
Part III: Improving Application Scaling

Dr. Pekka Manninen
CSC - IT Center for Science
Finland

Performance Optimization of
Scientific Software

CSC Webinar Nov 20, 2018



Recall: Identifying scalability bottlenecks from 
performance analysis data

Signature: User routines scaling but MPI time blowing up

– Issue: Not enough to compute in a domain

 Weak scaling could still continue

– Issue: Expensive collectives

– Issue: Communication increasing as a function of tasks

Signature: MPI_Sync times increasing

– Issue: Load imbalance

 Tasks not having a balanced role in communication?

 Tasks not having a balanced role in computation?

 Synchronous (single-writer) I/O or stderr I/O?



IMPROVING LOAD BALANCE



Issue: Load imbalances

Identify the cause by additional measurements and tests

– Decomposition, communication design, additional duties
(i.e. I/O)?

Unfortunately algorithmic, decomposition and data 
structure revisions are often needed to fix load balance 
issues

– Dynamic load balancing schemas

– MPMD style programming



Hybrid programming

Shared memory programming (OpenMP) inside a node, 
message passing between nodes

Reduces the number of MPI tasks - less pressure for load
balance

May be doable with very little effort

– However, in many cases large portions of the code has to 
be hybridized to outperform flat MPI

 In order to reach very big core counts, one needs to be ready to 
start tackling this

Needs experimentation with the best threads-per-task-
ratio, care with thread affinities, etc



REDUCING PARALLEL OVERHEAD



Rank placement

Remote access (over the interconnect) is far from
homogeneous

– Three-level network on Cray XC, islands on Infiniband etc

Rank placement does matter: place the ranks that
communicate the most onto the same node

Changing rank placement happens via environment 
variables on the batch job script

– So easy to experiment with that it should be tested with 
every application

– For example: CrayPAT is able to make suggestions for 
optimal rank placement, enabled with the environment 
variable MPICH_RANK_REORDER_METHOD



Optimizing point-to-point communication

Use non-blocking operations and try to overlap
communication with other work

– Post MPI_Irecv calls before the MPI_Isend calls to avoid 
unnecessary buffer copies and buffer overflows

Bandwidth and latency depend on the used protocol

– Eager or rendezvous

 Latency and bandwidth higher in rendezvous

– Rendezvous messages usually do not allow for overlap of 
computation and communication, even when using non-
blocking communication routines

– The platform will select the protocol basing on the 
message size, these limits can be adjusted

 E.g. on Cray XC MPICH_GNI_MAX_EAGER_MSG_SIZE



Issue: Expensive collectives

Reducing MPI tasks by hybridizing with OpenMP is likely
to help here as well

See if you can live with the basic version of a routine 
instead of a vector version (MPI_Alltoallv etc)

– May be faster even if some tasks would be receiving
unrefenced data

In case of very sparse MPI_Alltoallv’s, point-to-point or
one-sided communication may outperform the collective
operation



Issue: Expensive collectives

Use non-blocking collectives (MPI_Ialltoall,...)

– Allow for overlapping collectives with other operations, 
e.g. computation, I/O or other 
communication

– May be faster
than the blocking 
corresponds even without 
the overlap

– Replacement is trivial

See the documentation of your MPI library for tunable
parameters, and test the impact of them

– E.g. on Cray XC: increase the value of 
MPICH_ALLTOALL_SHORT_MSG



ADDRESSING I/O BOTTLENECKS



General considerations

Parallelize your I/O !

– MPI I/O, I/O libraries (HDF5, NetCDF), hand-written 
schemas,...

– Without parallelization, I/O will be a scalability bottleneck 
in every application

Try to hide I/O (asynchronous I/O)

Compute I/O Compute I/O Compute I/O Compute I/O

Compute

I/O

Compute

I/O

Compute

I/O

Compute

I/O



Lustre file striping

Striping pattern of a file/directory can queried or set 
with the lfs command

lfs getstripe <dir|file>

lfs setstripe –c count dir

– Set the default stripe count for directory dir to count

– All the new files within the directory will have the 
specified striping

– Also stripe size can be specified, see man lfs for details

Proper striping can enhance I/O performance a lot



Filesystem parameters

Writing a single file on a Cray XC40 (4 PB DDN Lustre, 141 OSTs)



Summary

Find the optimal decomposition & rank placement

– Load balance is established at algorithmic and data 
structure level

Use non-blocking communication operations for p2p and 
collective communication both

Hybridize (mix MPI+OpenMP) the code to improve load
balance and alleviate bottleneck collectives

All large-scale file I/O needs to be parallelized

– I/O performance is sensitive to the platform setup

– Dedicated I/O ranks needed even for simple I/O



Webinar Series Wrap-up

Performance Optimization of
Scientific Software



Four easy steps towards better application
performance

Find best-performing compilers and compiler flags

Employ tuned libraries wherever possible

Find suitable settings for environment parameters

Mind the I/O

– Do not checkpoint too often

– Do not ask for the output you do not need



Performance engineering: take-home messages

Mind the application performance: it is for the benefit of 
you, other users and the service provider

Profile the code and identify the performance issues 
first, before optimizing anything

– “Premature code optimization is the root of all evil”

Serial optimization is mostly about helping the compiler 
to optimize for the target CPU

– Good cache utilization crucial for performance, together 

with vectorization

Quite often algorithmic or intrusive design changes are 
needed to improve parallel scalability

– To utilize cutting-edge supercomputers, one must be
ready to start tackling these



Don’t stop here

Try to apply this stuff yourself!

– E.g. do the last section from the optional labs

CSC runs an exhaustive set of HPC courses, e.g.

– Advanced Parallel Programming (next run in February
2019)

– Advanced Threading and Optimization (next run in April
2019)

– see www.csc.fi/training

The PRACE Training Center network provides HPC 
training opportunities elsewhere in Europe, see
www.training.prace-ri.eu


