRST CONSIDERATIONS



Application timing

Most fundamental information: total wall clock time

– Built-in timers in the program (e.g. MPI_Wtime)

– System commands (e.g. time) or batch system statistics

Built-in timers can provide also more fine-grained 
information

– Have to be inserted by hand

– Typically no information about hardware related issues

– Information about load imbalance and communication 
statistics of parallel program is difficult to obtain



Performance analysis tools

Instrumentation of code

– Adding special measurement code to binary

– Normally all routines do not need to be measured

Measurement: running the instrumented binary

– Profile: sum of events over time

– Trace: sequence of events over time

Analysis

– Text based analysis reports

– Visualization



Some performance analysis tools

CrayPAT (available on Sisu)
https://docs.cray.com
see also ”man intro_craypat” on Sisu

Scalasca
http://www.scalasca.org/

Paraver
https://tools.bsc.es/

Intel VTune Amplifier
https://software.intel.com/en-us/vtune



Profiling

Purpose of profiling is to find the "hot spots" of the 
program

– Determine, which routines consume the most of the 
execution time (or the metric we are optimizing for)

Usually the code has to be recompiled or relinked, 
sometimes also small code changes are needed

Often several profiling runs with different focus are 
needed for a proper analysis



Profiling: sampling

Pros

Lightweight

does not interfere the code 
execution too much

Cons

Not always accurate

Difficult to catch small 
functions

Results may vary between 
runs 

The application execution is interrupted at constant intervals 
and the program counter and call stack is examined



Profiling: tracing

Pros

Can record the program 
execution accurately and 
repeatably

Cons

More intrusive

Can produce prohibitely 
large log files

May change the 
performance behaviour of 
the program

Hooks are added to function calls (or user-defined points in 
program) and the required metric is recorded



CODE OPTIMIZATION PROCESS



Code optimization cycle

Instrument & 
run on the

selected core
count

Identify single-
core

bottlenecks

Identify
scalability

bottlenecks

Optimize

Validate/debug

Measure 
scalability

Select test 
case



Step 1: Choose a test problem

The dataset used in the analysis should

– Make sense, i.e. resemble the intended use of the code

– Be large enough for getting a good view on scalability

– Complete in a reasonable time 

– For instance, with simulation codes almost a full-blown 
model but run only for a few time steps

Remember that initialization/finalization stages are 
usually exaggerated and exclude them in the analysis



Step 2: Measure scalability

Run the uninstrumented 
code with different core 
counts and see where the 
parallel scaling stops

Often we look at strong 
scaling

– Also weak scaling is 
definitely of interest



Step 3: Instrument & run

Profile the code with

– The core count where the scalability is still ok

– The core count where the scalability has ended

and compare these side-by-side: what are the largest 
differences between these profiles?



Step 4: Find single-core hotspots

Remember to focus only on user routines that consume 
significant portion of the total time 

Collect the key hardware utilization details, for example

– Cache & TLB metrics from the performance analysis tool 

– See the compiler output: are the hotspot loops being 
optimized, especially vectorized by the compiler?

Trace the math intrinsics to see if expensive operations 
(exp, log, sin, cos,...) have a significant role



Step 4: Find single-core hotspots

Signature: Low L1 and/or L2 cache hit ratios

– <96% for L1, <99% for L1+L2

– Issue: Bad cache utilization

Signature: Low vector instruction usage

– Issue: Non-vectorizable (hotspot) loops

Signature: Traced ”math” group featuring a significant 
portion in the profile

– Issue: Expensive math operations



Step 5: Identify scalability bottlenecks

Signature: User routines scaling but MPI time blowing up

– Issue: Not enough to compute in a domain

 Weak scaling could still continue

– Issue: Expensive collectives

– Issue: Communication increasing as a function of tasks

Signature: MPI_Sync times increasing

– Issue: Load imbalance

 Tasks not having a balanced role in communication?

 Tasks not having a balanced role in computation?

 Synchronous (single-writer) I/O or stderr I/O?



Part I concluding remarks

Profile your code before optimizing anything

– ”Premature code optimization is the root of all evil”

Do the profiling yourself

– Do not believe what the others claim about your code

Profile the code on the hardware you are going to run it

– Hotspots & bottlenecks will differ between your laptop
and a supercomputer

Profile with a representative test case

– The hotspots of a toy problem are different to those of 
the real-world case

Reprofile the code after every optimization



Optional lab

To put the contents to practice, there is a self-consistent
lab exercise available on the webinar page

– Instructions in labs.pdf, a sample code in labs.tar.gz

The first four sections will relate to this first part of the
webinar series


