CScC

‘ Dr. Pekka Manninen
0101019y, .J,m”“mf,if"m""53.‘:::‘831' , ‘~ CSC - IT Center for Science
()1 (L O .

Finland

MMHWH]H}“’.‘(HH,’HH)EM: 0107

Performance Optimization o
Scientific Software

CSC Webinar Nov 20, 2018

@ Signature: User routines scaling but MPI time blowing up
— Issue: Not enough to compute in a domain
= Weak scaling could still continue
— Issue: Expensive collectives
— Issue: Communication increasing as a function of tasks
v Signature: MPIl_Sync times increasing
— Issue: Load imbalance
® Tasks not having a balanced role in communication?

= Tasks not having a balanced role in computation?

= Synchronous (single-writer) 1/O or stderr I/O?

v |dentify the cause by additional measurements and tests

— Decomposition, communication design, additional duties
(i.e. 1/0)?

@ Unfortunately algorithmic, decomposition and data
structure revisions are often needed to fix load balance
issues

— Dynamic load balancing schemas
— MPMD style programming

Shared memory programming (OpenMP) inside a node,
message passing between nodes

Reduces the number of MPI tasks - less pressure for load
balance

May be doable with very little effort

— However, in many cases large portions of the code has to
be hybridized to outperform flat MPI

® |n order to reach very big core counts, one needs to be ready to
start tackling this

Needs experimentation with the best threads-per-task-
ratio, care with thread affinities, etc

REDUCING PARALLEL OVERHEAD

@ Remote access (over the interconnect) is far from
homogeneous
— Three-level network on Cray XC, islands on Infiniband etc

@ Rank placement does matter: place the ranks that
communicate the most onto the same node

@ Changing rank placement happens via environment
variables on the batch job script
— So easy to experiment with that it should be tested with
every application

— For example: CrayPAT is able to make suggestions for
optimal rank placement, enabled with the environment
variable MPICH_RANK_REORDER_METHOD

@ Use non-blocking operations and try to overlap
communication with other work

— Post MPI_Irecv calls before the MPI_Isend calls to avoid
unnecessary buffer copies and buffer overflows

@ Bandwidth and latency depend on the used protocol
— Eager or rendezvous
= Latency and bandwidth higher in rendezvous

— Rendezvous messages usually do not allow for overlap of
computation and communication, even when using non-
blocking communication routines

— The platform will select the protocol basing on the
message size, these limits can be adjusted

= E.g. on Cray XCMPICH _GNI_MAX_EAGER_MSG_SIZE

@ Reducing MPI tasks by hybridizing with OpenMP is likely
to help here as well

@ See if you can live with the basic version of a routine
instead of a vector version (MPI_Alltoallv etc)
— May be faster even if some tasks would be receiving
unrefenced data
@ In case of very sparse MPI_Alltoallv’s, point-to-point or
one-sided communication may outperform the collective
operation

@ Use non-blocking collectives (MPI_lalltoall,...)

— Allow for overlapping collectives with other operations,
e.g. computation, /O or other
communication

25,0
20,0 -//\\
15,0 f/'
¥ 10,0
Ll \
0,0 #%

8 16 32 64 128 256 512 1024 2048 4096

— Replacement is trivial A Message size [B]
MPI_lalltoall, 1024 cores Cray XC30

v See the documentation of your MPI library for tunable
parameters, and test the impact of them

— May be faster
than the blocking
corresponds even without
the overlap

Proportional gain from overlap

— E.g. on Cray XC: increase the value of
MPICH ALLTOALL_ SHORT_MSG

ADDRESSING 1/0 BOTTLENECKS

o Parallelize your 1/0 !

— MPI11/0, 1/0 libraries (HDF5, NetCDF), hand-written
schemas,...

— Without parallelization, 1/O will be a scalability bottleneck
in every application

v Try to hide I/O (asynchronous 1/0)

1/O I/O 1/O 1/O

beem Bam z :

v

v

Striping pattern of a file/directory can queried or set
with the Ifs command

Ifs getstripe <dir|file>
Ifs setstripe —c count dir

— Set the default stripe count for directory dir to count

— All the new files within the directory will have the
specified striping

— Also stripe size can be specified, see man Ifs for details

Proper striping can enhance I/O performance a lot

Writing a single file on a Cray XC40 (4 PB DDN Lustre, 141 OSTs)

6000 T T T T T
— count=1
— count=4
5000 — count=8 —
—— count=24 :
4000}]
»n
[l
S
=
£ 3000} .
=
e
[=
[(+]
o
2000 | .
1000 } §
% 1000 2000 3000 4000 5000 6000

Data size (MB)

v

Find the optimal decomposition & rank placement

— Load balance is established at algorithmic and data
structure level

Use non-blocking communication operations for p2p and
collective communication both

Hybridize (mix MPI+OpenMP) the code to improve load
balance and alleviate bottleneck collectives

All large-scale file I/O needs to be parallelized
— 1/O performance is sensitive to the platform setup
— Dedicated I/0 ranks needed even for simple I/0

CScC

e] 10107
J'W‘HHUMHJ““.‘“.‘HHJMHIJ\)}‘(1’,(,)

Performance Optimization @
Scientific Software

U B

NN
NI
NN

w

Find best-performing compilers and compiler flags
Employ tuned libraries wherever possible
Find suitable settings for environment parameters

Mind the 1/0
— Do not checkpoint too often
— Do not ask for the output you do not need

@ Mind the application performance: it is for the benefit of
you, other users and the service provider
v Profile the code and identify the performance issues
first, before optimizing anything
— “Premature code optimization is the root of all evi
v Serial optimization is mostly about helping the compiler
to optimize for the target CPU
— Good cache utilization crucial for performance, together
with vectorization
@ Quite often algorithmic or intrusive design changes are
needed to improve parallel scalability

— To utilize cutting-edge supercomputers, one must be
ready to start tackling these

III

@ Try to apply this stuff yourself!
— E.g. do the last section from the optional labs
@ CSCruns an exhaustive set of HPC courses, e.g.

— Advanced Parallel Programming (next run in February
2019)

— Advanced Threading and Optimization (next run in April
2019)
— see www.csc.fi/training

v The PRACE Training Center network provides HPC
training opportunities elsewhere in Europe, see
www.training.prace-ri.eu

