

Pouta Cloud Course, Autumn 2019

- •Shubham Kapoor, Cloud System Specialist
- •Juhani Kataja, Application Specialist

CSC – Svomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus

Syllabus

- 9:00 10:30 Course introduction
 - Cloud computing basics
 - Cloud service landscape
 - Pouta virtual resource basics
- 10:30 10:45 Coffee break
- **10:45 12:00** Exercises
 - Creating virtual resources via Web User Interface
 - Use Security Groups to secure your virtual resources
- **12:00 13:00** Lunch
- **13:00 14:30** Theory
 - o cPouta vs. ePouta
 - Using Object Storage & Persistent Volumes for safely storing your data
 - o Pouta: Managing Project, Billing, VM lifecycles...
 - Building Application stack on your Pouta VM
- 14:30 14:45 Coffee break
- **14:45 16:00** Exercises
 - Quiz
 - Application stack development on your VM
 - Object Storage/Persistent Volume configurations and best practices
 - Snapshot of VM, OpenStack CLI tools...

Course Introduction

WHAT EXACTLY IS IT?

"This course gives you a practical introat for using CSC's cloud services **Pouta**"

- CSC's Infrastructure as a Service (IaaS) Cloud offering based on OpenStack
- Allows running Virtual Machines (VMs) on CSC's Data Center infrastructure
- Grants users full control of OS, middleware & run time environments
 - o On the flipside, users must manage and secure their VMs
- Provides VMs direct connection to the Internet/Intranet, allowing for new collaboration.
- Provides an IaaS cloud environment for your sensitive data processing (ePouta).

CSC

Cloud Computing

"Cloud Computing refers to on-demand delivery of computing services – servers, storage, databases, networking, software, analytics and more—over the network."

"A model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction"

Cloud Computing Characteristics

Cloud Computing has 5 essential characteristics

- On-demand self-service
- Broad network access
- Resource pooling
- Rapid elasticity
- Measured Service

Cloud Deployment Models

Cloud Computing Landscape

Infrastructure as a Service (laaS)

CSC's ePouta/cPouta Amazon EC2, Microsoft Azure.... Platform as a Service (PaaS)

CSC's RAHTI CSC's notebook.csc.fi Google AppEngine, Heroku,... **Software as a Service (SaaS)**

CSC's Chipster, Google Web Apps, Microsoft Web Apps,,...

Cloud Service Landscape

- "Cloud" is a very overloaded term
 - And for good reason almost any kind of workload can be crammed in there!
 - Most often cloud is confused to be SaaS and nothing more
- Chances are that on a daily basis you encounter tens of services which are using a cloud backend for storing both content and state
 - Anything from your employer's electronic access control system to a public transport information service to a music service you pick up the latest grooves from

Software as a Service (SaaS)

For example:

chipster.csc.fi, Google Web Apps, Microsoft Web Apps, Dropbox, Spotify

Cloud Service Landscape

Infrastructure as a Service (laaS)

For example:
pouta.csc.fi, Amazon EC2,
Microsoft Azure, Google Compute
Engine

- This course is strictly about laaS cloud
- However, as in the universe at large, also in the ICT field things are in constant flux and nothing is permanent
- Yesterday's services in a Virtual Machine are today's containerized microservices; today's containerized microservices are tomorrow's serverless architectures
- IaaS probably has some evolutionary cycles left, too
- Let's proceed to look at how laaS is setup!

Cloud Service Landscape

Infrastructure as a Service (IaaS)

For example:

pouta.csc.fi, Amazon EC2,

Microsoft Azure, Google Compute

Engine

- This course is strictly about laaS cloud
- However, as in the universe at large, also in the ICT field things are in constant fluxx and nothing is permanent
- Yesterday's services in a Virtual Machine are today's containerized microservices; today's containerized microservices are tomorrow's serverless architectures
- IaaS probably has some evolutionary cycles left, too
- Let's proceed to look at how laaS is setup!

Typical IaaS Cloud Setup

cPouta Cloud Setup

ePouta Cloud Setup

Creating virtual resources in Pouta - User Interfaces

- Web User Interface -
 - Suitable for administering individual VMs, keys, images, volumes...
 - o The only UI to support Haka federated login

CLI tools

- Suitable for more elaborate resource provisioning and possibly some lightweight (scripted) software integrations
- More info at https://research.csc.fi/pouta-install-client

Programming APIs

- Suitable for building very large systems and stacks
- Support from individual services (compute, storage) to full-fledged orchestration
- List of APIs available at https://pouta.csc.fi/dashboard/project/access_and_security

Today's MO

Things needed to create and access a VM in cPouta

- Access to Pouta Web UI
- One IPv4 address a public "Floating IP"
- Security Group permitting access from User's computer
- Identity
 - Password (not recommended, but acceptable for one-time test)
 - SSH Key-Based Authentication (recommended)
- SSH client software
- Internet access

Creating a Key pair

Navigate to Compute>Access and Security>Key Pairs

Click on create Key Pair, name key as lastname_firstname

Storing a Key pair

Linux and Mac OS X

Create .ssh directory in ~ if its not there already

```
mkdir -p .ssh chmod 700 .ssh
```

• Move key pair to .ssh directory

```
cd .ssh
mv ../Downloads/yourkey.pem .
```

- Protect key with passphrase (Optional) ssh-keygen -p -f yourkey.pem
- Make key unreadable by other users chmod 400 yourkey.pem

Windows

- Download Putty and Puttygen tools if you don't have them
- Load your private key (yourkey.pem) into puttygen and change it to .ppk format
- Open Putty, load .ppk file under Connection |
 SSH | Auth | Private key file for authentication
 - o Provide user name cloud-user
 - o Provide password which you added to Puttygen (Optional)

Opening VM to internet with security groups

- A Security Group defines a set of cloud level firewall rules for filtering traffic, typically inbound
- By default Security Groups blocks all incoming connections to your VM
- Security groups define combinations of ports and IP addresses for which the incoming connections are permitted
- Security groups can be created in the web interface and then applied to virtual machines
- One security group and include several "rules" and be used by several virtual machine
- One machine can use several security groups and vice versa
- You can additionally have some VM level firewall rules in conjunction to security group for better security.
- Typical case: allow connections from the IP address of your own computer to port 22 (SSH port).

Security Groups

- Created by navigating to
 Compute>Access and Security>Create
 Security Group
 - Several predefined rule sets are available, such as for SSH
 - At bare minimum you need to select the Source IP for the traffic
 - Modify the CIDR field to allow SSH connections only from specific IPs

Creating an Instance

- Navigate to Compute>Instances and Launch Instance
- Give Instance name as **lastname_firstname_instance**
- Select a Flavor of your choice (standard.tiny is a good first choice)
- Select Instance Boot Source as Boot from image
- Pick an image any image
- Navigate to Access & Security in same popup. Make sure that the "SSH - World" Security Group is selected.
- Populate the Post-Creation script as per

Creating an Instance - Redux!

- Add SSH key pair to Web UI
- Create instance as before
- In Access & Security, make sure that the SSH key pair is selected
- When connecting to the instance, designate the private key into the session or pre-populate it into an SSH agent prior to making a connection

Web UI Login

- From your web browser, browse https://pouta.csc.fi
- Log in using provided training "trainingXX" username and password
 - All set? Great!
 - Issues logging in? Please let Shubham or Juhani know and we'll help
- Everybody should be able to log in to the cPouta Web UI before we start exercises

Exercise Set 1: Creating & Securing Virtual Resources

• Exercise 1 - Creating a temporary Virtual Machine for testing login

- Log in to Cloud Dashboard at https://pouta.csc.fi/
- o Create your own Virtual Machine Instance with disposable password in post creation section
- Associate Floating IP to Virtual Machine Instance
- Log in to your VM using SSH or Putty
- Exit and delete the VM

• Exercise 2 - Creating an SSH key pair for secure login to an Instance

- Create an SSH key pair, storing the private key in a safe place
- Create new VM Instance using this key pair
- Associate Floating IP address to VM
- Log in
- Declare victory! Watch Star Wars!!

Exercise Set 1: Creating & Securing Virtual Resources

- Exercise 3 Create your own Security Group for securing your virtual resources
 - Create your own Security Group for SSH traffic
 - Start by creating a wrong Security Group rule
 - Attach it to your VM
 - You would not be able to access your VM
 - Modify Security Group again, this time with correct Security Group rule
 - Connect to your VM

Pouta: CSC's laaS Cloud Services

CSC – Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus

Pouta: CSC's laaS offering

- CSC provides two Infrastructure as a Service (IaaS) cloud services for research and education:
 - •cPouta
 - ePouta
- Powered by OpenStack.
 - Current version Newton.
- Management processes ISO27001 and VAHTI 2010 certified.
- True laaS experience
 - Deploy your own Virtual Machine
 - Decide your own OS, Middleware, Runtime environment & Storage.
 - Design your own Network based upon your project needs.
- Simple to create and modify VMs: Web UI, CLI and REST API interfaces supported.

cPouta

- OpenStack based cloud.
- Serving cloud computing needs of Finnish research institutes & universities since 2013.
- VMs and Control plane can be accessed via public internet.
- Customers may decide access to VMs by creating firewall rules at OpenStack level known as "Security Groups".
- ISO27001 certified.
- Can support modern DevOps, Agile, CI/CD etc. environments
- Could be used for hosting:
 - Scientific applications,
 - Custom services such as Web servers, File servers, load balancer etc.,
 - Virtual Computer class,
 - Research Data Sharing etc.

cPouta VM Flavors

Flavor	Core s	Memory	Disk (root)	Disk (ephemeral)	Disk (total)	Memory/cor e	Billing Units/h
standard.tiny	1	1000 MB	80 GB	o GB	80 GB	1000 MB	0.5
standard.small	2	2000 MB	80 GB	o GB	80 GB	1000 MB	1
standard.mediu m	3	4000 MB	80 GB	o GB	80 GB	1333 MB	2
hpc-gen1.1core	1	3750 MB	80 GB	o GB	8o GB	3750 MB	2
hpc-gen2.2core	2	10000 MB	80 GB	o GB	80 GB	5000 MB	4
io.70GB	2	10000 MB	20 GB	70 GB	90 GB	5000 MB	5
hpc-gen1.4core	4	15000 MB	80 GB	o GB	8o GB	3750 MB	8
hpc- gen2.48core	48	240	80 GB (RAIDo)	o GB	80 GB	5000 MB	90

ePouta

CSC

- OpenStack based cloud.
- Serving cloud computing needs of Finnish research institutes & universities which involves **Sensitive Data**.
- Complete Isolation of VMs from rest of the world and other ePouta customers.
- VMs accessible only from customer network.
- VPC : Optical Private Network(OPN) or MPLS VPN connection between the end customer and ePouta VM instances.
- ISO 27001 certified.
- Can support modern DevOps, Agile, CI/CD etc. environments.
- Could be used for hosting:
 - Scientific applications dealing with sensitive data,
 - Sensitive Data Sharing, Archiving etc.

ePouta: Connection

Typical VM connections between ePouta and customer's network. Such connections are normally coordinated between CSC's cloud team, Funet and customers IT department for initial setup.

ePouta VM Flavors

Flavor	Cores	Memory (MB)	Disk (root)	Disk (ephemeral)	Billing Units/h
hpc.mini	2	3600	80	0	5
hpc.medium.wes tmere	8	14400	80	0	8
hpc.small	4	7200	80	0	10
io.haswell.8core	8	40000	20 (SSD/RAIDo)	350 (SSD/RAIDo)	25
io.haswell.16core	16	80000	20 (SSD/RAIDo)	700 (SSD/RAIDo)	50
hpc.xlarge.hasw ell	32	160000	80	0	80
hpc.fullnode.has well	46	248000	80	0	120
tb.3.1470RAM	80	1470000	80 GB (SSD/RAIDo)	2500 GB (NVMe/RAIDo)	600

Pouta Usecases

Scientific Modelling in the areas of natural sciences

Projects Hosted in Pouta Services

Advanced Computing and Software Development

Big Data Analytics

Digital Education

Research Data Sharing & Archiving

Typical Resources You get from Pouta Clouds

- VMs
- Oversubscribed or dedicated **CPUs**
- GPUs

Compute

- Volume Storage
- Object Storage*

Storage

• 10 GbE or 40 GbE

Private **VLAN**

- With or Without
 - * NAT

With Latest Security patches

Images

• Full programmability of your resources

API

IPv4

Pouta: Hardware Options

Diverse set of hardware options to support your computing needs

GPU Flavors in Pouta

CSC

- GPU Flavors provide high performance computing leveraging GPGPUs.
- GPU 1.* family flavors in cPouta are powered by NVIDIA Tesla P100 GPGPUs
- GPU 2.* family flavors in ePouta are powered by NVIDIA Tesla V100 GPGPUs
 - CPU: Intel(R) Xeon(R) Gold 6148, with hyper-threading
- GPU flavors are backed by local SSDs (RAID-o) on the server.
 - Advisable to use Volumes for storing important data.
- You can use CSC's Code Optimization Service in case you are coding your own application.
 - https://research.csc.fi/optimization-service
 - PCI passthrough is used to get GPGPUs in GPU flavor machines
 - OS images pre installed with latest CUDA version are available.
 - You may also use your own OS images by installing required libraries yourself.
- •GPGPUs are also available in the batch system onPuhti: https://docs.csc.fi/#computing/system/

cPouta/ePouta

	cPouta public Cloud	ePouta private Cloud
ISO27001, VAHTI Raised Level	Certified	Certified
Usage	General purpose Computing	Computing on Sensitive Data
VM access	Internet	OPN/MPLS
Firewall, LB, VM installation, VM auto-recovery, Backups	Self-service	Self-service
Supported Operating Systems	No particular limits, but commercial OSs require a license	No particular limits, but commercial OSs require a license
OpenStack Version	Newton	Newton
GPU family	NVIDIA Tesla P100 GPGPUs	NVIDIA Tesla V100 GPGPUs
Object Storage	Yes (in build)	No (Could be indirectly used from your organization network)
Service availability target	99%	99%

OpenStack

CSC – Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus

OpenStack

CSC

- CSC's cPouta/ePouta cloud services are powered by OpenStack.
 - Current OpenStack version used by Pouta services is Newton
- OpenStack is a cloud software that allows end user to create and use their VM instances, networks and storage.
- Fast moving open source project with backing from industrial giants like AT&T, Red Hat, IBM, Intel, HP etc.
- Flexible architecture which may support different types of scalabilities.
- Used by many organizations from research institutes to service/content providers.
- Large customer base augments better availability of expertise, support and chances of continuity.
- Supports Web UI, CLI and REST Interfaces

OpenStack WebUI

OpenStack CLI

ID		Name	Status
4-005474 4		-+	
	ffe-4f88-bc9f-dad674ef48d2	CentOS-6	active
7add5463-2	0a9-4d2e-8bd8-b38d959aa83f	CentOS-7	active
5ad9d51b-b	6eb-44e8-98b6-9d7f69cac5df	Fedora-Atomic-25	active
c42266c9-7	e05-45bd-a434-287539c0dc90	ScientificLinux-6	active
1d9a34dc-2	a79-41c2-b787-4193a9c5b726	ScientificLinux-7	active
669bef35-f	60a-4bea-93cc-a57348af2ff1	Ubuntu-14.04	active
6cd4708e-f	cb0-4dbc-92f5-faf4e9aa7424	Ubuntu-16.04	active
be8c32a5-e	1c2-4584-b79c-1fb6caaf4501	demo snapshot	i active i

osclient) skap	ooor-air13:python_virtual	envs skapoor\$ oper	nstack keypa	ir show kapo	or_shubham
	Value				
created_at deleted deleted_at fingerprint id name updated_at	2017-09-15T09:24:15.000 False None ad:3f:45:ff:de:09:65:be 183015 kapoor_shubham None skapoor		6:57:9e 		

ID	Name	RAM		Ephemeral	VCPUs	Is Public
0143b0d1-4788-4d1f-aa04-4473e4a7c2a6	standard.tiny	1000	 80	,	1	 True
053c4852-dd1e-42dc-947a-fe4263548fa9	hpc-gen2.48core				48	
110eb004-f7cc-474b-8158-14bb244cb05e	hpc-gen2.24core					
1792db39-f38e-43ba-ae95-96b7549b4f84	standard.xlarge	16000				
27d232d6-d245-4cf4-8ab9-a0424005184b	hpc-gen2.8core					
2f24b080-287f-49a9-8219-2295cde364c3	hpc-gen2.16core				16	
41ec2177-604b-492c-8f19-f2d7c2bc8c07	10.70GB	10000				
544e940c-4b9b-4f54-ab6f-f1ee1792fe48	hpc-gen2.2core	10000				
58bbbf4c-e174-485f-b050-b0cc86c0f677	hpc-gen1.16core	60000			16	
a82b2b5f-6788-41fd-80cb-ed7576ee1e7c	hpc-gen1.8core					
af9fa76e-818a-421e-9142-0341e7818d90	io.340GB	40000		340		
ba8f9270-93fe-47ee-b402-714a1352f190	hpc-gen1.1core	3750				
c0c7bb30-2679-4e0d-94ab-4395237f505e	hpc-gen1.4core	15000				
c1da3536-f22d-426e-bc14-ef994f1bfaa7	10.700GB			700	16	
c5ffaed0-6707-4a99-9498-9ef6d34c8add	io.160GB			160		
d4a2cb9c-99da-4e0f-82d7-3313cca2b2c2	standard.small	2000				True
e7b3364e-f70c-4e3b-8e5a-fa249759d14c	standard.large					
f363d088-4967-48ff-bc80-86c0d05ff418	standard.medium	4000				

```
        (osclient)
        skapoor-air13:python_virtualenvs
        skapoors openstack
        server
        create
        --flavor
        standard.tiny
        --image
        6cd4788e-fcb8-4dbc-92f5-faf4e9al

        a7424
        --key-name
        kapoor_shubham_instance_2
        Image: standard.tiny
        Image: standard.tiny
        --image
        6cd4788e-fcb8-4dbc-92f5-faf4e9al

        i Field
        Value
        Value
```


Object Storage

CSC – Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus

What is Object Storage

- Object storage is a computer data storage architecture that manages data as objects.
- Each object has three things: Data, Metadata and Globally unique identifier.
- Different from other data storage architectures like File Storage: Data as a file hierarchy and Block Storage: Data as blocks within sectors & tracks.
- Accessed via APIs at application-level, rather than via OS at system level.
- Scalable and Self healing storage.

File Storage vs Object Storage

File Name: CTSCAN_Kapoor

Created by: User1

Created on: 19-09-2017

File Type: DICOM

File Storage

Object Storage

Where Object Storage Fits

On Basis of Data Type

• Storage of Unstructured/ Semi structured Data like Media files, web contents, Backup Archives etc.

- Cold Storage of structured and semi structured data like Databases, Sensor Data, Log files etc.
- Archiving files in place of local tape drives.
- Big Data, large data sets

On Basis of Data Size

Where Object Storage Doesn't Fit

CSC

- Hot Data.
- Relational/OLTP Databases.
- Latency intolerant applications.
- Data with **Strict** consistency requirements.

Object Storage Around us

Social Media Storage

Big Data Analytics

Offsite Backup/Archive

Static Website Hosting

Digital Archives

Object Storage in cPouta

- Launched for customers in 2018.
- BU consumption similar to existing block storage i.e. 3.5 BU/TiB/hr
- Charging on the basis of storage not transactions.
- Initial quota for object storage/project is 1 TiB.

Buckets per project: 1000

- Objects per Bucket: 100000
- Object Size: 5GB
- For objects > 5GB, split the object into smaller segments.
- Content Agnostic, Distributed, Scalable and Highly available Data Storage.
- Access control possible for buckets/objects.
- REST API available, S3 and Swift API compatible, Supports WebUI and Swift/S3 CLI tools
- CSC's new Allas data lake to support similar APIs.

Object Storage in cPouta

Persistent Volumes

CSC – Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus

Persistent Data Volumes

- In Pouta, VM:s have only small local (virtual) disk (Typically 80GB)
- Virtual data volumes can be created.
- Volumes can be attached to one VM at a time.
- A project can have several volumes.
- Management with web interface or command line client
- Data stored in Persistent volumes is resilient to Disk Failures,
 Server failures, Accidental deletion of VMs, Crashing of VMs
 - But not to human errors → No Backups.
- Volumes are project specific, not user specific, but could be transferred to other projects in same cloud service.

CSC

Pouta: Managing Project

- A Pouta project contain a set of resources: cores, memory, storage, ip-addresses
- A default project contains:
 - For cPouta: 8 cores, 32 GB memory, 1 TB disk space, 2 floating IP addresses .
 - For ePouta: Negotiated between customer and CSC
- If needed you can ask for more resources for your project.
- •Project members can build one or several VMs and volumes based on the granted resources.
- •When VMs and Volumes are active they are consuming billing units (even if no one is using them).
- Project members can manage other members machines and volumes too.
- Your CSC account can be a member in many cPouta projects.

Pouta: Billing

- In Pouta you are hourly billed for
 - VM usage (Based upon your flavor: https://research.csc.fi/pouta-flavours)
 - Volume Storage (3,5 BU/TiB/hr)
 - Object Storage (3,5 BU/TiB/hr)
 - Public IPs (0,2 BU/hr)
- VMs start consuming BUs once you create them
 - They consume BU regardless you use them or not.
 - Shutting down VM does not stop them consuming BUs.
 - You can Shelve/Terminate your VM for stopping BU consumption.
 - Object/Volume Storage start consuming BUs once you create them
 - Storage volumes consume BUs even if they are not attached to virtual machines.
- Floating IPs are billed if they are allocated to the project or assigned to a virtual machine.

Pouta: VM States

•Active – Consumes billing units regardless of the real usage.

•Shut off – Not active, but still reserves the resources. Consumes still billing units.

•Suspended – Temporarily suspended. Current state saved. Can be revoked. Consumes billing units

•Shelved – VM is shut off, resources are freed & Sate is saved. Can be later on revoked if resources are free (un-shelved). Does not use billing units.

Not Billed Billed SHUT OFF PAUSE SUSPEND **SHELVE TERMINATE**

•**Terminate** – Removes the Virtual Machine.

cPouta in action

Building Application Stack on Pouta VM

Installing software to your VM

- The VM images provided by CSC include only just the basic linux tools.
- You can/must add the tools you need with using tools like
- System level repository installation:
 - Centos and Scientific linux: sudo yum
 - Ubuntu: sudo apt
 - add missing libraries and linux commands and many applications too
- Compile codes or download pre-compiled binaries.
- Install Docker and use Docker images.
- Use Conda!

sudo command for system administration

The default user, cloud-user, does not have superuser rights, but can do admin operations with **sudo**.

sudo linux-command-to-execute

- Repository installations
- System libraries and directories
- User accounts

e.g.

sudo reboot sudo yum install nano sudo nano /etc/yum.conf sudo useradd teppo

Repository installation in Centos and RedHat with yum

System wide installation of libraries and tools

Many application software are also available this way

yum help	List subcommands and options
sudo yum install package	Install a package from repository
sudo yum update	Update one or all packages in the system
yum provides filename	Check what packages include the defined file
yum search term	Search package names and descriptions
sudo yum localinstall package	Install locally available rpm file
sudo yum remove package	Remove a package

Repository installation in ubuntu with apt-get

System wide installation of libraries and tools

Many application software are also available this way

apt-gethelp	List commands and options
sudo apt-get install package	Install a package from repository
sudo apt-get update	Update one or all packages in the system
apt-file filename	Check what packages include the defined file
apt-cache search term	Search package names and descriptions
sudo yum localinstall package	Install locally available rpm file
sudo apt-get remove package	Remove a package

Conda /Bioconda

- Easy way to install software tools together with their dependencies
- Bioconda- repository contains over 700 bioscience tools
- Does not need superuser privileges
- For installing conda and browsing bioconda packages, check bioconda home page:

https://bioconda.github.io/

 Once you have conda installed, you can install application software with commands like:

conda create -n aligners bwa bowtie hisat star source activate aligners bwa

Getting Started, Doubts, Issues with Pouta Services

Contact servicedesk@csc.fi

Exercise Set 2: Atleast 3 of Following Exercises

- Exercise 4 Install Docker CE & run a RStudio server in Docker Container
- Exercise 5 Build your own RStudio Server
- Exercise 6 Installing software with Conda
- Exercise 7 Installing Stacks server in Ubuntu VM
- Exercise 8 Install OpenStack CLI & use it
- Exercise 9 Create Snapshot of VM
- Exercise 10 Manage your Persistent Volumes
- Exercise 11 Create your own Bucket & Object using WebUI
- Exercise 12 Upload Object to your Bucket using s3cmd client