
Part II: Node-Level Performance Tuning

Dr. Pekka Manninen
CSC - IT Center for Science
Finland

Performance Optimization of
Scientific Software

CSC Webinar
November 6, 2018

Setting the scene

Modern multicore CPUs are very complex (with evermore
increasing complexity)

– Multiple CPU cores within one socket

– Superscalar out-of-order instruction execution with
branch prediction

– Multilevel coherent caches

– SIMD vector units

– SMT capabilities for multithreading

Typical supercomputer node contains 2-4 sockets

To get most out of the hardware, performance
engineering is needed

Memory hierarchy

Registers

L1 Cache

L2 Cache

L3 Cache

Physical memory

Remote memory (over
interconnect)

File system disks

<= 1

~4

~10

~25

O(105...6)

O(100 B)

O(100 kB)

O(1 MB)

O(10 MB)

GB’s

TB’s

100s GB’sO(103)

O(102)

SIMD instructions operate on multiple elements at one
cycle

AVX/AVX2: 256 bits

– 4 DP values or 8 SP values

– Fused multiply-add (AVX2)

– Haswell CPUs on Sisu

AVX512: 512 bits

– 8 DP values or 16 SP values

– Current generation

SIMD vectorization

double * A, * B, * C;
int i, N;

for (i=0; i<N; i++)
C[i]=B[i]+A[i];

+

+

+

=

=

=

Scalar

AVX

AVX512

Recall: Finding single-core hotspots

Signature: Low L1 and/or L2 cache hit ratios

– <96% for L1, <99% for L1+L2

– Issue: Bad cache utilization

Signature: Low vector instruction usage

– Issue: Non-vectorizable (hotspot) loops

Signature: Traced ”math” group featuring a significant
portion in the profile

– Issue: Expensive math operations

SLIGHT DETOUR: OPTIMAL PORTING

Optimal porting

”Improving application performance without touching
the source code”

– Compilers & compiler flags

– Numerical libraries

– MPI rank placement

– Thread affinities

– Filesystem parameters

Potential to get significant performance improvements
with little effort

Should be revisited routinely

Effort

Theoretical peak

Pe
rf

o
rm

an
ce

Choosing a compiler

Many different choices

– GNU, PGI, Intel, Cray, XL etc.

Compatibility

– Different proprietary intrinsics

– Different rounding rules

Compilers tend to be cautious with optimization

Performance

– There is no universally fastest compiler

– Depends on the application or even input

Compiler optimization techniques

Architecture-specific tuning

– Tunes all applicable parameters to the defined
microarchitecture

Vectorization

– Exploiting the vector units of the CPU (AVX etc.)

– Improves performance in most cases

Loop transformations

– Fusing, splitting, interchanging, unrolling etc.

– Effectiveness varies

Compiler flag examples

Feature Cray Intel GNU

Listing -hlist=a -qopt-report=3 -fopt-info-vec

Balanced
Optimization

(default) -O2 -O3

Aggressive
Optimization

-O3 –hfp4 -Ofast -Ofast –funroll-
loops

Architecture
specific tuning

-h cpu=
<target>

-x<target> -march=<target>

Fast math -hfp4 -fp-model fast=2 -ffast-math

More info (on
sisu.csc.fi)

man crayftn /
man craycc

icc --help
ifort --help

man gcc
man gfortran

Compiler optimization techniques

Compilers tend to be cautious with optimization - when
compiling scientific software you can typically have an
”all-in” approach

If something breaks down, find the routine that causes the
trouble and compile that file with less aggressive
optimization and the rest with the aggressive levels

Compiler feedback/output

Compilers will be more verbose on what they are doing
for you code when requested by a specific compiler flag

Cray compiler: ftn –rm … or cc/CC –hlist=m …

– Compiler generates an <source file name>.lst file that
contains annotated listing of your source code

Intel compiler: ftn/cc -qopt-report=3 -vec-report=6

– See ifort/icc --help reports

GNU compiler: ftn/cc: -fopt-info-vec

Doesn't the compiler do everything?

You can make a big difference to code performance

– Helping the compiler spot optimisation opportunities

– Using the insight of your application

– Removing obscure (and obsolescent) “optimizations” in
older code

 Simple code is the best, until otherwise proven

First, check what the compiler is already doing

Use the performance analysis data to establish
understanding on the performance bottlenecks &
shortcomings

ADDRESSING BAD CACHE UTILIZATION

General considerations for improved cache
utilization

Always try to use all data in cache line (64 bytes)

– Memory is always read in terms of cache lines

Use regular access patterns

– Helps hardware prefetchers

Try to re-use data, so that data loaded into caches are
used multiple times

– Blocking of operations on high dimensional data

 You can assist & control with compiler pragmas/directives

– Sorting of data before operations

Does structure-of-arrays (SoA) or array-of-structures (AoS)
fit your work best?

Loop interchange

If multi-dimensional arrays are addressed in a wrong
(non-consecutive) order, it causes a lot of cache misses
=> horrible performance

– C is row-major, Fortran column-major

– The compiler may (but also may not) re-order loops
automatically (see compiler diagnostics)

do i=1,N
do j=1,M

sum = sum + a(i,j)
end do

end do

do j=1,M
do i=1,N

sum = sum + a(i,j)
end do

end do

Loop fission/fusion

Loop fission and fusion are optimization techniques to
improve cache efficiency by improving the locality of
reference to the variables within a loop

– Loop fission: a large loop is divided into multiple loops

– Loop fusion: multiple small loops are combined into a
large loop

When provided with sufficient information about the
loop trip counts, the compiler automatically tries to
perform loop fission/fusion based on performance
heuristics

FIXING NON-VECTORIZATION OF LOOPS

General considerations for vectorization

The compiler will only vectorize loops

Unit strides are the best

Indirect addressing will not vectorize (efficiently)

Can vectorize across inlined functions but not if a
procedure call is not inlined

Needs to know loop tripcount (but only at runtime)

– i.e. while style loops will not vectorize

No recursion allowed

Helping the compiler

Does the non-vectorized loop have true dependencies?

– No: add the pragma/directive ivdep on top of the loop

– Or the OpenMP SIMD pragma (#pragma omp simd)

– C/C++: the __restrict__ keyword for fixing aliasing

– Yes: Accept the situation or try to rewrite the loop

If you cannot vectorize the entire loop, consider splitting
it - so as much of the loop is vectorized as possible

Example

See compiler feedback on why some loops were not
vectorized

127. + 1------< for (i = 1; i < nx + 1; i++)
128. + 1 r2---< for (j = 1; j < ny + 1; j++) {
129. + 1 r2 new[i][j] = old[i][j] + a * dt *
130. 1 r2 ((old[i+1][j] - 2.0 * old[i][j] + old[i-1][j]) / dx2 +
131. 1 r2 (old[i][j+1] - 2.0 * old[i][j] + old[i][j-1]) / dy2);
132. 1 r2-->> }

CC-6290 CC: VECTOR File = heat.c, Line = 127

A loop was not vectorized because a recurrence

was

found between "old" and "new" at line 129.

CC-6308 CC: VECTOR File = heat.c, Line = 128

A loop was not vectorized because the loop

initialization would be too costly.

CC-6005 CC: SCALAR File = heat.c, Line = 128

A loop was unrolled 2 times.

Runtime: 8.55 s

Example

127. + 1-------< for (i = 1; i < nx + 1; i++)
128. 1 #pragma ivdep
129. 1 Vr2---< for (j = 1; j < ny + 1; j++) {
130. + 1 Vr2 new[i][j] = old[i][j] + a * dt *
131. 1 Vr2 ((old[i+1][j] - 2.0 * old[i][j] + old[i-1][j]) / dx2 +
132. 1 Vr2 (old[i][j+1] - 2.0 * old[i][j] + old[i][j-1]) / dy2);
133. 1 Vr2-->> }

CC-6294 CC: VECTOR File = ex7_heat.c, Line = 127

A loop was not vectorized because a better candidate was

found at line 129.

CC-6005 CC: SCALAR File = ex7_heat.c, Line = 129

A loop was unrolled 2 times.

CC-6204 CC: VECTOR File = ex7_heat.c, Line = 129

A loop was vectorized.

Tell the compiler that old and
new do not overlap

Runtime: 6.55 s

REDUCING THE COST OF EXPENSIVE MATH
OPERATIONS

General consideration

The cost of different scalar floating-point operations is
roughly as follows:

<= 1 cycle: +, *

~20 cycles: /, sqrt, 1/sqrt

~100-300 cycles: sin, cos, exp, log, ...

There is also instruction latency and secondary
performance impact from issues related to the pipelining
when using the most expensive operations

Strength reduction techniques

Loop hoisting: try to get the expensive operations out of
innermost loops
– Precomputing values, look-up tables etc

Consider replacing division (a/b) with multiplication by
reciprocal (a*(1/b))
– Assuming you can compute 1/b less often than the

original division itself

Reduce the use of sin, cos, exp, log, pow by using
identities, such as

– pow(x,2.5) = x*x*sqrt(x)

– sin(x)*cos(x) = 0.5*sin(2*x)

Use vectorized versions of the operations (through
library calls)

Part II take-home messages

Do the performance analysis!

– Then you know what to look for

Utilize the compiler feedback

– Check especially whether the hot-spot loops have been
vectorized or not

– Then you know the reason why some optimizations have
not been applied, and you can assist the compiler to
overcome those restrictions

Utilize the CPU efficiently, especially caches and SIMD
vector units

Mind the way you implement your equations, the cost of
arithmetic operations vary greatly

Optional lab

From the lab instruction sheet available in the page of the
first webinar, do now the sections 5 and 6

The last part of the series will take place on November 20

