

Gromacs - where are we now, what's new, what's coming in the future

Christian Blau

blau@kth.se

GROMACS origins

- Originally a hardware project at the University of Groningen in the early 1990s

 custom-designed 32-processor ring using PVM
- Design and simulation methodology largely adopted from existing GROMOS molecular simulation package
- Key decision: develop in ANSI C, rather than FORTRAN
- Early adopters and core developers:
 - David van der Spoel, Berk Hess, Anton Feenstra, Rudi van Drunen

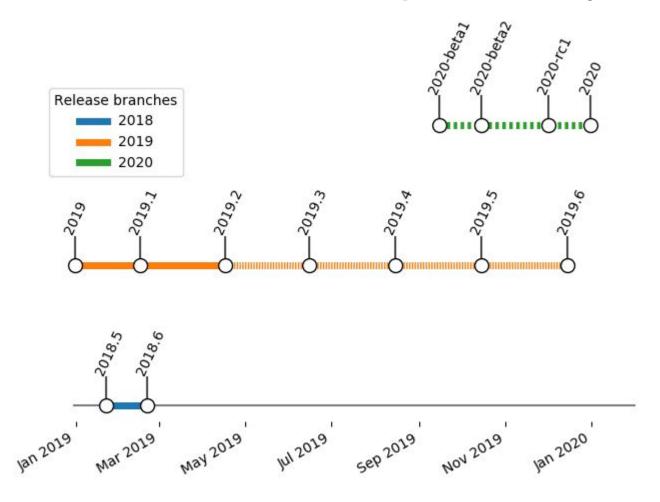
GROMACS origins

- First public release 2.0 some time in the 1990s
- First paper "GROMACS: a message-passing parallel molecular dynamics implementation" Comp. Phys. Comm. 1995
- first CVS commit in 1997, already 750 files and 145k LOC
- first FOSS release 3.0 in August 2001, GPL 2.0
- provide preparation and analysis tools along with the core simulation engine
- aim for performance portability x86 assembly for key kernels

Who develops GROMACS

- Developers in Stockholm / Uppsala
 - Mark Abraham (project manager)
 - Paul Bauer (project/release manager)
 - Szilard Pall (GPU acceleration)
 - Artem Zhmurov (GPU acceleration)
 - Berk Hess (enhanced sampling, domain decomposition, algorithm development)
 - Erik Lindahl (SIMD, PME, large scale project coordination)
 - David van der Spoel (Energy analysis, analysis tools, force field development)
 - Joe Jordan (NB-LIB)
 - Christian Blau (external forces)

Who develops GROMACS


- Developers in Finland
 - JYU Jyväskylä (Gerrit Groenhof, Dmitry Morozov, Noora Aho, Emmi Pohjolainen)
 - constant PH, QM/MM
 - Teemu Mortula (options, selections, analysis tools, C++ transition)
- Developers in Germany
 - Carsten Kutzner (MPI-BPC Göttingen, ion swapping, enforced rotation)
 - Thomas Ullman (MPI-BPC Göttingen, lambda dynamics)
 - Vytautas Gapsys (MPI-BPC Göttingen, pmx, free energy)
 - Markus Rampp group (MPI-Computing and Data Facility)

Who develops GROMACS

- US and others
 - Roland Schulz (@intel, parallelisation and acceleration, C++ transition)
 - Alan Gray, Jonathan Vincent (@NVidia, GPU acceleration)
 - Eric Irrgang, Peter Kasson (python api, ensemble simulations)
 - Pascal Merz, Michael Shirts (general integrator framework)
 - Kevin Boyd (code refactoring)

GROMACS development cycles

How to contribute

- Know what you want
- Ask developers
 - personally
 - mailing list
 - redmine
- Describe and document your feature
- Have proof of concept
- Upload to gerrit
- Make small commits

i status:open gerrit.grom: ×) 🗅		
Ŭ							☆ (_	•••
II M Open	y Projects People Plugins Documentation	status:open				Changes V Search		brahan	n 🤤	3
earch	i for status:open									
ID	Subject	Status	Owner	Project	Branch	Updated	Size		CR	
8031	Convert gmx hash t to C++	Status	Berk Hess	gromacs	master (domdec-cleanup)	10:23 AM	3128		UR	
8040	clang-tidy: misc-misplaced-const		Roland Schulz	gromacs	master	10:22 AM			1	
8030	Make gmx ga2la t a proper class		Berk Hess	gromacs	master (domdec-cleanup)	9:18 AM	-	-	-1	
3277	Added functional mode analysis	Merge Conflict	Jan Henning Peters	gromacs	master	8:50 AM	10			
4015	Added Partial Least Squares Method	Merge Conflict	Jan Henning Peters	gromacs	master	8:49 AM			+1	
8042	Change ArrayRef::size_type to signed	Merge Conflict	Roland Schulz	gromacs	master	7:34 AM			1	
6801	Linear algebra on IrregArray2D and std::vector		Thomas Ullmann	gromacs	master	12:44 AM	8			
5250	array classes for lambda-dynamics		Thomas Ullmann	gromacs	master	12:32 AM				
8038	Fix ManageLmfit	Merge Conflict	Roland Schulz	gromacs	master	Jul 2		1	1	
8041	clang-tidy: misc-misplaced-widening-cast	Merge Conflict	Roland Schulz	gromacs	master	Jul 2		1	1	
8047	2/3 of old-style casting	Merge Conflict	Roland Schulz	gromacs	master	Jul 2		-		
8045	Fix part of old-style casting	Merge Conflict	Roland Schulz	gromacs	master	Jul 2	8			
8035	[RFC] Replace gmx_hash_t by std::unordered_map		Berk Hess	gromacs	master	Jul 2				
6020	Add LocalAtomSet for handling atom indices.		🏲 Christian Blau	gromacs	master	Jul 2			1	
8044	Enable more warnings for Clang 6	Merge Conflict	Roland Schulz	gromacs	master	Jul 2				
7 5400	[RFC] Add basic operations for RVec		Mexey Shvetsov	gromacs	master (vec-operations-overloads	s) Jun 30				
8037	WIP: replace ga2la get with find		Roland Schulz	gromacs	master	Jun 30				
7812	Recognize Intel GPU as compatible		Roland Schulz	gromacs	master (OpenCL/Intel)	Jun 29		1	+1	
8012	Fix clang CUDA build		Mark Abraham	gromacs	master	Jun 29		1	+1	
7 8006	Expose inputrec and topology to IForceProviders		Joe Jordan	gromacs	master	Jun 28		1		
7756	[WIP] SAXS and SANS forward model and forces.		🎆 Joe Jordan	gromacs	master	Jun 28				
7801	Change pull buffers to std::vector	Merge Conflict	Berk Hess	gromacs	master	Jun 26		-	+1	
4310	Framework for analyzing energy files.	Merge Conflict	David van der Spoel	gromacs	master	Jun 26	8			
7877	Add and enable PME OpenCL	Merge Conflict	🎇 Aleksei Iupinov	gromacs	master (pme-opencl)	Jun 25				
7924	Remove hardcoded warp_size == 32 assumption from PME GPU	Merge Conflict	Aleksei lupinov	gromacs	master (pme-opencl)	Jun 25			+1	

Documentation is a must

- All code has to be documented using Doxygen
 - Allows automatic generation of webpage content
 - Can be cross referenced in other parts
 - Will be used to determine public and internal API
- General documentation using ReStructured Text (rst)
 - Generates all remaining webpages and PDF manual
 - Makes it possible to have cross referencing between the sections
- If you use or develop for GROMACS, the manual is the best way to get started

GROMACS user and developer mailing lists

- General questions should be asked on user mailing list
 - <u>gmx-users@gromacs.org</u>
- Check first the archive if the questions have been asked
- Developer questions better suited at
 - <u>gmx-developers@gromacs.org</u>
- Plan to move both to a BioExcel organized forum
 - ask.bioexcel.eu

New features in GROMACS 2020

- Density-guided simulations
- Python api to gromacs: gmxapi 0.1
- Modular simulator
- Parrinello-Rahman pressure for the md-vv integrator.
- Performance enhancements
 - Speed-up for free energy simulations
 - More SIMD acceleration
 - own-FFTW configured better
 - Faster bonded interactions on GPUs

Development challenges (why don't you just...)

New code needs to be

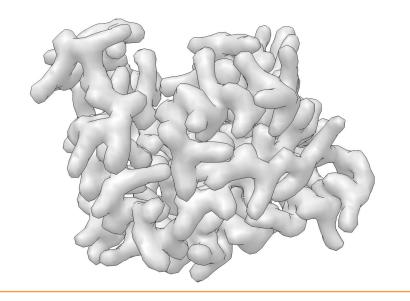
- Maintainable
 - Understanding and working on a piece of code may not be tied to a single person
 - everything will come to bite us eventually
- Portable
- Scientifically correct
- Performant

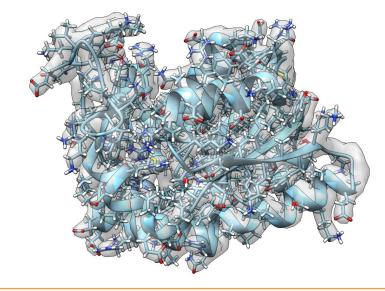
How to add good new code

- Have a case
 - Start with the minimal unit that is useful
 - Well cited papers help
- Make a case
 - Write a careful complete documentation of what you want
 - discuss with other developers
- Have tests
 - Write small tested functional units
 - Write a regression test, where all of your functionality plays together
- Avoid complex interactions
 - Touch as little code as possible
- Provide generally useful infrastructure
 - Start with for necessary code that will benefit the rest of GROMACS

New in GROMACS 2020 - under the hood

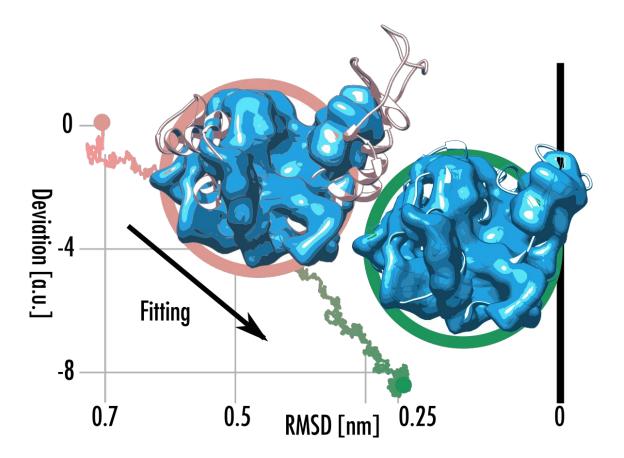
Extensive code refactoring


- More tests
- Removal of the "group" scheme loads of lines of code removed :)
- Domain-decomposition refactoring
- GPU code and communication refactoring
- extending the MDModule functionality
- modern Multidimensional arrays (mdspan)

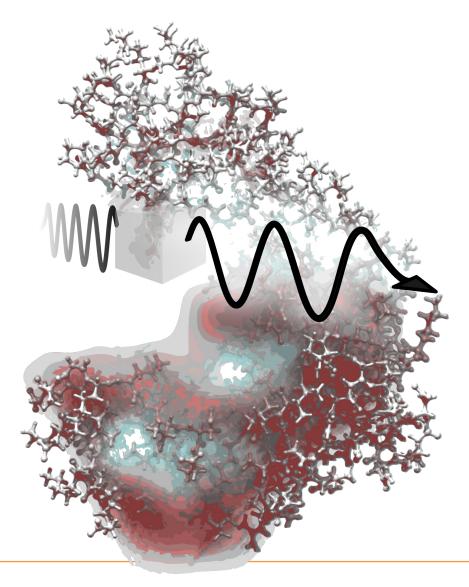


GROMACS 2020 - density-guided simulations

Making the most use of cryo-EM densities


- Automated density fitting to speed up time-to-result in the modeling process
- Explore the all the structures that fit a given cryo-EM density
- Allowing to balance between bio-chemistry and cryo-EM data influence
- See structural transitions between states

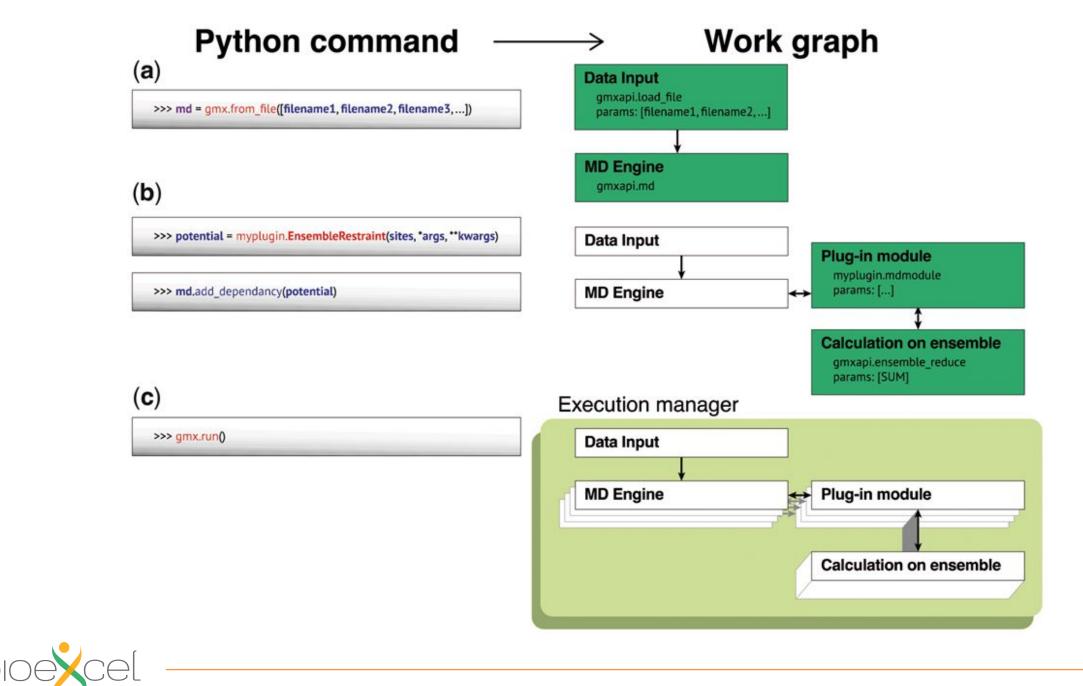
GROMACS 2020 - density-guided simulations


- The pipeline
 - set up a vanilla molecular dynamics simulation
 - add a reference density (.mrc or .ccp4 file)
 - choose balance between force field and density information
 - convergence usually within a day of walltime running

GROMACS 2020 - density-guided simulations

Further features

- force calculation derived from modeling underlying physics
- different models of comparing densities (relative entropy, cross-correlation,...) allows fine-tuning depending on the research question
- not only limited to cryo-EM, but applicable to any density / shape information



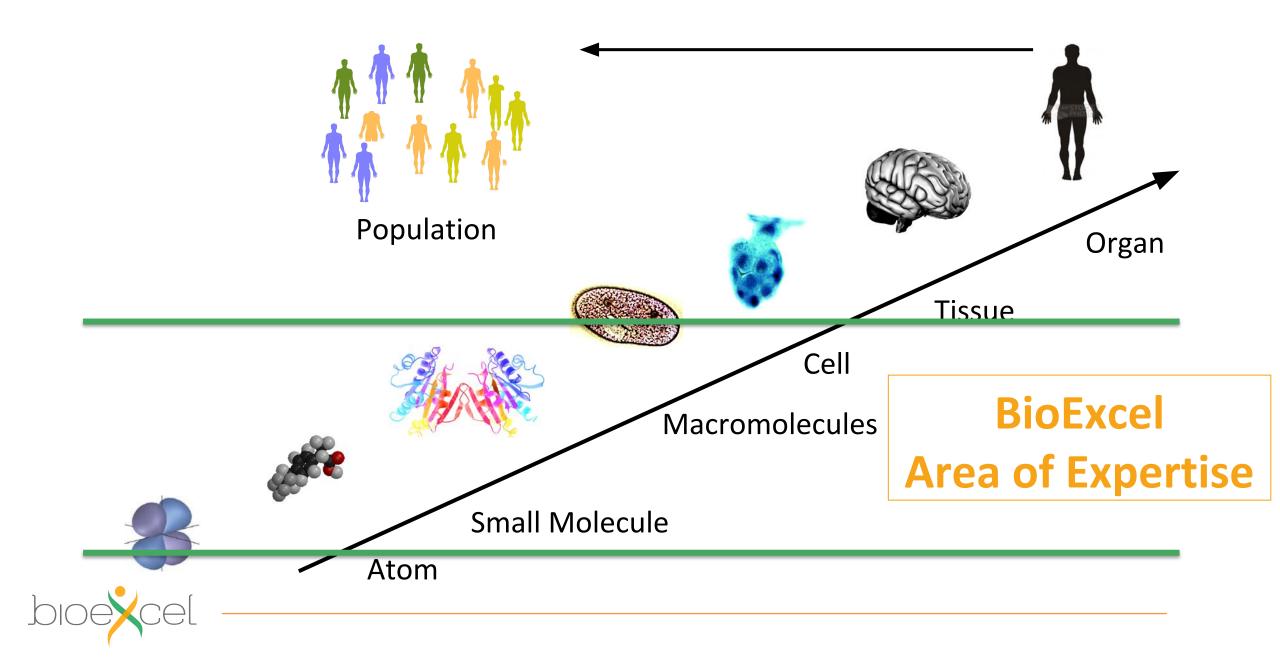
GROMACS API

- Running simulations from a python interface
- "Simple things should be simple, hard things not impossible"
- Vision: More features with less effort, shared in a community at maximum performance
- Requirement: Extensive code refactoring

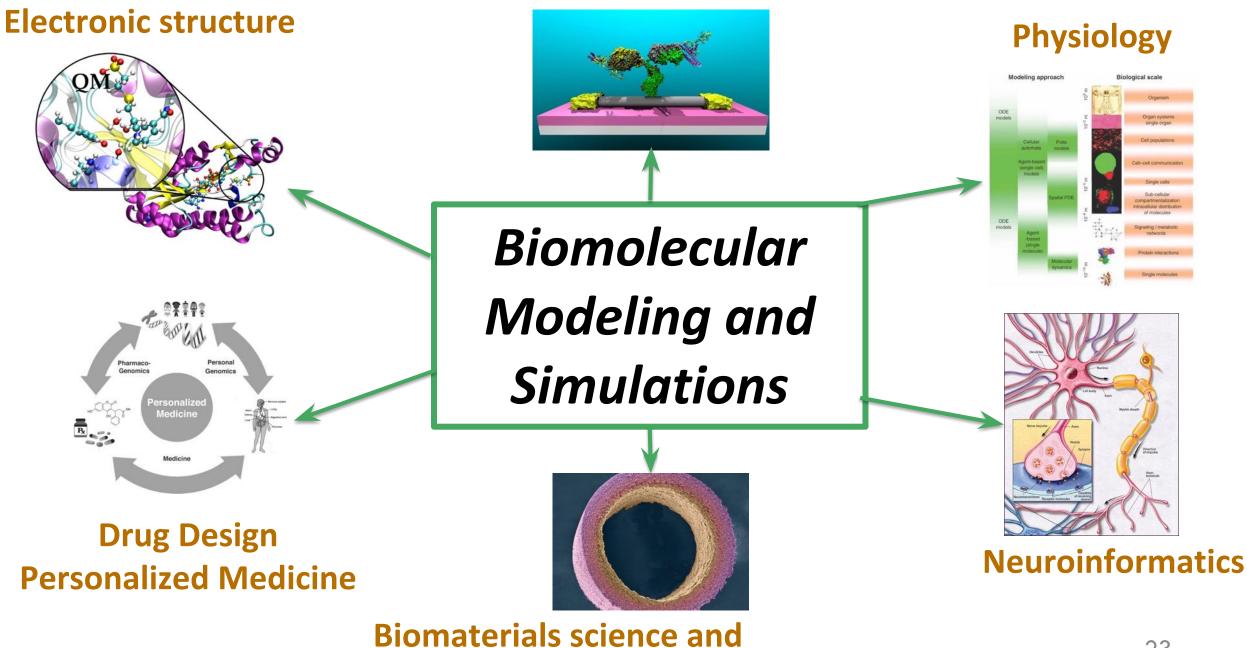
GROMACS interfaces workflows

- Wrapping gromacs is (comparably) easy, maintaining performance and sanity is hard
- Reproducible science workflows require reproducible workflows
- Challenges
 - Define interfaces
 - Be general, but use specific hardware features
 - Manage data

Who enables GROMACS

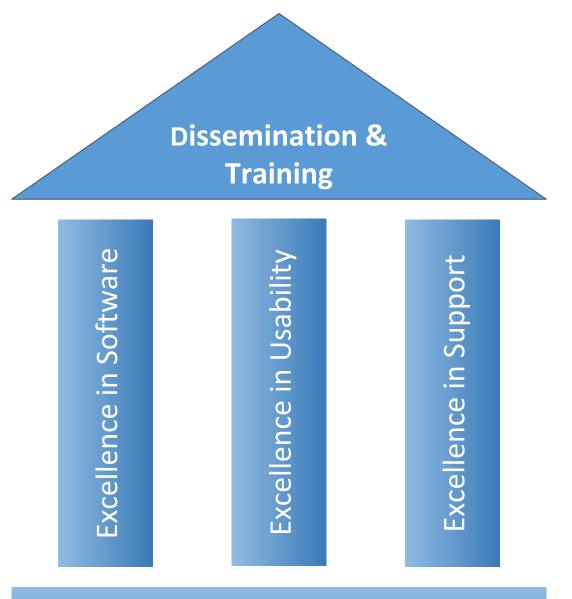

- Funding agencies BioExcel, PRACE, ...
- GROMACS community research groups, "Freelancers"
- Compute centers
- ...

Future of GROMACS hinges on


- Code and Research
- Training and Dissemination
- Qualified personnel and funding

Life Science and HPC

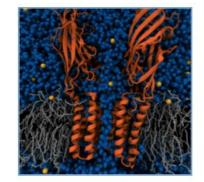
Biomarkers design



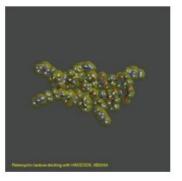
BioExcel's Vision and Mission

A central hub for biomolecular modeling and simulations

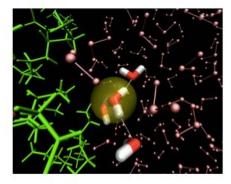
Enabling better science by **improving** the most popular biomolecular **software** and spreading best practices and expertise among the communities through **consultancy** and **training**



Scientific Excellence & User Driven Governance



Improve the performance, efficiency and scalability of key codes


- GROMACS (Molecular Dynamics Simulations)
- HADDOCK (Integrative modeling of macro-assemblies)
- CP2K (hybrid QM/MM code for enzymatic reactions, photochemistry and electron transfer processes)

MD simulations /GROMACS/

Docking /HADDOCK/

QM/MM /CP2K/

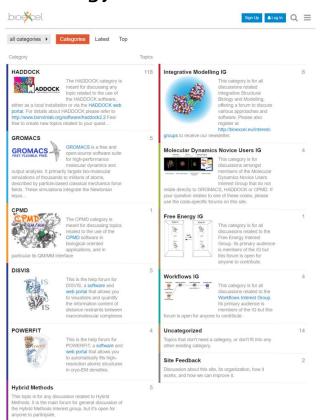
Training and workshops

Closing the "knowledge gap"

- show users what is available
- transferring new software developments to users
 - enable users to apply the newest and most advanced features
- ensure software is used in the best possible way
 - scientific correctness
 - high performance
 - ease-of-use
- follow up on user questions
- feed-back into the development process

Training and workshops

BioExcel workshops


- focused events for 15-50 participants from beginners to advanced levels
- industry participation is encouraged
- combination of BioExcel tools
- selection of events organized or supported by BioExcel
 - Minisymposium: Biomolecular simulation in drug discovery (with Scilifelab), Stockholm
 - Alchemical Free Energy Workshop 2019, Göttingen, Germany
 - BioExcel/PRACE Seasonal School, Stockholm
 - BioExcel Summer School on Biomolecular Simulations, Pula, Italy
 - Advanced Gromacs, HADDOCK + PMX workshop, Espoo, Finland

Training and workshops

- Webinars
 - dozens of sessions on all topics related to BioExcel from free energy calculations to software development at <u>https://bioexcel.eu/category/webinar/</u>
 - Session every other week
 - enables discovery new aspects of BioExcel tools
 - deepen understanding of use
- BioExcel forum
 - ask.bioexcel.eu
- Knowledge resource center with tutorials
 - krc.bioexcel.eu

BioExcel Partners 2019

Horizon 2020 European Union Funding for Research & Innovation BioExcel is funded by the European Union Horizon 2020 program under grant agreements 675728 and 823830.