
Maximizing Gromacs performance
for HTC and HPC

Christian Blau
blau@kth.se

Typical Simulation Time Scales
• Interesting biology at microsecond time-scale

• Simulation step at 2-4fs
• → need 10^10 time steps

• Biomolecular processes are stochastic
• → average over simulation ensembles
• → for solid answers, need up to 10^15 simulation

steps

• Best performance is at 100 microseconds / step
• → typical simulations run days to months

• → increase performance

Why work on increasing performance

Pro

▪ Decrease time to result, less time needed for research

▪ More precision with more sampling

▪ New discoveries
▪ sample protein conformations that were inaccessible

▪ apply methods that were inaccessible before

▪ Less resource cost (energy, computers, compute center maintenance)

3

Why not work on increasing performance

Contra

▪ Increased complexity
▪ risk of bugs, more work and time needed to understand

▪ algorithms

▪ implementation code

▪ simulation setup

▪ Increased complexity in algorithms

▪ Vendor dependency
▪ Newest hardware is often proprietary

▪ Constant “catch up” game

4

Concepts to increase performance

▪ Avoid simulations
▪ carefully design your computer experiments

▪ simulate only systems that have a chance of giving results

▪ Use good sampling algorithms
▪ Avoid sampling uninteresting conformations

▪ Get the physics right with the least effort

▪ Use good implementations
▪ Use the newest software version - GROMACS CurrentYear.highestNumber

▪ Compare software packages

▪ Use the best other libraries

5

Concepts to increase performance

▪ Use expert knowledge where available
▪ Read and follow advice from super-computing centers

▪ Read the manual and documentation

▪ Use a good “build”
▪ Use the newest compilers available

▪ Check compilation guidelines and options

▪ Use good hardware
▪ GPUs give large performance gains

6

Modern hardware is complex

7

Laptop above,

Node at compute center right

Strategies to Achieve Answers in Appropriate time

Use all power of a single core

▪ Modern processors use SIMD instructions

▪ (single instruction multiple data)

▪ Small C++ SIMD layer with highly optimised
math functions for

▪ SSE2/4, AVX2-128, AVX(2)-256, AVX-512,
ARM, VSX, HPC-ACE

▪ CPU kernels reach 50% of peak

Strategies to Achieve Answers in Appropriate time

Use all power of a single node

• Use OpenMP to use all CPUs on a single node

• OpenMP is (performance) portable, but limited:
• No way to run parallel tasks next to each other
• No binding of threads to cores (cache locality)

• Need for a better threading model, requirements:
• Extremely low overhead barriers (all-all, all-1, 1-all)
• Binding of threads to cores
• Portable

Strategies to Achieve Answers in Appropriate time

Use multiple nodes

• Use super computing infrastructure with multiple
nodes and accelerators (GPUs)

• Split up the simulation system into parts
• Simulate each part on its own node

1 2

3 4

Strategies to Achieve Answers in Appropriate time

Specialise node usage for the tasks
• Use super computing infrastructure with multiple

nodes and accelerators (GPUs)

• Split up the simulation system into parts
• Simulate each part on its own node

• Set apart nodes for lange-range interactions

1 2

3 4 5

6

Challenges when dividing long-range and
short-range interactions between multiple nodes

• Atoms move
• Keep track of the neighbours via a

“neighbour-list”

We can
optimize the
size of this buffer

Larger buffer
means more
calculations, but
we can update
the neighbor list
less frequently

Challenges when using multiple nodes
The neighbour list

We can
optimize the
size of this buffer

Larger buffer
means more
calculations, but
we can update
the neighbor list
less frequently

New in GROMACS-2018:
dual-pair list:
• reduces overhead
• less sensitive to parameters

Atom clustering and pair list buffering

Strategies to Achieve Answers in Appropriate time
Balance node usage
• Communication costs time
• → minimize communication

• Waiting costs time
• → balance compute time
− (dynamic load balancing)

1 2

3 4 5

6

8th-shell domain decomposition:
• minimizes communicated volume
• minimizes communication calls
• implemented using aggregation of data

along dimensions
• 1 MPI rank per domain
• dynamic load balancing

Spatial decomposition

Strategies to Achieve Answers in AppropriateTime

1 2

3 4 5

6

GPU

Using accelerators (GPUs)

▪ GPUs perform a set of operations on lots of
data very efficiently

▪ Challenges:

▪ Additional communication to and from
GPU

▪ Not all nodes need have the same GPU
setup

▪ Some nodes might have more than one
GPU

▪ Code needs to be written in specific
language

100-500 μs

Lignocellulose beznchmark
• 3.3 million atoms
• No long-range electrostatics!
• machine: Piz Daint at CSCS
▪ Cray XC50
▪ NVIDIA P100 GPUs

GROMACS performs on many nodes

Building GROMACS well

▪ Build the most recent version of GROMACS
▪ Consult the install guide http://manual.gromacs.org/documentation/
▪ Use a recent (preferably latest) version of everything:

▪ compiler e.g. gcc 9, clang 0
▪ CUDA/OpenCL SDK, GDK and drivers
▪ MPI libraries

▪ Configure FFTW appropriately (both $\tt --enable-sse2$ and $\tt --enable-avx$),
or use ``cmake -DGMX_BUILD_OWN_FFTW=ON``

▪ Build with MPI only to run on multi-node clusters
▪ Build a non-MPI version for single-node usage, including running PME tuning,

as well as pre- and post-processing
▪ Build in double precision only if you know why you need it

20

http://manual.gromacs.org/documentation/

Prepare your simulation well

▪ Choose a simulation cell that is the right shape, just large enough for your
science and your physical model

▪ Use non-rectangular simulation cells

21

Prepare your simulation well

▪ Prepare topologies with ``gmx pdb2gmx -vsite hydrogen`` for 4 fs time steps
(and use LINCS with all-bonds constraints)

▪ Otherwise, use LINCS and h-bonds constraints and 2 fs time steps

22

Choose your simulation setup well

▪ Write only the output you can use
▪ Less overhead during simulation

▪ Faster post-processing and analysis

▪ Plan to use ``gmx mdrun -rerun``

▪ Don't use coupling algorithms every MD step

▪ Choose ``nst*`` parameters to have a large common factor, like 10 or 100

▪ VDW cutoffs are part of your force field, follow standard practice

23

Acknowledgements

Thanks for input to this presentation from

▪ Mark Abraham, providing slides

▪ Szilard Pall

▪ Lea Rems

▪ Cathrine Berg

24

BioExcel Partners 2019

BioExcel is funded by the European Union
Horizon 2020 program under grant
agreements 675728 and 823830.

