

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

CSC Cloud computing resources in geoinformatics teaching

cPouta use cases from geoinformatics courses at the University of Helsinki:

- Open data course: GeoServer
- Advanced GIS course: PostGIS
- Python course: Jupyter Lab

- Teach the basics of **Geoserver** and sharing geospatial data.
- Use shared datasets in students' custom web maps

GEOSERVER

Solution

- Remote CSC server to run course Geoserver
- All students used the same ٠ account
- Datasets were imported using ulletQGIS GeoServer Explorer plugin
- Shared datasets were used in custom OpenLayers web maps

- Teach the basics of PostgreSQL/PostGIS
- Distribute exercise data in a smart way

pennig riarjoicus_1.2	P	
You have chosen to	open:	
Harjoitus_1.zi	p	
which is: Com	pressed (zipped) Folder (5,4 MB)	
from: https://	moodle.helsinki.fi	
What should Firefo	x do with this file?	
○ <u>O</u> pen with	Resurssienhallinta (default)	~
Save File		
Do this <u>a</u> uto	matically for files like this from now on.	

In stead of this...

- Teach the basics of PostgreSQL/PostGIS
- Distribute exercise data in a • smart way

Solution: PostGIS (running on CSC server) used via QGIS

socialmedia
193.166.25.204
193.166.25.204
(a.).c/
5432
postgres
prefer
Test Connection
how layers in the layer registries
esolve type of unrestricted columns (GEOMETRY)
ook in the 'public' schema
st tables with no geometry

- Collaboration between the University and CSC:
- CSC
 - Provides cPouta infrastructure
 - Gives advice about installations. Instructions to setup popular server software (GeoServer, PostGIS) in CSC's cPouta environment are available on GitHub.
- **University** (the teacher and/or local IT support):
 - Sets up the virtual machine
 - Installs the required software (eg. Geoserver or PostGIS)
 - Creates users accounts for students
 - Monitors the virtual machines and software usage

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI CSC

- Organizing interactive python teaching for 80 + students!
- Geospatial Python libraries

AUTOMATING GIS PROCESSES

Challenge:

- Organizing interactive python teaching for 80 + students!
- Geospatial python libraries

Solution: JupyterLab & notebook (docker) hosted by CSC

ot	ebook	S			
Environments				jupyt	
Jupyte	erLab				
Jupyter Univers	rLab Notebook sity of Helsinki. ne: 6h	for interact	ive lesson		
State	Name	Time Left	Access	Actions	Details
1	pb-clifford- the-witty	5h 59m	Open in browser	X Destroy	Details
		>	Launch new	Ē	
6		>	Launch new	Ĩ.	

Notebooks by CSC Dashboard

Docs » Loading and using modules

This page was generated from source/notebooks/L4/modules.ipynb. launch ful binder launch student binder launch CSC notebook

Loading and using modules

What is a module?

A *module* in Python is simply a Python .py file that contains a list of related functions that can be loaded and used. Modules are similar to what are more generally called libraries in programming languages, which again contain code related to a specific task such as mathematical operations. There are a *HUGE* number of Python modules, and many of them greatly extend what can be done in a normal Python program. In fact, the abundance of free Python modules is one of the best reasons to learn and start using Python.

View page source

How can modules be loaded?

Python modules can be loaded in a number of different ways.

Loading a module

Let's start simple with the math module. Here, we'll load the math module using the import statement.

In [1]: import math

In [2]: math.sqrt(81)

Out[2]: 9.0

Here we have loaded the math module by typing import math, which tells Python to read in the functions in the math module and make them available for use. In our example, we see that we can use a function within the math library by typing the name of the module first, a period, and then the name of function we would like to use afterward (e.g., <code>math.sqrt()</code>). Built-in functions such as <code>print()</code> do not require the name of the module first since nothing is explicitly imported.

Static webpage at: https://geo-python.github.io/

Interactive version of the lesson at: <u>https://notebooks.csc.fi/</u>

KIITOS

helsinki.fi/digital-geography

geo-python.github.io