
Part III: Improving Application Scaling

Dr. Pekka Manninen
CSC - IT Center for Science
Finland

Performance Optimization of
Scientific Software

CSC Webinar Nov 20, 2018



Recall: Identifying scalability bottlenecks from 
performance analysis data

Signature: User routines scaling but MPI time blowing up

– Issue: Not enough to compute in a domain

 Weak scaling could still continue

– Issue: Expensive collectives

– Issue: Communication increasing as a function of tasks

Signature: MPI_Sync times increasing

– Issue: Load imbalance

 Tasks not having a balanced role in communication?

 Tasks not having a balanced role in computation?

 Synchronous (single-writer) I/O or stderr I/O?



IMPROVING LOAD BALANCE



Issue: Load imbalances

Identify the cause by additional measurements and tests

– Decomposition, communication design, additional duties
(i.e. I/O)?

Unfortunately algorithmic, decomposition and data 
structure revisions are often needed to fix load balance 
issues

– Dynamic load balancing schemas

– MPMD style programming



Hybrid programming

Shared memory programming (OpenMP) inside a node, 
message passing between nodes

Reduces the number of MPI tasks - less pressure for load
balance

May be doable with very little effort

– However, in many cases large portions of the code has to 
be hybridized to outperform flat MPI

 In order to reach very big core counts, one needs to be ready to 
start tackling this

Needs experimentation with the best threads-per-task-
ratio, care with thread affinities, etc



REDUCING PARALLEL OVERHEAD



Rank placement

Remote access (over the interconnect) is far from
homogeneous

– Three-level network on Cray XC, islands on Infiniband etc

Rank placement does matter: place the ranks that
communicate the most onto the same node

Changing rank placement happens via environment 
variables on the batch job script

– So easy to experiment with that it should be tested with 
every application

– For example: CrayPAT is able to make suggestions for 
optimal rank placement, enabled with the environment 
variable MPICH_RANK_REORDER_METHOD



Optimizing point-to-point communication

Use non-blocking operations and try to overlap
communication with other work

– Post MPI_Irecv calls before the MPI_Isend calls to avoid 
unnecessary buffer copies and buffer overflows

Bandwidth and latency depend on the used protocol

– Eager or rendezvous

 Latency and bandwidth higher in rendezvous

– Rendezvous messages usually do not allow for overlap of 
computation and communication, even when using non-
blocking communication routines

– The platform will select the protocol basing on the 
message size, these limits can be adjusted

 E.g. on Cray XC MPICH_GNI_MAX_EAGER_MSG_SIZE



Issue: Expensive collectives

Reducing MPI tasks by hybridizing with OpenMP is likely
to help here as well

See if you can live with the basic version of a routine 
instead of a vector version (MPI_Alltoallv etc)

– May be faster even if some tasks would be receiving
unrefenced data

In case of very sparse MPI_Alltoallv’s, point-to-point or
one-sided communication may outperform the collective
operation



Issue: Expensive collectives

Use non-blocking collectives (MPI_Ialltoall,...)

– Allow for overlapping collectives with other operations, 
e.g. computation, I/O or other 
communication

– May be faster
than the blocking 
corresponds even without 
the overlap

– Replacement is trivial

See the documentation of your MPI library for tunable
parameters, and test the impact of them

– E.g. on Cray XC: increase the value of 
MPICH_ALLTOALL_SHORT_MSG



ADDRESSING I/O BOTTLENECKS



General considerations

Parallelize your I/O !

– MPI I/O, I/O libraries (HDF5, NetCDF), hand-written 
schemas,...

– Without parallelization, I/O will be a scalability bottleneck 
in every application

Try to hide I/O (asynchronous I/O)

Compute I/O Compute I/O Compute I/O Compute I/O

Compute

I/O

Compute

I/O

Compute

I/O

Compute

I/O



Lustre file striping

Striping pattern of a file/directory can queried or set 
with the lfs command

lfs getstripe <dir|file>

lfs setstripe –c count dir

– Set the default stripe count for directory dir to count

– All the new files within the directory will have the 
specified striping

– Also stripe size can be specified, see man lfs for details

Proper striping can enhance I/O performance a lot



Filesystem parameters

Writing a single file on a Cray XC40 (4 PB DDN Lustre, 141 OSTs)



Summary

Find the optimal decomposition & rank placement

– Load balance is established at algorithmic and data 
structure level

Use non-blocking communication operations for p2p and 
collective communication both

Hybridize (mix MPI+OpenMP) the code to improve load
balance and alleviate bottleneck collectives

All large-scale file I/O needs to be parallelized

– I/O performance is sensitive to the platform setup

– Dedicated I/O ranks needed even for simple I/O



Webinar Series Wrap-up

Performance Optimization of
Scientific Software



Four easy steps towards better application
performance

Find best-performing compilers and compiler flags

Employ tuned libraries wherever possible

Find suitable settings for environment parameters

Mind the I/O

– Do not checkpoint too often

– Do not ask for the output you do not need



Performance engineering: take-home messages

Mind the application performance: it is for the benefit of 
you, other users and the service provider

Profile the code and identify the performance issues 
first, before optimizing anything

– “Premature code optimization is the root of all evil”

Serial optimization is mostly about helping the compiler 
to optimize for the target CPU

– Good cache utilization crucial for performance, together 

with vectorization

Quite often algorithmic or intrusive design changes are 
needed to improve parallel scalability

– To utilize cutting-edge supercomputers, one must be
ready to start tackling these



Don’t stop here

Try to apply this stuff yourself!

– E.g. do the last section from the optional labs

CSC runs an exhaustive set of HPC courses, e.g.

– Advanced Parallel Programming (next run in February
2019)

– Advanced Threading and Optimization (next run in April
2019)

– see www.csc.fi/training

The PRACE Training Center network provides HPC 
training opportunities elsewhere in Europe, see
www.training.prace-ri.eu


