
Performance Engineering of Scientific Software:

Hands-on Exercise

We are going to work with a sample toy application that solves the 2D heat equation (see the
Appendix in this handout). You can download that from the webinar web page.

If you prefer, you can as well work with your own code (or the code you are working
with) and experiment with the techniques discussed during the lectures. You can do this in
addition or in stead of working with the 2D heat equation solver.

1 Porting and running

Transfer the labs.tar.gz package to Sisu (or your own platform), extract it as “tar zxvf

labs.tar.gz”, go to the folder mpi p2p and compile the program by doing make. See the
Appendix for how to run the application and how to view its results. Run the application
(referring to Sisu documentation if necessary) with 2, 4 and 8 MPI ranks, and record the
timings, using for now the same grid size for all of these.

2 First impressions

We will carry out a fast sampling experiment with the CrayPAT suite.

1. Do module load perftools-base followed by module load perftools

2. Rebuild your application (“make clean && make”)

3. Do “pat build heat mpi” [where heat mpi is the name of your binary]. You should
get a new binary with “+pat” addition.

4. Run “heat mpi+pat” with 4 MPI ranks. You obtain a file with a .xf suffix, in addition
to output files.

5. Do “pat report heat mpi+pat+(something).xf > samp.4” replacing
heat mpi+pat+(something) with the proper filename. This should produce the
sampling report (file samp.4), a file with .apa suffix and a file with .ap2 suffix.

6. Run heat mpi+pat again but now with 8 MPI ranks. Apply pat report again (piping
it now to samp.8 or similar).

7. Compare the profiles samp.4 and samp.8.

Question: Can you already see the reason for the code not scaling?

1



3 Assessing scalability

Let us fix the user error first and turn off the single-writer I/O by adjusting the parameter
image interval in the file main.c to a value equalling to the number of iterations plus one
(e.g. 501). Then the heat field will be printed only in the beginning and in the end of the
simulation.

Run the binary e.g. with 24, 48 and 96 MPI tasks (1, 2 and 4 nodes on Sisu) to get a
scalability curve.

4 Performance analysis with CrayPAT

Once our “test case” is now a more sensible one, let us carry out a proper performance analysis
of the code.

1. Let us carry out an tracing experiment, tracing the user functions and those of the MPI
library. Build a new instrumented binary by doing “pat build -u -g mpi heat mpi”
where the switch -u invokes the tracing of the user functions and -g mpi the MPI
functions. See “man pat build” for the possible tracing groups.

2. Run the obtained binary with (e.g.) 48 MPI ranks. You should get a new .xf file.

3. Apply pat report again: pat report (...) > tracing.48, where (...) is the name
of the most recent .xf file. See pat report -O help for available reports.

4. Read through the file tracing.48.

5. Have a look also at the CrayPAT GUI, do app2 (...).ap2 file, where (...).ap2 is the
name of the most recent .ap2 file.

Question: Which user routines consume most time?
Question: Where should we focus our efforts on next?

CrayPAT documentation is available via the pat help utility, man intro craypat, and/or
at docs.cray.com.

5 Node-level performance analysis

Let us take a further look on the node-level performance.

• Read the compiler optimization reports provided in the file core.lst.

Question: Are the loops of the most time-consuming routines being vectorized?

• Collect the hardware performance counters as follows:

1. Reinstrument the binary as “pat build -u -g mpi -Drtenv=PAT RT PERFCTR=1

heat mpi”

2. Run the obtained new binary

3. Do “pat report -O profile+hwpc (...).xf > tracing.48.hwpc”.



This will report the sc. hardware performance counter values for D1 and D2 cache
utilization as well as something called Translation Lookaside Buffer (TLB) hit/miss
ratios (you may want to google for that).

Question: What are the D1 and D2 data cache hit/miss ratios for the most time-
consuming user routine?

The value 1 for -Drtenv=PAT RT PERFCTR collects the cache ratios but the runtime envi-
ronment variable can take other values as well. For instance, PAT RT PERFCTR=0 will return
D1 cache hit ratios together with instruction/cycle metrics, and PAT RT PERFCTR=2 will report
D1, D2 and D3 data cache hit ratios.

6 Node-level performance tuning

• Let us fix the vectorization issue. Help the compiler to vectorize the loop in the evolve
routine using techniques discussed in the lectures (#pragma ivdep) recompile the code,
and read the compiler output. If the loop is indicated having been vectorized, run the
code and compare the performance.

• Let us try to improve the speed of floating point math. Apply these one-by-one and
compare performance.

– Replace the divisions in the evolve loop (in core.c) with a multiplication by pre-
computed reciprocals (of the dx2 and dy2 variables). This needs to be done by
hand.

– Make the compiler to optimize more aggressively in terms of floating point precision
by enabling the compiler flags -O3 -h fp4 in the makefile.

Question: Which of these had an impact on the performance? Where we are now compared
to the out of the box performance?

7 Optimizing MPI

As the last exercise, let us see if we can improve the MPI performance. Increase the grid size
(e.g. 4800×4800) to see larger effects. For this we will need to establish the scalability limit
of the code and work within that. An often used criterion is that the code scales, if increasing
the number of MPI tasks gives rise to a 1.5x speedup.

First, you will need to carry out the CrayPAT analysis as described in Section 4 on both
sides of the scalability limit as discussed in the lectures.
Question: Can you identify why does the scaling stop?

Last, replace the blocking point-to-point communication with non-blocking operations.
You can take a shortcut and use the ready implementation of the solver at the folder mpi ip2p.
Skim through the code and compare differences. Run it with the same core counts and
compare performance. Remember to backport the changes (including the Makefile) you have
made for the node-level performance optimization.



8 Summary

In this tutorial, we

• Generated the profile (which routines take the most time) of an application and making
some impressions of it

• Collected hardware performance counters of the application

• Measured the scalability curves of an application.

Even if the differences observed with the toy application were not that impressive, the same
tools and techniques are what we are using in performance optimization of real-world appli-
cations and this exercise was just to get you exposed with them.



Appendix: 2D heat equation solver

The heat equation is a partial differential equation that describes the variation of temperature
in a given region over time

∂u

∂t
= α∇2u

where u(x, y, z, t) represents temperature variation over space at a given time, and α is a ther-
mal diffusivity constant. We will limit ourselves onto two dimensions (plane) and discretize
the equation onto a grid. We can study the development of the temperature grid with explicit
time evolution over time steps ∆t:

um+1(i, j) = um(i, j) + α∇2um(i, j)∆t,

where the discretized Laplacian can be expressed as finite differences as

∇2u(i, j) =
u(i− 1, j)− 2u(i, j) + u(i+ 1, j)

(∆x)2
+
u(i, j − 1)− 2u(i, j) + u(i, j + 1)

(∆y)2
.

Here, ∆x and ∆y are the grid spacings of the temperature grid.
Parallelization of the program with MPI is pretty straightforward, the grid can be divided

to tasks and the tasks can update their parts of the grid independently. The exception is
the boundaries of the domains, where we need to perform the “halo exchange”, i.e. before
each step the last “true” column handled by a task needs to be sent to a “ghost layer” of the
neighboring task.

There a solver for the 2D heat equation implemented in C in labs.tar.gz. The solver
develops the equation in a user-provided grid size and over the number of time steps provided
by the user. The default geometry is a disc, but user can give other shapes as input files – a
bottle is provided as an example (so you can simulate how your beer will heat up when you
take it to a sauna!). You can compile the program by adjusting the Makefile as needed and
typing make. Examples on how to run the binary (remember aprun on Cray XC)

• ./heat (no arguments - will run the program with default arguments, 2048x2048 grid
and 500 time steps)

• ./heat bottle.dat (one argument - will run the program starting from a temperature
grid provided in the file bottle.dat for the default number of time steps, i.e. 500)

• ./heat bottle.dat 1000 (two arguments - will run the program starting from a tem-
perature grid provided in the file bottle.dat for 1000 time steps)

• ./heat 1024 2048 1000 (three arguments - will run the program in a 1024x2048 rect-
angular grid for 1000 time steps)



The program will by default produce a .png image of the temperature field after every 50
iterations. You can change that from the parameter image interval defined in main.c. You
can view the images with some image viewer, e.g. eog. If the ImageMagick utility is installed,
you can generate an animation of the pictures by animate heat*.png.


