

Integrative modeling of biomolecular complexes

Rodrigo V. Honorato, PhD

Bijvoet Center for Biomolecular Research Faculty of Science, Utrecht University the Netherlands r.vargashonorato@uu.nl

🄰 @honoratorv/

 Solution NMR:
 950, 900-cryo, 750, 600-cryo, 600US, 2x500 MHz

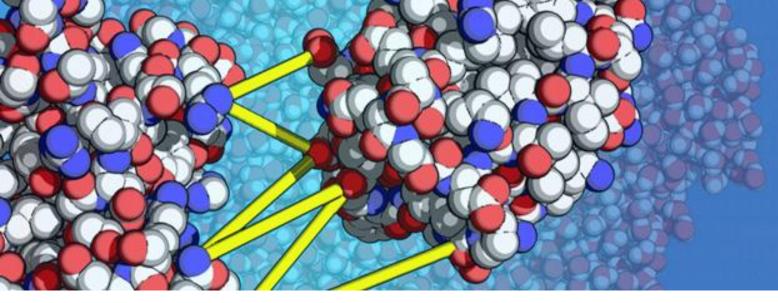
 Solid-state NMR:
 800WB-DNP, 400WB-DNP, 700US, 500WB MHz

 e-infrastructure:
 >1900 CPU cores + EGI grid (>110'000 CPU cores)

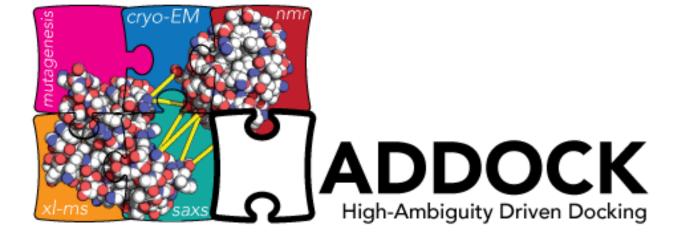
MooBein

w@-nmr

W@st-Life


National

and European infrastructure



Bonvin Lab

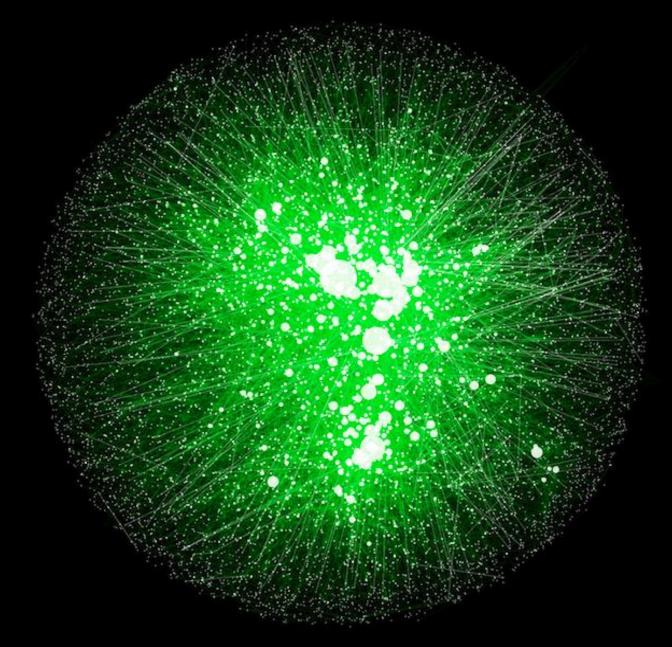
computational structural biology

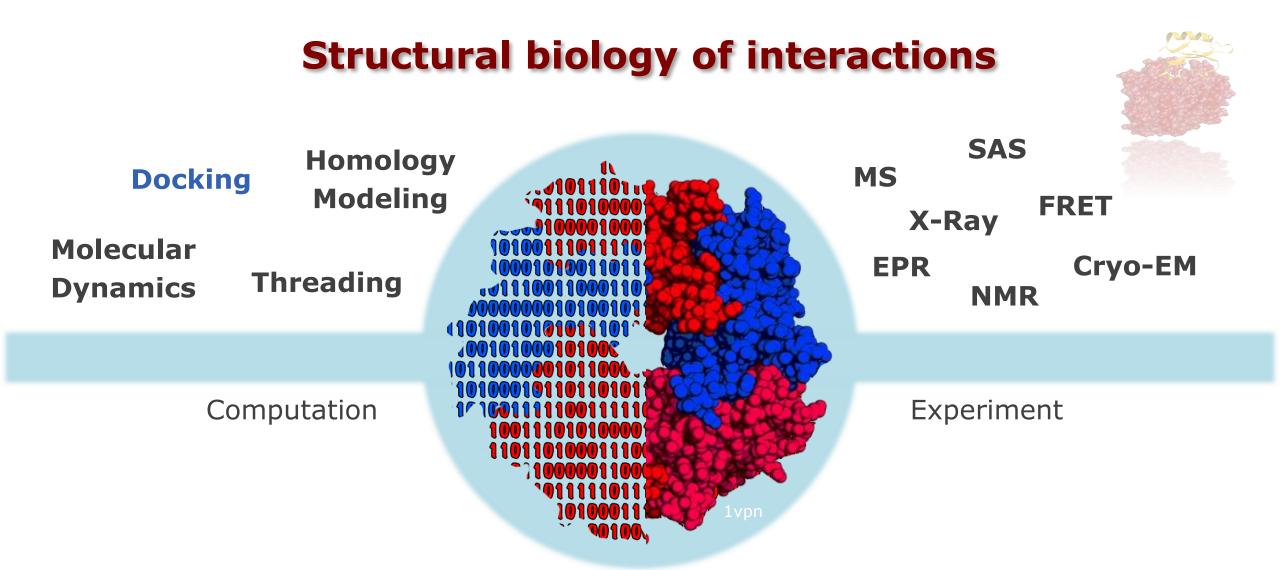
[Faculty of Science Chemistry]

Overview

Introduction Information sources General aspects of docking Information-driven docking with HADDOCK Incorporating biophysical data into docking Assessing the interaction space Conclusions & perspectives

The social network of proteins




Majority of 'life' depends on interactions, particularly protein-protein

[Faculty of Science Chemistry]

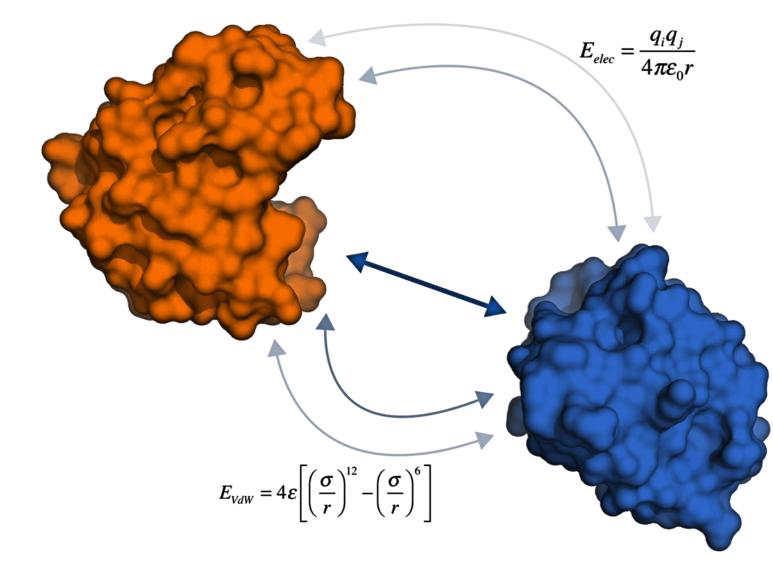
The protein-protein interaction Cosmos

High-throughput computation vs. High-resolution experiments

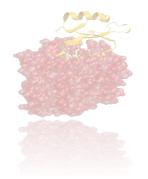
computational models are often not trusted by the experimental community

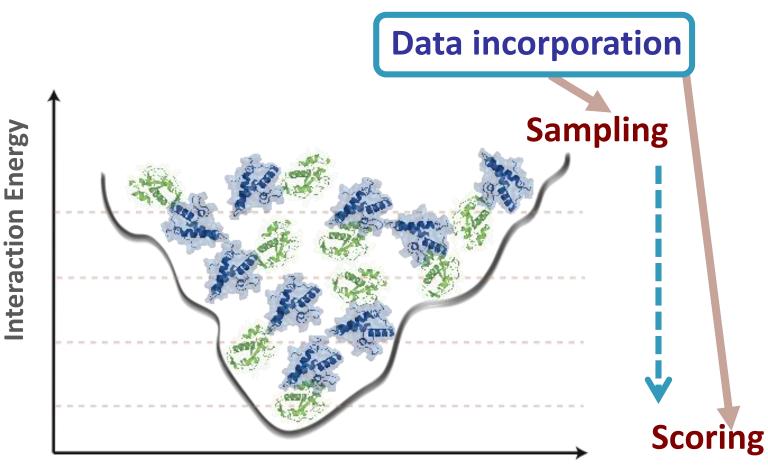
[Faculty of Science Chemistry]

Structural coverage of interactomes Unique interactions in interactomes • ~7,500 binary interactions in *E.coli* • ~44,900 binary interactions in *H.sapiens* E.coli H.sapiens with complete structures

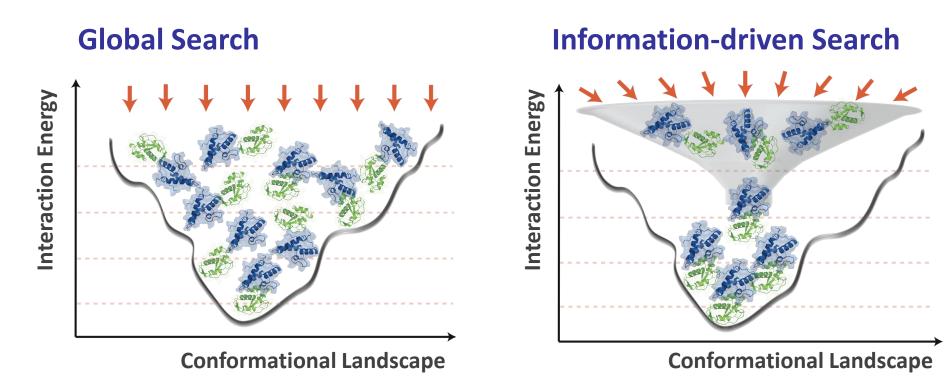

Statistics from Interactome3D (2013-01)

Mosca et al. Nature Methods 2013

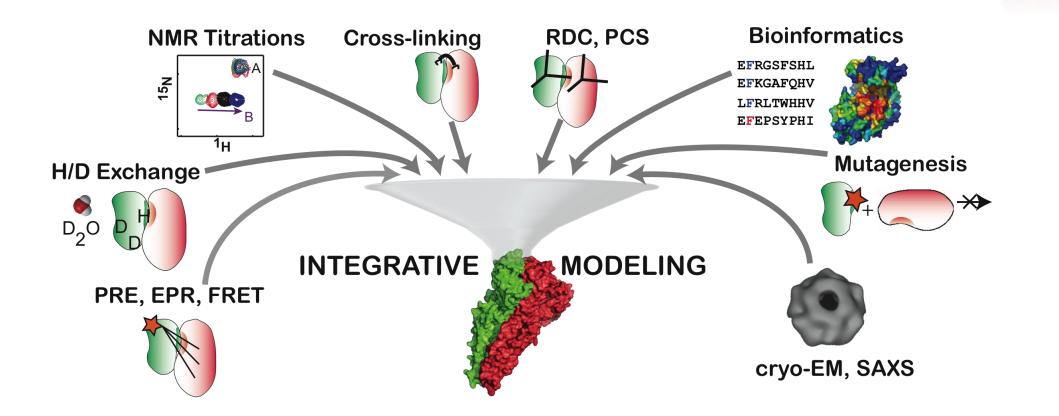

- with partial (domain-domain) or complete models
- with structures for the interactors (suitable for docking)
- without structural data

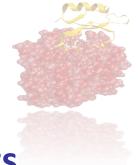

Molecular Docking

Methodology



Conformational Landscape


Data Integration during Sampling



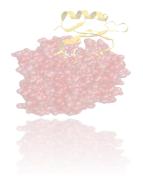
What is Integrative Modeling?

Why integrative modelling?

For Experimentalists

New hypothesis to drive experiments

✓ Speed up structure determination

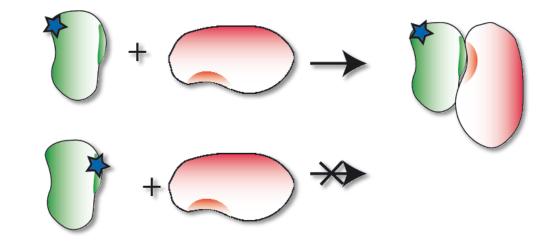

✓ Increase our understanding of function

For Modelers

- ✓ Decrease high false positive rate
- Ease accuracy assessment

Related reviews

- Halperin *et al.* (2002) **Principles of docking: an overview of search algorithms and a guide to scoring functions.** *PROTEINS: Struc. Funct.* & *Genetics* **47**, 409-443.
- Special issues of *PROTEINS*: (2003) (2005) (2007) (2010) (2013) and (2016), which are dedicated to CAPRI.
- de Vries SJ and Bonvin AMJJ (2008). How proteins get in touch: Interface prediction in the study of biomolecular complexes. *Curr. Pept. and Prot. Research* **9**, 394-406.
- Melquiond ASJ, Karaca E, Kastritis PL and Bonvin AMJJ (2012). Next challenges in proteinprotein docking: From proteome to interactome and beyond. WIREs Computational Molecular Science 2, 642-651 (2012).
- Karaca E and Bonvin AMJJ (2013). Advances in integrated modelling of biomolecular complexes. *Methods*, **59**, 372-381 (2013).
- Rodrigues JPGLM and Bonvin AMJJ (2014). Integrative computational modelling of protein interactions. FEBS J., 281, 1988-2003 (2014).



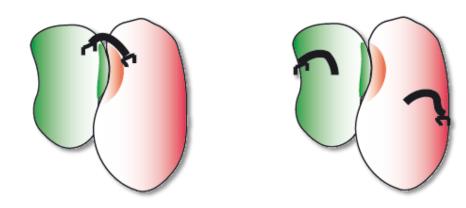
Overview

Introduction Information sources General aspects of docking Information-driven docking with HADDOCK Incorporating biophysical data into docking Assessing the interaction space Conclusions & perspectives

Experimental sources: mutagenesis

Advantages/disadvantages

- + Residue level information
- Loss of native structure should be checked


Detection

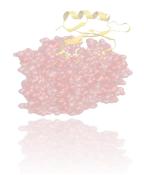
- Binding assays
- Surface plasmon resonance
- Mass spectrometry
- Yeast two hybrid
- Phage display libraries, ...

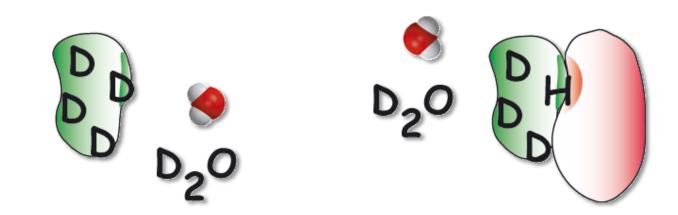
Experimental sources: cross-linking and other chemical modifications

Advantages/disadvantages

+ Distance information between

linker residues


- Cross-linking reaction problematic
- Detection difficult

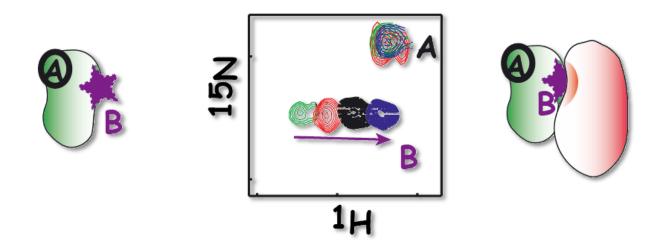

Detection

- Mass spectrometry

Experimental sources: H/D exchange

Advantages/disadvantages

- + Residue information
- Direct vs indirect effects
- Labeling needed for NMR


Detection

- Mass spectrometry
- NMR ¹⁵N HSQC

Experimental sources: NMR chemical shift perturbations

Advantages/disadvantages

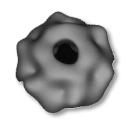
- + Residue/atomic level
- + No need for assignment if

combined with a.a. selective labeling

- Direct vs indirect effects
- Labeling needed

Detection

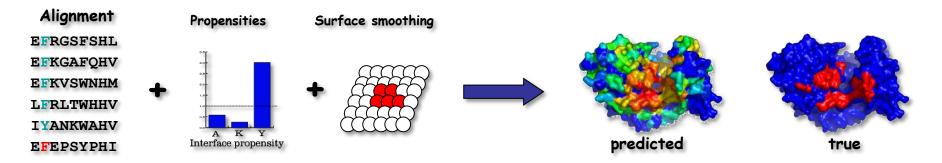
- NMR ¹⁵N or ¹³C HSQC



Other potential experimental sources

- Paramagnetic probes in combination with NMR
- Cryo-electron microscopy or tomography and small angle X-ray scattering (SAXS) ==> shape information

- Fluorescence quenching
- Fluorescence resonance energy transfer (FRET)
- Infrared spectroscopy combined with specific labeling
- ...



Predicting interaction surfaces

- In the absence of any experimental information (other than the unbound 3D structures) we can try to predict interfaces from sequence information?
- WHISCY:

WHat Information does Surface Conservation Yield?

http://www.nmr.chem.uu.nl/whiscy


[Faculty of Science Chemistry]

Predicting interaction surfaces

- Several other approaches have been described:
 - HSSP (Sander & Schneider, 1993)
 - Evolutionary trace (Lichtarge et al., 1996)
 - Correlated mutations (Pazos et al., 1996)
 - ConsSurf (Armon et al., 2001)
 - Neural network (Zhou & Shan, 2001) (Fariselli et al., 2002)
 - Rate4Site (Pupko et al., 2002)
 - ProMate (Neuvirth et al., 2004)
 - PPI-PRED (Bradford & Westhead, 2005)
 - PPISP (Chen & Zhou, 2005)
 - PINUP (Liang et al., 2006)
 - SPPIDER (Kufareva et al, 2007)
 - PIER (Porolo & Meller, 2007)
 - SVM method (Dong et al., 2007)
 - ... and many more since then
 - Our recent meta-server: **CPORT** (de Vries & Bonvin, 2011)

See review article (de Vries & Bonvin 2008)

Interface prediction servers

- PPISP (Zhou & Shan,2001; Chen & Zhou, 2005) http://pipe.scs.fsu.edu/ppisp.html
- ProMate (Neuvirth et al., 2004) http://bioportal.weizmann.ac.il/promate
- WHISCY (De Vries et al., 2005) http://www.nmr.chem.uu.nl/whiscy
- PINUP (Liang et al., 2006) http://sparks.informatics.iupui.edu/PINUP
- PIER (Kufareva et al., 2006) http://abagyan.scripps.edu/PIER
- SPPIDER (Porollo & Meller, 2007)

http://sppider.cchmc.org

Consensus interface prediction (CPORT) haddock.science.uu.nl/services/CPORT

Universiteit Utrecht

[Faculty of Science Chemistry]

CPORT webserver

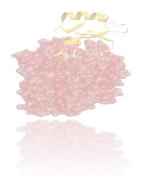
Home HADDOCK PRODIGY Whiscy CPORT DNA Publications

WELCOME TO THE UTRECHT BIOMOLECULAR INTERACTION WEB PORTAL >>

CPORT is an algorithm for the prediction of protein-protein interface residues. It combines six interface prediction methods into a consensus predictor.

CPORT predictions can be used as active and passive residues in HADDOCK, using the prediction interface.

Reference for use of the CPORT server


S.J. de Vries and A.M.J.J. Bonvin "CPORT: a Consensus Interface Predictor and its Performance in Prediction-driven Docking with HADDOCK" *PloS One*, 6 e17695 (2011). The supplementary material for this article with all docking data can be found here.

Protein structure to predict		*
Sequence alignment		♦
Submit a file OR a code if you want to include Otherwise, leave blank	WHISCY predictions	
Sequence alignment file to submit	Choose File no file selected	
Please specify the format of your alignment	(+)	
or: fill in a PDB code to use the corresponding H	SSP alignment	
PDB code		
Prediction threshold to use		
Threshold Very sensitive	e (recommended for HADDOCK)	
	Submit	

haddock.science.uu.nl/services/CPORT/

[Faculty of Science Chemistry]

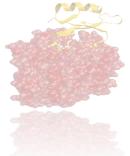
Combining experimental or predicted data with docking

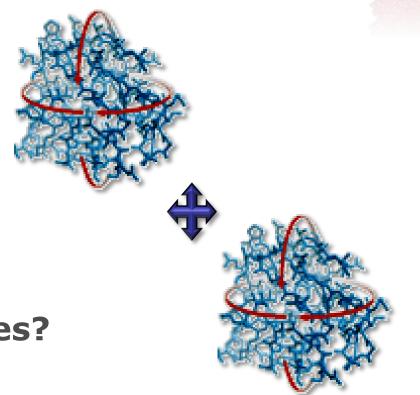
15N

Faculty of Science

Chemistry]

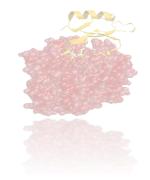
• a posteriori: data-filtered docking


- Use standard docking approach
- Filter/rescore solutions
- a priori: data-directed docking
 - Include data directly in the docking by adding an additional energy term or limiting the search space


Overview

Introduction Information sources General aspects of docking Information-driven docking with HADDOCK Incorporating biophysical data into docking Assessing the interaction space Conclusions & perspectives

Docking



- Choices to be made in docking:
 - Representation of the system
 - Sampling method:
 - 3 rotations and 3 translations
 - Internal degrees of freedom?
 - Scoring
 - Flexibility, conformational changes?
 - Use experimental information?

Systematic search

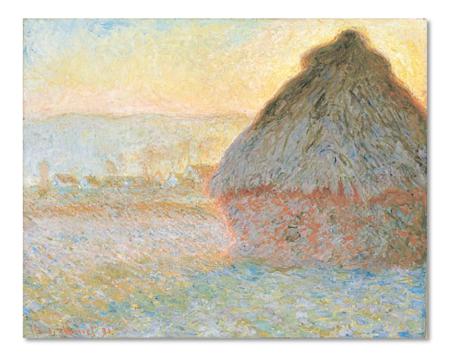
- Sample rotations (3) and translations (3)
- For each orientation calculate a score
- Can be very time consuming depending on scoring function
- Translational search often carried out in (2D or 3D)
 Fourier space by convolution of the grids
- Examples:
 - FFT methods: Z-DOCK, GRAMM, FTDOCK...
 - Direct search: Bigger (uses fast boolean operations)

"Energy-driven" search methods

- Conformational search techniques aiming at minimizing some kind of energy function (e.g. VdW, electrostatic...):
 - Energy minimization
 - Molecular dynamics
 - Brownian dynamics
 - Monte-Carlo methods
 - Genetic algorithms
 - ...
- Often combined with some simulated annealing scheme

Dealing with flexibility

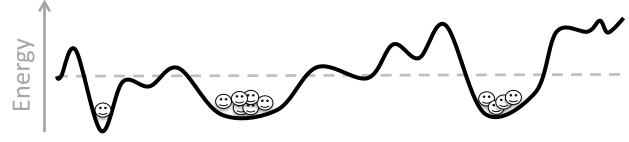
- Flexibility makes the docking problem harder!
 - Increased number of degrees of freedom
 - Scoring more difficult
- Difficult to predict a-priori conformational changes
- Current docking methodology can mainly deal with small conformational changes
- Treatment of flexibility depends on the chosen representation of the system and the search method



Scoring

- The holy grail in docking!
- Depends on the representation of the system and treatment of flexibility
- Depends on the type of complexes
 - e.g. antibody-antigen might behave differently than enzymeinhibitors complexes

Scoring


- Score is often a combination of various (empirical) terms such as
 - Intermolecular van der Waals energy
 - Intermolecular electrostatic energy
 - Hydrogen bonding
 - Buried surface area
 - Desolvation energy
 - Entropy loss
 - Amino-acid interface propensities
 - Statistical potentials such as pairwise residue contact matrices

- ...

• Experimental filters sometimes applied a posteriori if data available (e.g. NMR chemical shift perturbations, mutagenesis,...)

Clustering protein complexes

- Docking methods often produce thousands of models.
- Scoring functions do not perfectly describe the energy landscape.

- Clustering groups similar structures together and allows better analysis.
- Similarity is defined by a specific measure (e.g. RMSD, interface RMSD, FCC)

Overview

Introduction Information sources General aspects of docking Information-driven docking with HADDOCK Incorporating biophysical data into docking Assessing the interaction space Conclusions & perspectives

HADDOCK: An integrative modeling platform

Incorporates ambiguous and lowresolution data to aid the docking

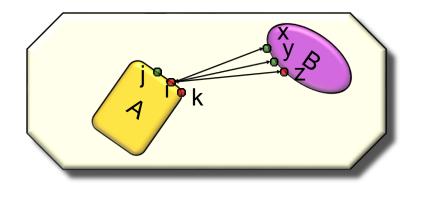

Capable of docking up to 20 molecules (new version)

Symmetries can be leveraged

Allows for flexibility at the interface

Final flexible refinement in explicit solvent

One of the best performing software in CAPRI


Dominguez, Boelens & Bonvin. JACS 125, 173 (2003).

http://www.bonvinlab.org/software

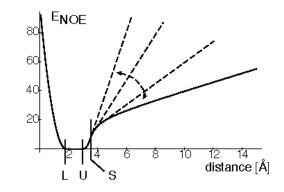
Data-driven docking with HADDOCK

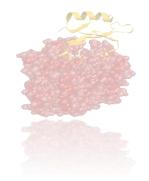
List of interface residues for protein A

List of interface residues for protein B

Ambiguous Interaction Restraint:

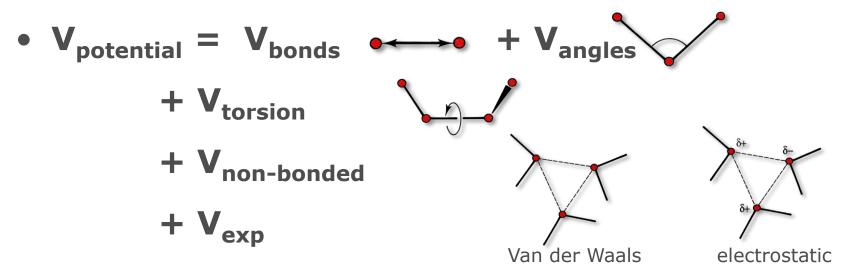
a residue must make contact with any residue from the other list


Different fraction of restraints (typically 50%) randomly deleted for each docking trial to deal with inaccuracies and errors in the information used


(Nilges & Brunger 1991)

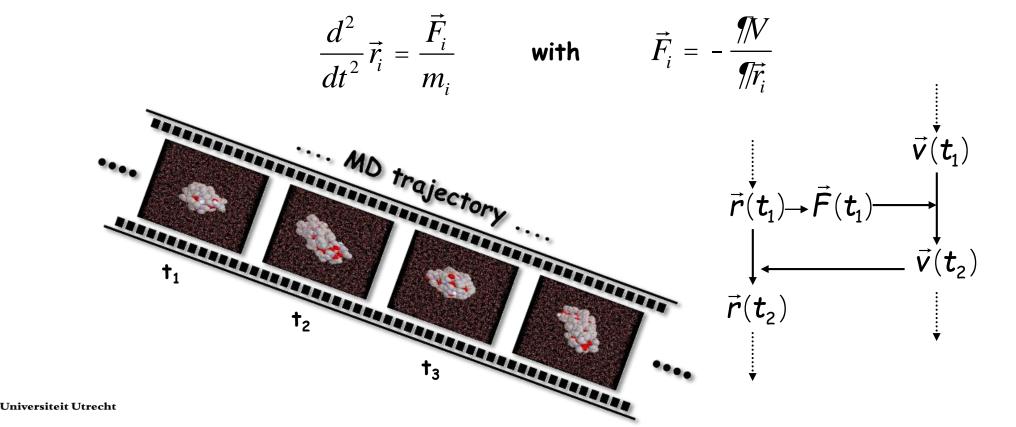
Effective distance d_{iAB}^{eff} calculated as

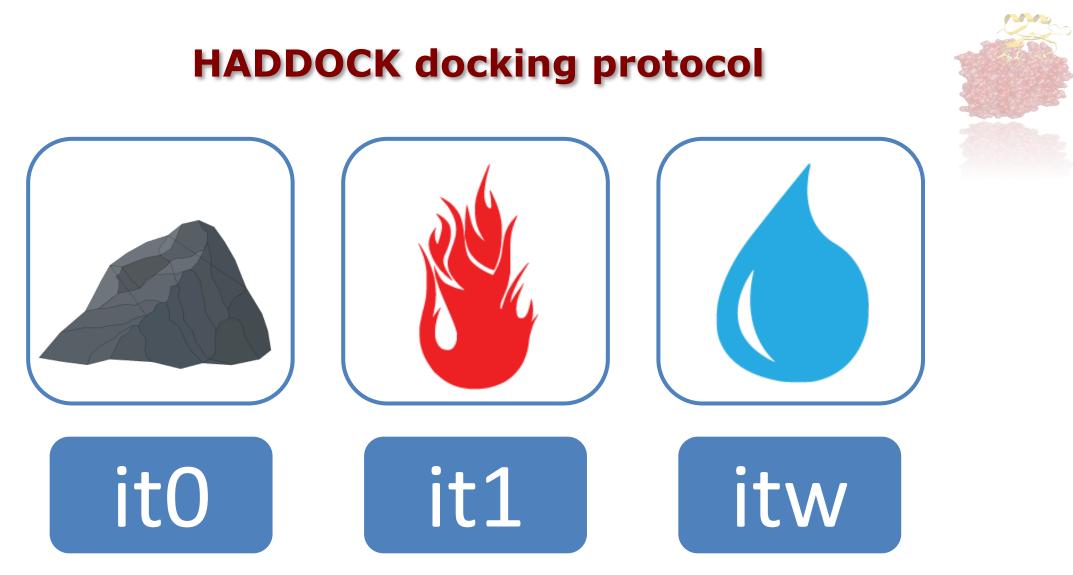
$$\boldsymbol{d}_{iAB}^{eff} = \left(\sum_{m_{iA}=1}^{N \text{ at ons } N \text{ resB}} \sum_{k=1}^{N \text{ at ons } 1} \sum_{n_{k}=1}^{N \text{ at ons } 1} \frac{1}{\boldsymbol{d}_{mn_{k}}^{6}}\right)^{-\frac{1}{6}}$$



 $E_{NOE} = \begin{cases} (r - L)^2 & \text{if } r < L \\ 0 & \text{if } L < r < U \\ (U - r)^2 & \text{if } U < r < S \\ A(r - U)^{-1} + B(r - U) + C & \text{if } r > S \end{cases}$ [Faculty of Science Chemistry]

Searching the interaction space in HADDOCK


 Experimental and/or predicted information is combined with an empirical force field into an energy function whose minimum is searched for


 Search is performed by a combination of gradient driven energy minimization and molecular dynamics simulations

Classical mechanics

 Molecular dynamics: generates successive configurations of the system by integrating Newton's second law

Succession of energy minimization and molecular dynamics protocols

reminiscent of NMR structure calculations

HADDOCK docking protocol

Rigid-body Energy Minimization

Rigid-body protocol allows generation of several thousand of models in a short period of time.

Simultaneous docking of max. 6 molecules, resembling *in vivo* complex assembly (vs. sequential docking)

Typically, 10.000 conformations are sampled but only the best 1.000 are written to disk.

Rotational and translational optimization of the interacting partners, guided by the data-driven energy function.

Rigid-body energy minimization guided by restraints for fast sampling

in the absence of data, define restraints between centers of mass

HADDOCK docking protocol

Semi-flexible simulated annealing

3-step process that increasingly allows more flexibility at the interface: rigid-body, side-chain, backbone + side-chain.

Torsion angle dynamics allows for faster integration time steps, while sampling relevant motions.

Flexibility reproduces conformation changes up to 2Å, typical of small induced fit.

Typically, the 200 best models of it0 undergo refinement.

Flexible simulated annealing in torsion angle space at the interface region

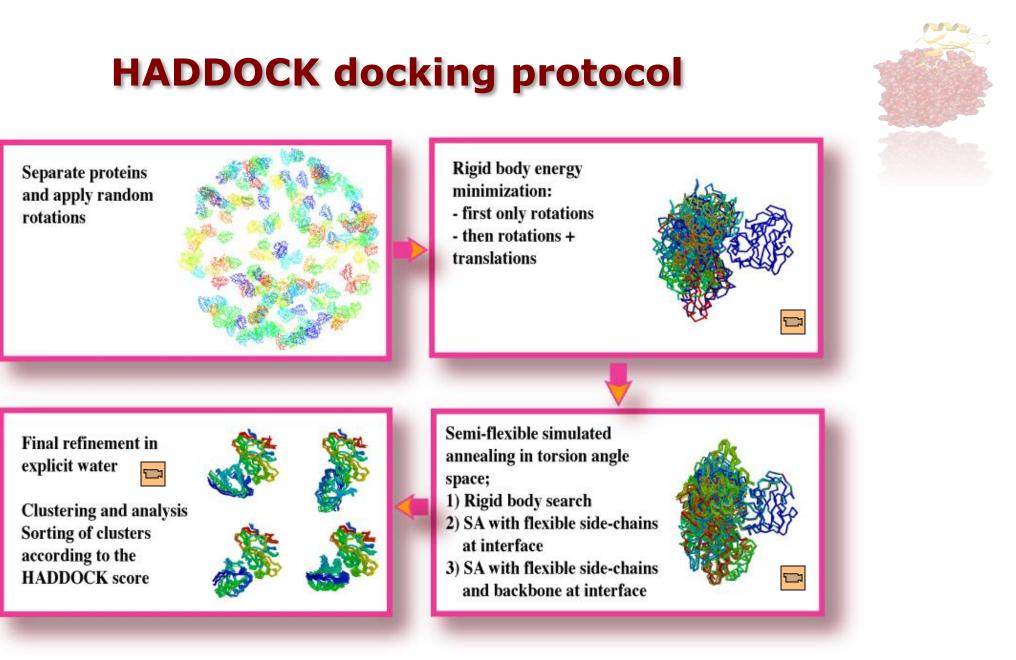
thorough optimization reproduces small conformational changes

HADDOCK docking protocol

Refinement in explicit solvent

Short molecular dynamics simulation in explicit solvent to refine residue-residue contacts, mainly electrostatics, at the interface.

Position restraints on backbone heavy atoms ensure conformation remains largely the same.


Explicit solvent models include TIP3P water and DMSO (membrane mimic).

Typically, all models of it1 are refined, i.e. there is no selection between it1 and itw.

Refinement in explicit solvent to optimize the contacts at the interface

can be used in isolation to refine and score existing models

HADDOCK & Flexibility

- Several levels of flexibility:
- Implicit:
 - docking from ensembles of structures
 - Scaling down of intermolecular interactions
- Explicit:
 - semi-flexible refinement stage with both sidechain and backbone flexibility during in torsion angle dynamics
 - Final refinement in explicit solvent

Energetics & Scoring

- OPLS non-bonded parameters (Jorgensen, JACS 110, 1657 (1988))
- 8.5Å non-bonded cutoff, switching function, $\Sigma = 10$
- Clustering of solutions

• Ranking based on cluster-based HADDOCK score:

 Rigid:
 Score = $0.01 E_{air} + 0.01 E_{vdW} + 1.0 E_{elec} + 1.0 E_{desolv} - 0.01 BSA

 Flexible:
 Score = <math>0.1 E_{air} + 1.0 E_{vdW} + 1.0 E_{elec} + 1.0 E_{desolv} - 0.01 BSA

 Water:
 Score = <math>0.1 E_{air} + 1.0 E_{vdW} + 0.2 E_{elec} + 1.0 E_{desolv}$

- E_{air}: ambiguous interaction restraint energy
- E_{desolv}: desolvation energy using Atomic Solvation Parameters (Fernandez-Recio et al *JMB* 335, 843 (2004))
- BSA: buried surface area

Haddock web portal

- > 14000 registered users
- > 220000 served runs since June 2008
- > 40% on the GRID

De Vries et al. Nature Prot. 2010

Van Zundert et al. J.Mol.Biol. 2016

HADDOCK2.2 WeNMR/West-Life GRID-enabled web portal

NMR services SAXS services HADDOCK tutorials WeNMR Support Center WeNMR home

PROFILE >>

HADDOCK (High Ambiguity Driven protein-protein DOCKing) is an informationdriven flexible docking approach for the modeling of biomolecular complexes. HADDOCK distinguishes itself from ab-initio docking methods in the fact that it encodes information from identified or predicted protein interfaces in ambiguous interaction restraints (AIRs) to drive the docking process. HADDOCK can deal with a large class of modeling problems including protein-protein, protein-nucleic acids and protein-ligand complexes.

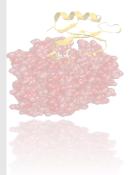
More information about HADDOCK2.2 can be found on the HADDOCK2.2 website

Read also what an independent review by Moreira et al. has to say about our software...

HADDOCK is one of the flagship software in the EU H2020 BioExcel Center of Excellence for Biomolecular Research.

DOCK WEBSERVER

WELCOME TO THE WENMR WEB PORTAL >>


NON: The use of the HADDOCK WeNMR GRID-enabled docking server is sers. Access to the server is managed through Single Sign On ng your WeNMR account. Old style HADDOCK web server How to proceed:

MR Virtual Research Community at

tab in your account profile and subscribe t e instructions on screen. 3. Once you are asy to subscribe to the many services WeNN vever require a valid X509 personal certif

SERVICES:

- HADDOCK server: the Easy interface
- HADDOCK server: the Prediction interface
- HADDOCK server: the Expert interface (requires Expert level)
- · HADDOCK server: the Refinement interface (requires Expert level)
- HADDOCK server: the Guru interface (requires Guru level access)
- HADDOCK server: the Multi-body interface (requires Guru level access)
- HADDOCK server: the File upload interface
- HADDOCK server tool: generate AIR files for multibody docking

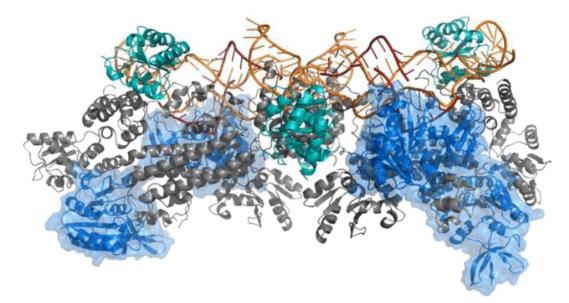
۱mr

SERVICES

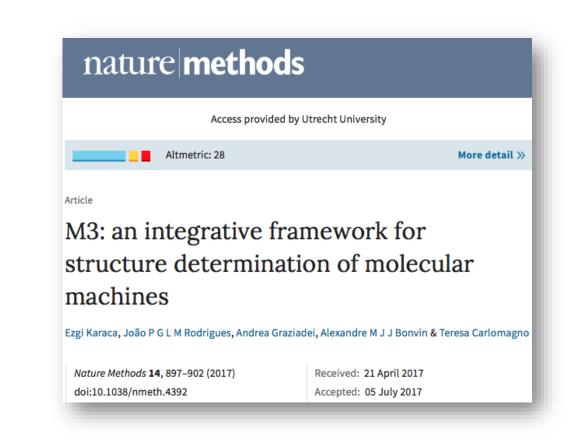
The WeNMR web portal is an easy gateway for you to use many of the powerful software packages ported by the WeNMR consortium to the GRID.

CLEARN MORE >>

- CTHE PARTNERS >>
- SUPPORT CENTER>>

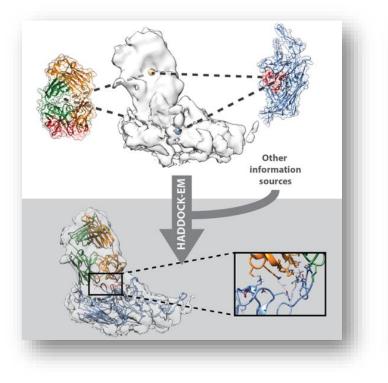


	Country	All_Users V	HADDOCK	DISVIS	POWERFIT	SPOTON	CS_ROSETTA3	GROMACS
1	Total Users	14,447	13,853	1,102	804	926	777	599
2	EU Users	3,258	3,040	296	172	188	181	117
3	India	3,088	3,035	170	144	182	135	158
4	United States	2,269	2,180	178	106	138	109	67



HADDOCK development's highlights

• Extension to up to 20 molecules


Example of a complex protein structure calculated with the new HADDOCK framework: the box C/D enzyme for RNA methylation.

Universiteit Utrecht

HADDOCK development's highlights

- on)
- Complete rewrite of the portal (v2.4 to be released soon)
- Provides support for cryo-EM data, coarse-graining, ...

https://haddock.science.uu.nl/services/HADDOCK2.4

BioExcel Centre of Excellence

Driving and Supporting Computational Biomolecular Research in Europe

Funding

Horizon 2020 European Union Funding for Research & Innovation

HADDOCK forum in BioExcel

	Latest New Unread (2) Top	-	Edit 🕂 N	New Topic	e
Feel free to crea	The HADDOCK category is meant for discussing any software, either as a local installation or via the HAD please refer to http://www.bonvinlab.org/software/had ate new topics related to your questions!	DOCK web portal. For			
I Topic		Users	Replies	Views	Activit
Small molecule lig	and dynamics during refinement	0 5	1	4	2h
HADDOCK Dockin	g with RNA and Protein	(6)	2	16	7d
Protein-ligand doc	king	(٢) 🕸 🕞	8	536	7d
Multiple residues v	vith same number	0 🌺	1	24	9d
OH group carbohy	drate error	0	0	13	9d
HADDOCK cannot	continue due to failed structures in it0 1	1	2	27	9d
Extend crystal stru	cture and perform docking using CX-MS data	S a	4	42	10d

Partners

(KTH)

Funding

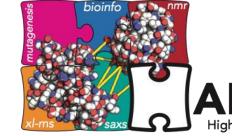
Horizon 2020 European Union Funding for Research & Innovation Bonvin Lab

Computational Structural Biology @Utrecht University

DisVis

Restraints visualization

Prodigy


affinity prediction

CS-Rosetta

Chemical shiftbased structure prediction

CPORT *Interface*

predicton

PowerFit

cryo EM map fitting

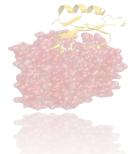
3D-DART

DNA structure modelling

SpotON

HotSpot predicton

haddock.science.uu.nl

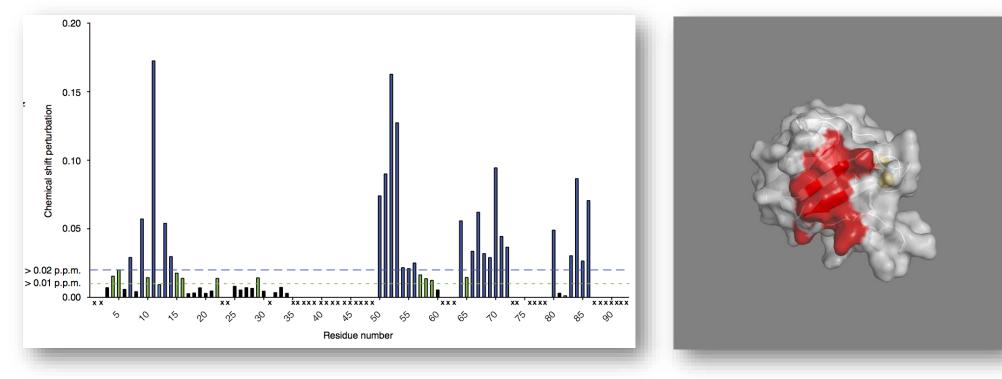


Overview

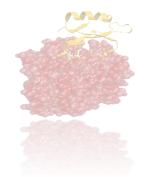
Introduction Information sources General aspects of docking Information-driven docking with HADDOCK Incorporating biophysical data into docking Assessing the interaction space Conclusions & perspectives

Iron Piracy:

NMR-based modelling of the FusA-ferredoxin complex



nature communications		
ARTICLE Received 21 Jan 2016 Accepted 21 Sep 2016 Published 31 Oct 2016 DOI: 10.1038/ncomms13308 OPEN		
Structure of the bacterial plant-ferredoxin receptor FusA		
Rhys Grinter ^{1,2,3} , Inokentijs Josts ¹ , Khedidja Mosbahi ¹ , Aleksander W. Roszak ⁴ , Richard J. Cogdell ⁴ , Alexandre M.J.J. Bonvin ⁵ , Joel J. Milner ⁶ , Sharon M. Kelly ⁴ , Olwyn Byron ⁶ , Brian O. Smith ⁴ & Daniel Walker ¹		
 Iron import machinery in 		
gram-negative bacteria	Extracellular Environment	
 First complete crystal structure of such a receptor 	Outer Membrane C-term N-term	
	C-term Periplasm	

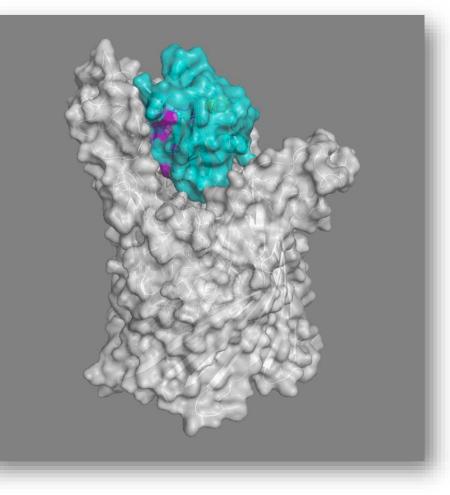


Docking strategy

- NMR chemical shift perturbation experiments define the binding site on ferredoxin (which carries an iron-sulfur cluster)
 - \rightarrow active residues in HADDOCK

Docking strategy

- No info for FusA (expect that the binding occurs in the extracellular part)
 - → extra cellular loops defined as passive (which does not generate an energetic penalty if not contacted)
 - → Definition of passive refined in a second docking run

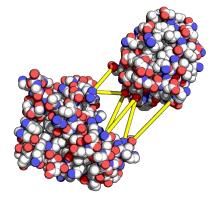

Model of the FusA-ferredoxin complex

Cluster 1

HADDOCK score	-137.8 +/- 2.1
Cluster size	151
RMSD from the overall lowest-energy structure	5.8 +/- 0.1
Van der Waals energy	-72.5 +/- 10.5
Electrostatic energy	-476.2 +/- 66.5
Desolvation energy	28.9 +/- 10.0
Restraints violation energy	11.2 +/- 9.62
Buried Surface Area	2524.8 +/- 175.9
Z-Score	-1.3

CLUSTER 4

HADDOCK score	-130.8 +/- 20.3
Cluster size	7
RMSD from the overall lowest-energy structure	1.4 +/- 0.8
Van der Waals energy	-70.4 +/- 17.9
Electrostatic energy	-494.9 +/- 39.9
Desolvation energy	33.9 +/- 14.7
Restraints violation energy	47.2 +/- 29.71
Buried Surface Area	2728.9 +/- 345.5
Z-Score	-1.0



Overview

Introduction Information sources General aspects of docking Information-driven docking with HADDOCK Incorporating biophysical data into docking Chemical shift perturbation data MS data as filters in docking Assessing the interaction space Conclusions & perspectives

Adrien Melquiond

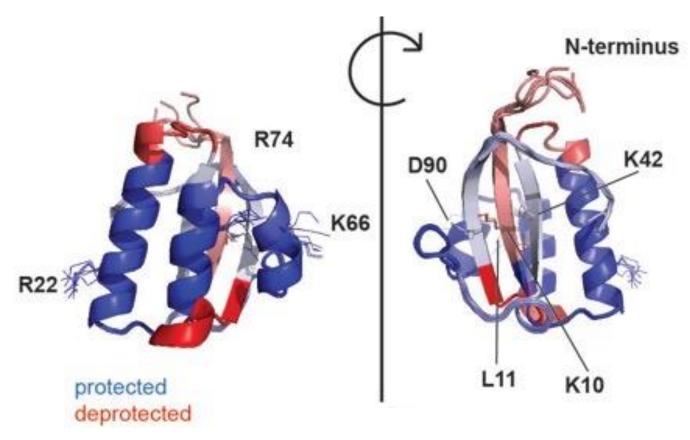
MS-based modelling of a bacterial circadian clock machinery

Insight into cyanobacterial circadian timing: the KaiB-KaiC interaction

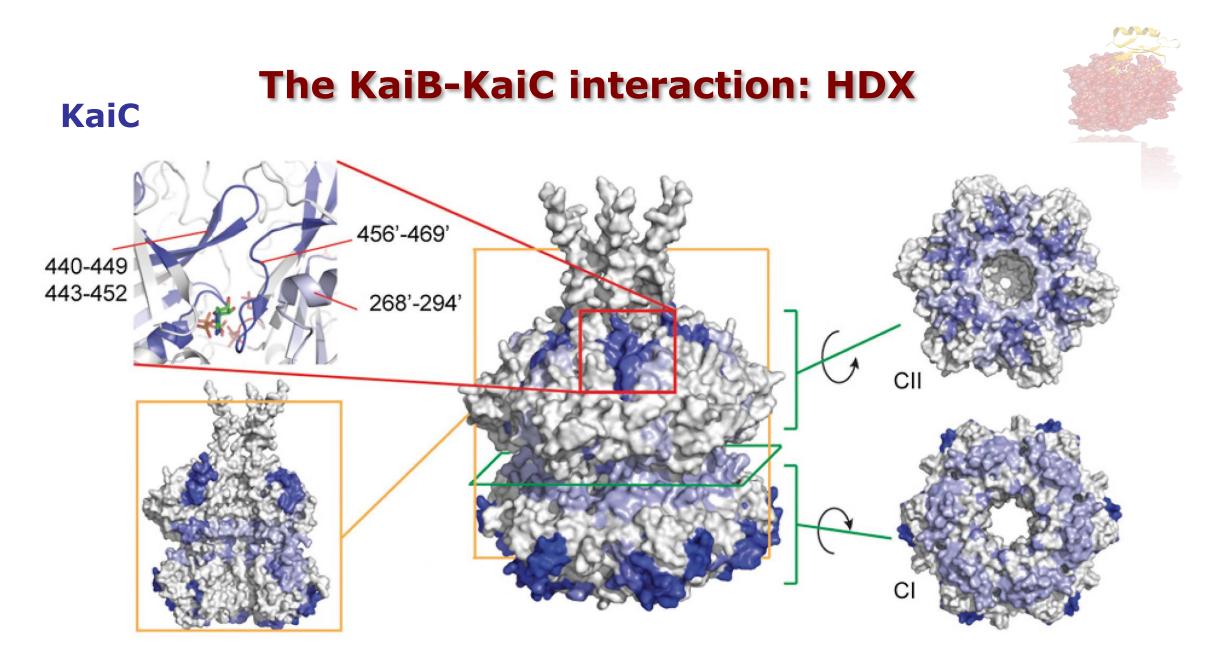
Circadian clock controlled by the Kai system consisting of three proteins: KaiA, KaiB and KaiC

Interactions define the phosphorylation status of KaiC and control the phase of the cycle

Information from MS:

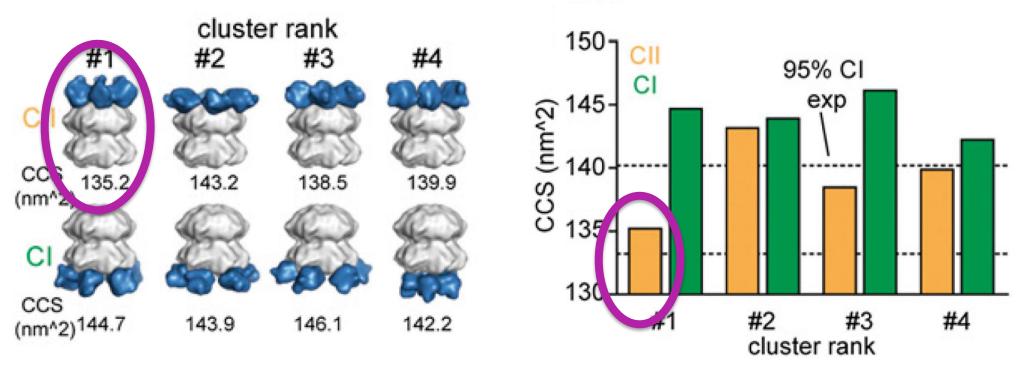

- From native MS: Stochiometry of the KaiB-KaiC complex (6:1)
- From HD exchange: Binding interface and allosteric effects upon binding

Snijder et al. PNAS 111, 1379 (2014)



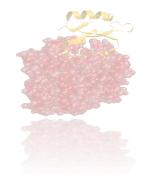
The KaiB-KaiC interaction: HDX

- HDX-MS data reveal one protected face on KaiB
- Mutagenesis data show that R22, K67 and R74 abolish or alter the circadian rhythm when mutated

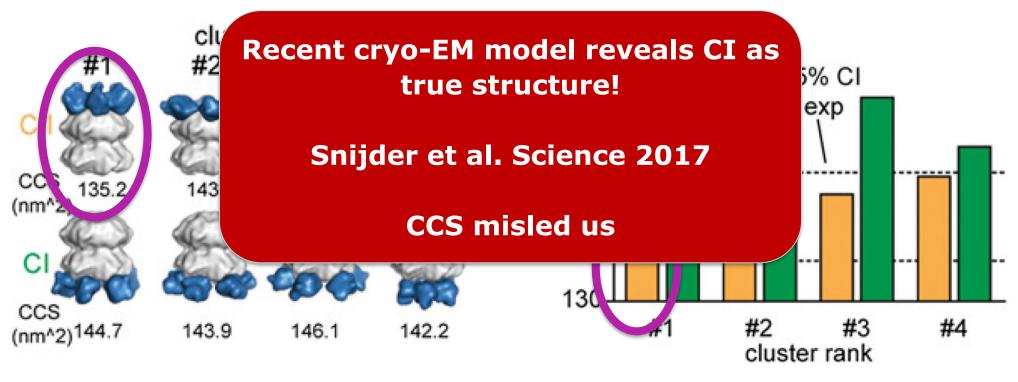


The KaiB-KaiC interaction: CCS

Collision cross section from MS allows to filter the HADDOCKing solutions



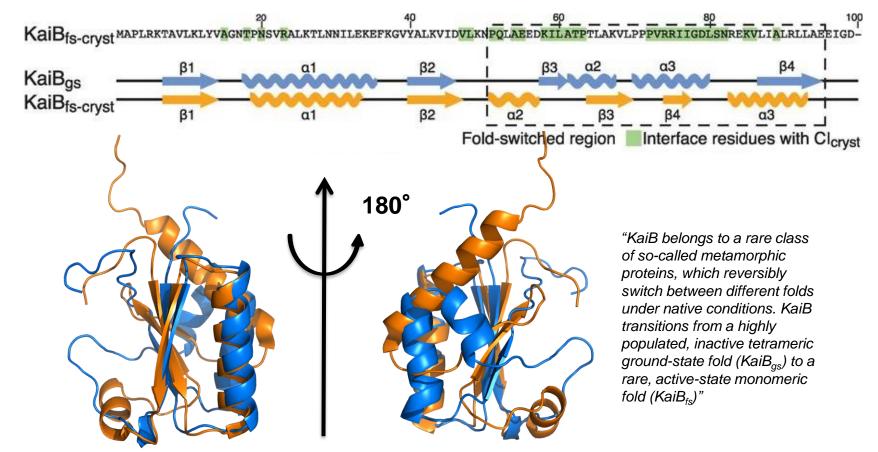
HADDOCK best scoring/most populated solution of CII



Snijder et al. PNAS <u>111</u>, 1379 (2014)

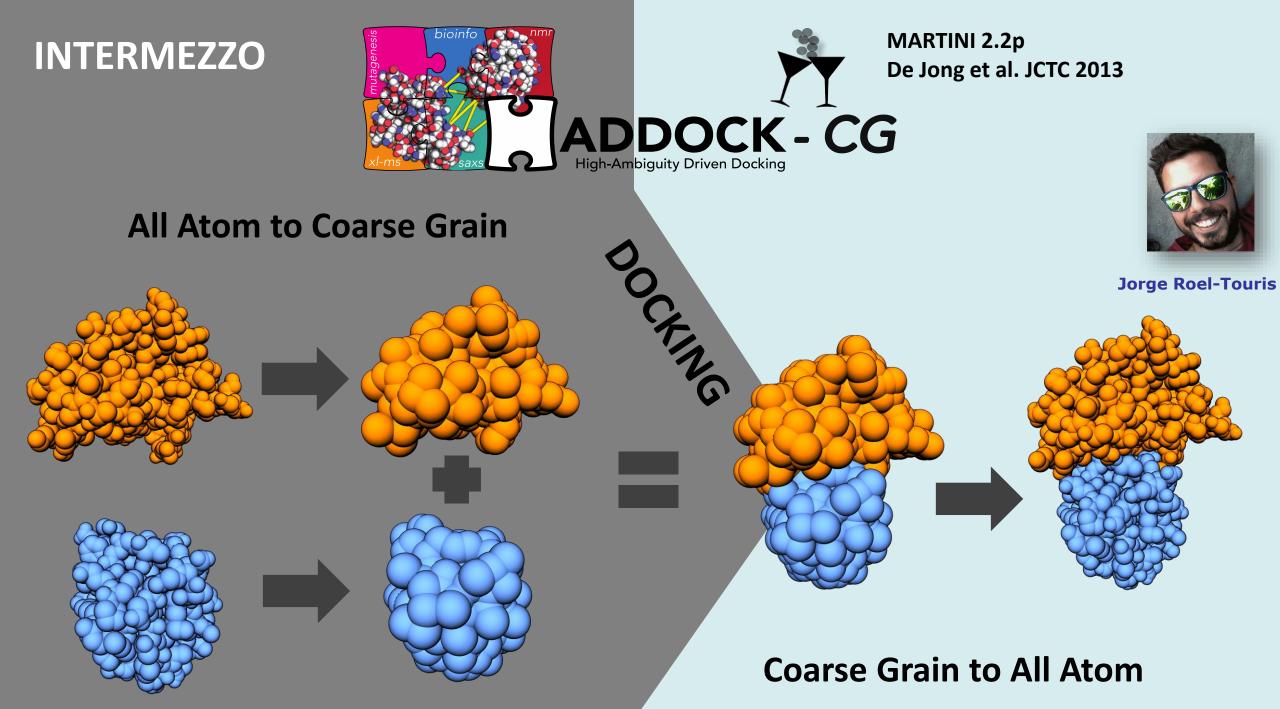
The KaiB-KaiC interaction: CCS

Collision cross section from MS allows to filter the HADDOCKing solutions

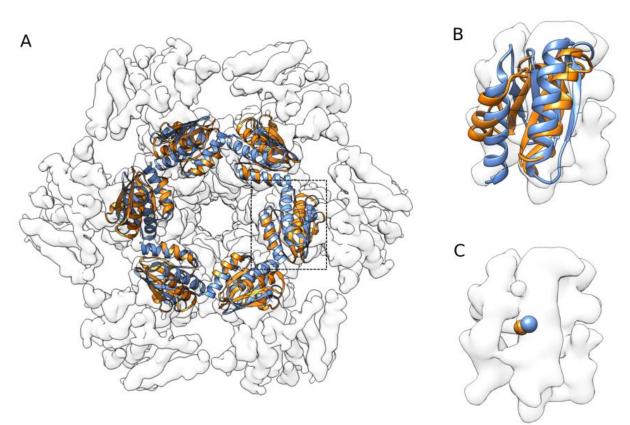


HADDOCK best scoring/most populated solution of CII

Fooled by KaiB!



Recent structure of KaiB reveals a different fold for the low populated monomeric form



Tseng et al, Science 355, 2017

Full 7 body 6:1 KaiB:KaiC docking



~7 fold speed-up

Independent validation:

- Fitting in cryo-EM map using Chimera
- Correlation score: 0.82 (vs 0.84 for EM model PDB-UD 5N8Y)

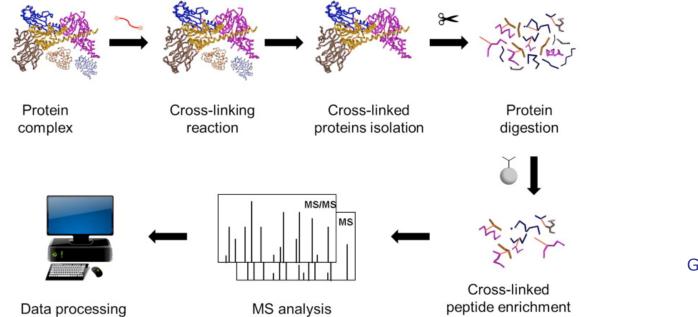
- HDX + mutagenesis
- C6 symmetry restraints
- 7-body simultaneous docking with HADDOCK-CG

Haddock score

- best CI model -216 ± 13
- best CII model +45 ± 19

Universiteit Utrecht

Coming soon: Protein-DNA/RNA Coarse-grained TECHNOLOGY AND CODE published: 01 October 2019 docking doi: 10.3389/fmolb.2019.00102 Und frontiers in Molecular Biosciences MARTINI-Based Protein-DNA **Coarse-Grained HADDOCKing** Rodrigo V. Honorato^{1,2†}, Jorge Roel-Touris^{1†} and Alexandre M. J. J. Bonvin^{1*} ¹ Faculty of Science–Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands, ² Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil estructure comparison of top-ranking models predicted by HADDOCK. Superimposition of the best models (top-ranked) predicted by HADDOCK using atomistic (blue) or coarse-grained (orange) docking onto the experimental crystal structure (PDB-ID 4r8p, green; McGinty et al., 2014). The two residues PRC1-Cys85 and H2A-Lys119 which are expected to form a covalent bond (Kerscher et al., 2006; an information used to guide the docking) are shown as spheres. The interface RMSD of the all-atom and coarse-grained top rankings models against the reference crystal structure are 3.23 and 3.0 Å, respectively.

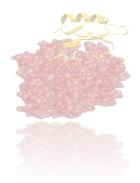


Overview

Introduction Information sources General aspects of docking Information-driven docking with HADDOCK Incorporating biophysical data into docking Assessing the interaction space Conclusions & perspectives

Distance-based information

- Many experimental methods can provide sparse and possibly ambiguous distance information for the modelling of complexes
- E.g. cross-links detected by MS provide distance restraints with an upper bound



Gydo van Zundert, PhD

Defining the information content and consistency of distance restraints

IS IS

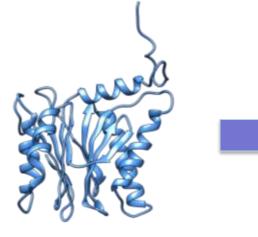
Given 2 interacting structures and a set of distance restraints between them, are there any solutions that satisfy N restraints?

A <u>solution</u> is a <u>complex</u> that satisfies all N distance restraints

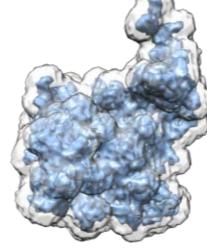
A <u>complex</u> is a <u>conformation</u> where: The subunits are interacting The subunits are not clashing

The **accessible interaction space** is the set of all solutions

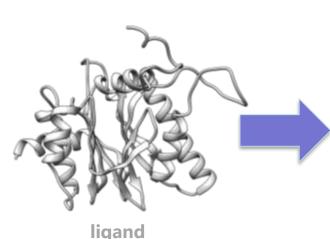
satisfying at least N restraints

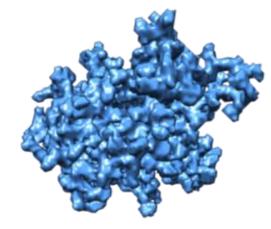

[Faculty of Science Chemistry]

DisVis: re-using old tools to solve new problems

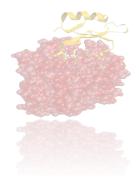

Sample many conformations, by a systematic 6D exhaustive search (3 rotations and 3 translations) (rigid-body FFT-docking)

For each conformation check whether it is a complex (at least one contact), and count them

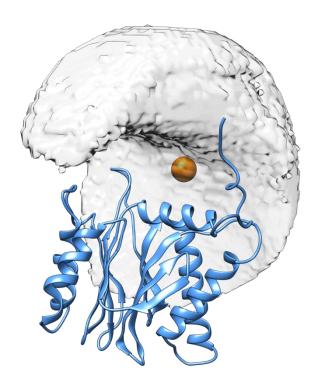

For each complex check how many and which restraints are obeyed, and count them

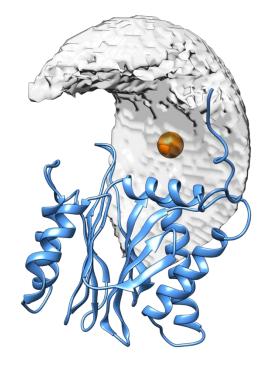


receptor



core region interaction region

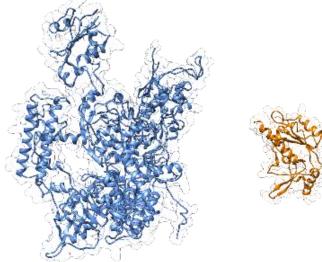



core region

Universiteit Utrecht

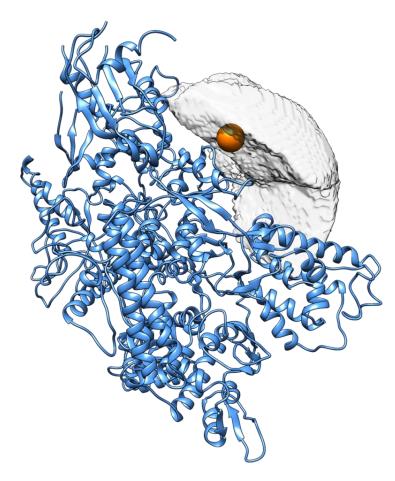
Visualizing the accessible interaction space

Accessible interaction space consistent with at least 5 restraints Accessible interaction space consistent with at least 7 restraints

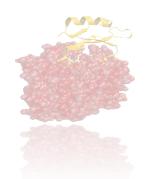

At every grid position, save the maximum number of consistent restraints found during the 6D search

Case study: RNA-polymerase II

- Two chains of RNA Polymerase II
- Crystal structure available
- 6 cross-links available
- Molecular dynamics trajectory analysis:
 - 30Å max Lys-Lys distance $(C_b C_b)$
- Added 2 false-positive restraints


Cross-linker ^a	Distance in complex (Å) ^b
BS3	12.5
BS3	19.8
BS3	12.9
BS3	19.6
BS3	21.8
BS3	15.1
Virtual	35.7
Virtual	42.2

BS3: Bissulfosuccinimidyl suberate

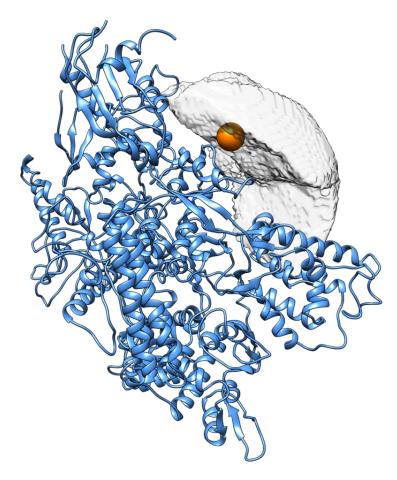

RNA-polymerase II: Accessible interaction space

Number of consistent restraints (N)	Number of accessible complexes consistent with at least N restraints	Fraction of accessible complexes consistent with at least N restraints	
0	18940752204	1.0000	
1	2370295166	0.1251	
2	977410985	0.0516	
3	298922038	0.0158	
4	92651659	0.0049	
5	17687776	0.0009	
6	5172437	0.0003	
7	9716	0.0000	
8	0	0.0000	



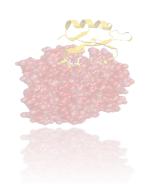
DisVis 6D systematic search with a 1Å grid size and 5.27° interval

RNA-polymerase II: Detecting false-positive restraints


Number of consistent	Fraction of complexes consistent with N restraints in which a specific restraint is violated							
restraints (N)	Restraint 1	Restraint 2	Restraint 3	Restraint 4	Restraint 5	Restraint 6	Restraint 7	Restraint 8
1	0.731	0.813	0.781	0.813	0.742	0.780	0.772	0.981
2	0.676	0.617	0.586	0.725	0.504	0.497	0.974	0.996
3	0.308	0.344	0.285	0.434	0.654	0.622	0.970	0.996
4	0.080	0.151	0.057	0.238	0.653	0.607	0.968	1.000
5	0.015	0.140	0.001	0.371	0.180	0.061	0.940	1.000
6	0.000	0.000	0.000	0.000	0.001	0.000	0.997	1.000
7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000
8	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

DisVis 6D systematic search with a 1Å grid size and 5.27° interval

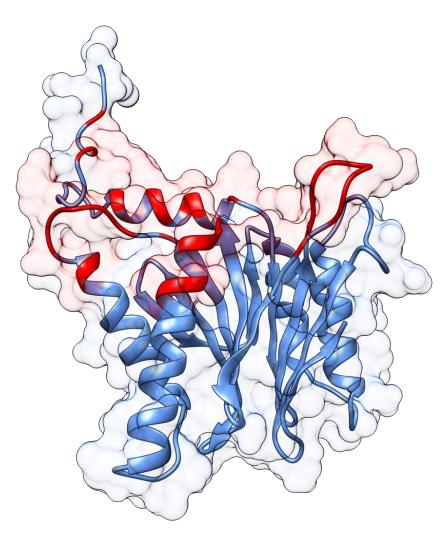
Universiteit Utrecht


RNA-polymerase II: Accessible interaction space

Number of consistent restraints (N)	Number of accessible complexes consistent with at least N restraints	Fraction of accessible complexes consistent with at least N restraints
0	18940752204	1.0000
1	2370295166	0.1251
2	977410985	0.0516
3	298922038	0.0158
4	92651659	0.0049
5	17687776	0.0009
6	5172437	0.0003
7	9716	0.0000
8	0	0.0000

DisVis 6D systematic search with a 1Å grid size and 5.27° interval

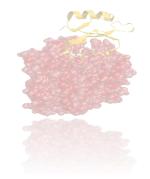
RNA-polymerase II: Detecting false-positive restraints

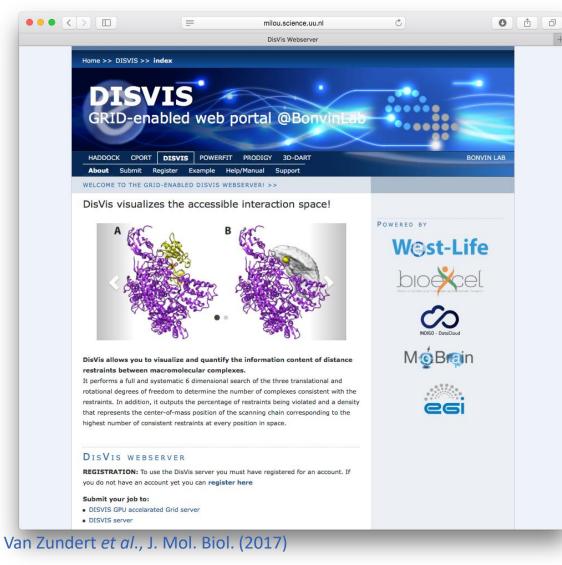


Number of consistent	Fraction of complexes consistent with N restraints in which a specific restraint is violated							
restraints (N)	Restraint 1	Restraint 2	Restraint 3	Restraint 4	Restraint 5	Restraint 6	Restraint 7	Restraint 8
1	0.731	0.813	0.781	0.813	0.742	0.780	0.772	0.981
2	0.676	0.617	0.586	0.725	0.504	0.497	0.974	0.996
3	0.308	0.344	0.285	0.434	0.654	0.622	0.970	0.996
4	0.080	0.151	0.057	0.238	0.653	0.607	0.968	1.000
5	0.015	0.140	0.001	0.371	0.180	0.061	0.940	1.000
6	0.000	0.000	0.000	0.000	0.001	0.000	0.997	1.000
7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000
8	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

DisVis 6D systematic search with a 1Å grid size and 5.27° interval




Mapping the interface



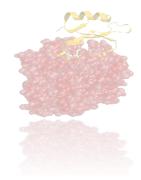
DISVIS: grid, GPGPU-enabled web portal

Mikael Trellet

Jörg Schaarschmidt

http://milou.science.uu.nl/enmr/services/DISVIS/

Universiteit Utrecht


.....

A gzipped tar file of all autogenerated images can be downloaded here

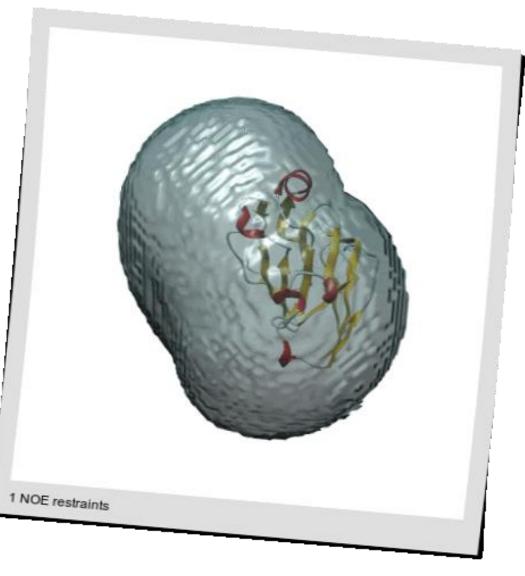
Images were generated with S UCSF Chimera.

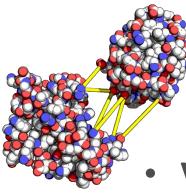
Current Level (N): 4

Guided interpretation of results

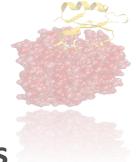
z **- S** c o r e

The table below features the z-Score for each restraint. The higher the score, the more likely the restraint is a false-positive. Zscores above 1.0 are explicitly mentioned in the output of DisVis.

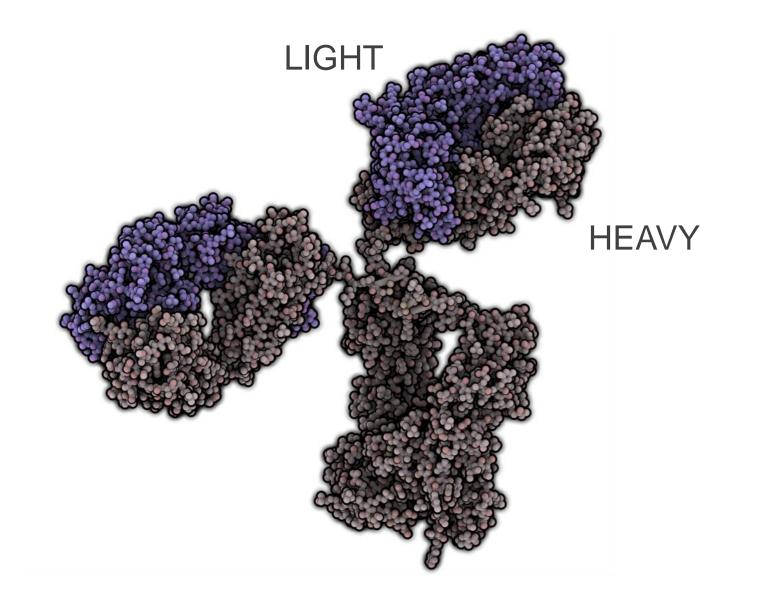

# 🔷	Restraint 🝦	Average violated fraction	Standard deviation \$\overline\$	Z-score 🔻
8	A1092(CB)- E152(CB)	1.00	0.01	2.05
7	A180(CB)- E122(CB)	0.80	0.33	1.29
4	A15(CB)-E171(CB)	0.39	0.30	-0.29
5	A934(CB)-E201(CB)	0.38	0.29	-0.35
6	A938(CB)-E201(CB)	0.36	0.31	-0.39
2	A129(CB)-E161(CB)	0.29	0.29	-0.68
1	A1003(CB)-E166(CB)	0.25	0.30	-0.82
3	A129(CB)-E171(CB)	0.25	0.30	-0.82

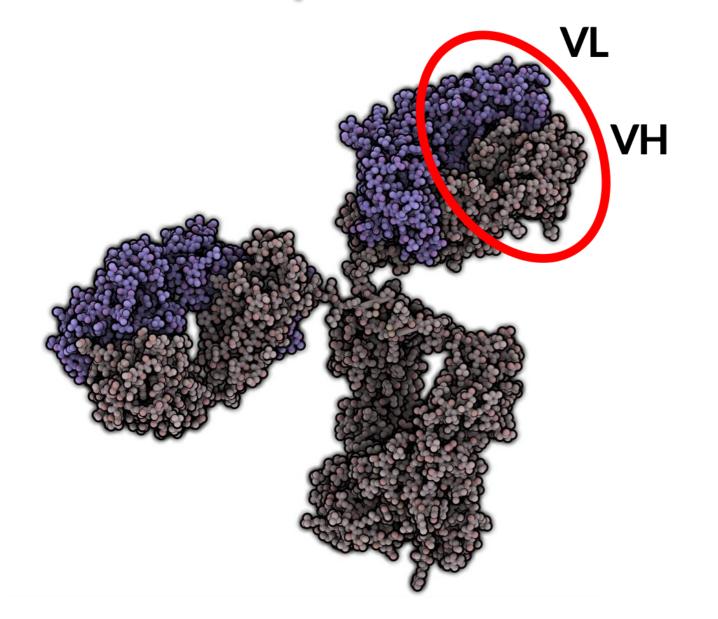

Not limited to MS cross-links

E2A-HPR mapping from unbound structures using 56 intermolecular NOEs

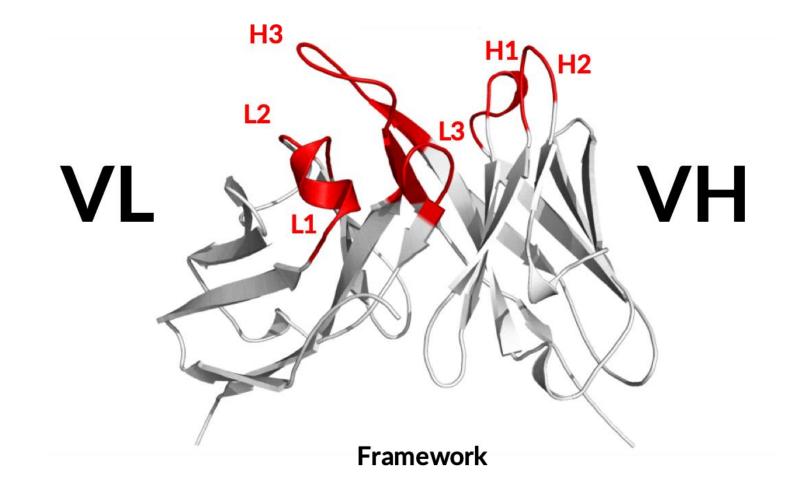

(Wang et al, EMBO J 2000)

- Visualization the information content of distance restraints
- Solely based on geometric considerations
- Identification of possible false positives
- Provides information about possible interfaces, valuable information to guide modelling
- BUT: Does not account for conformational changes and energetics

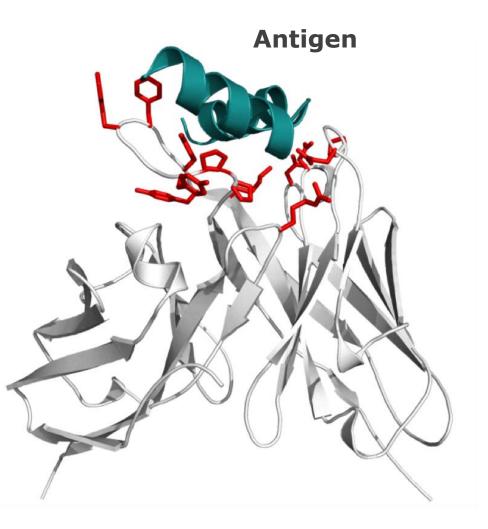



Overview

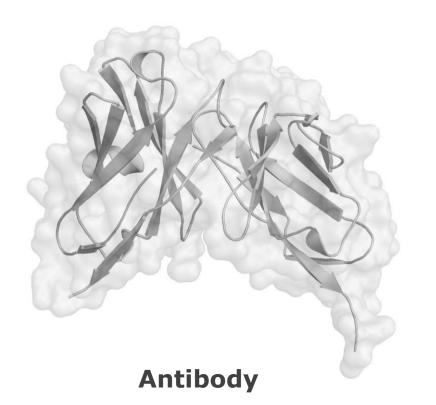
Introduction Information sources General aspects of docking Information-driven docking with HADDOCK Incorporating biophysical data into docking Assessing the interaction space Bonus topic: Antibody antigen modelling Conclusions & perspectives

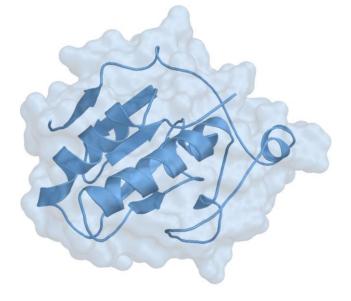

Antibody structure

Antibody structure



Variable domains: Complementarity Determining Regions




Antibody-Antigen binding

- The antibody region able to bind the antigen is named paratope
- The antigen region recognised by the antibody is called epitope

Antibody Docking Dataset

Antigen

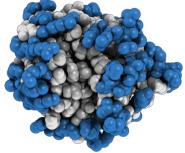
16 complexes with unbound structures from docking benchmark 5

Vreven, T. et al. **Updates to the Integrated Protein-Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2**. J. Mol. Biol. (2015). doi:10.1016/j.jmb.2015.07.016

Antibody-antigen modelling

Francesco Ambrosetti

4 software with specific options for antibody docking considered


• Restraints used either in scoring (ClusPro, ZDOCK) or to drive the docking (HADDOCK, LightDock)

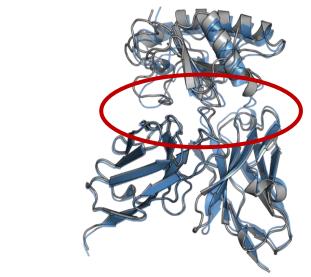
Antibody-antigen modelling: Information used

Antigen Antibody HV loops - Surface HV loops - Epig Hyper variable (HV) loops

Surface residues

Epitope defined at 9Å

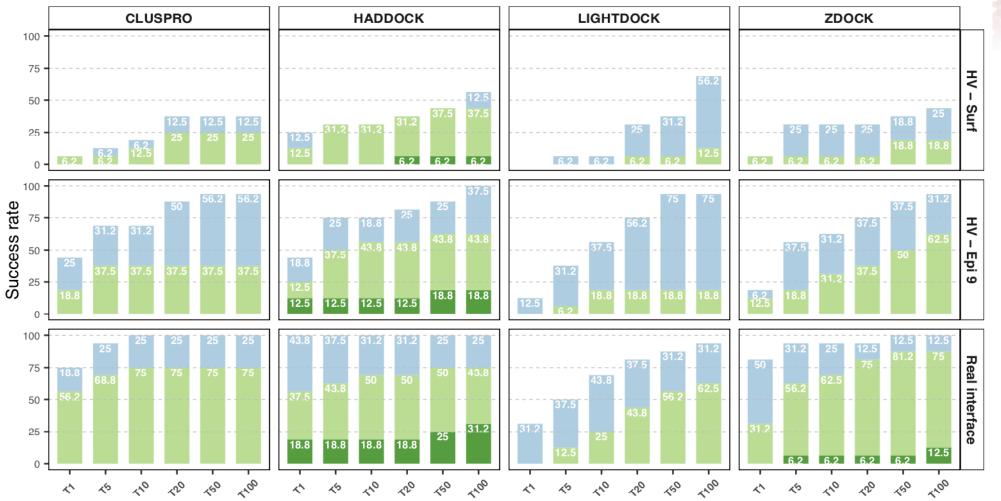
+ true interface (at 4.5Å) as reference


Antibody Docking Evaluation criteria

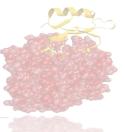
Reference		Docking	g model	
A:26	B:5		A:28	B:5
A:27	B:8		A:27	B:8
A:30	B:12		A:30	B:11
A:32	B:13		A:32	B:13
A:50	B:14		A:51	B:18
A:52	B:30		A:52	B:28
A:96	B:32		A:97	B:33
A:97	B:33		A:100	B:34
A:100	B:34		A:100	B:37
A:103	B:40		A:103	B:40

Fnat

i-RMSD



F	numberofcommoncontacts
r _{nat} –	numberofreferencecontats

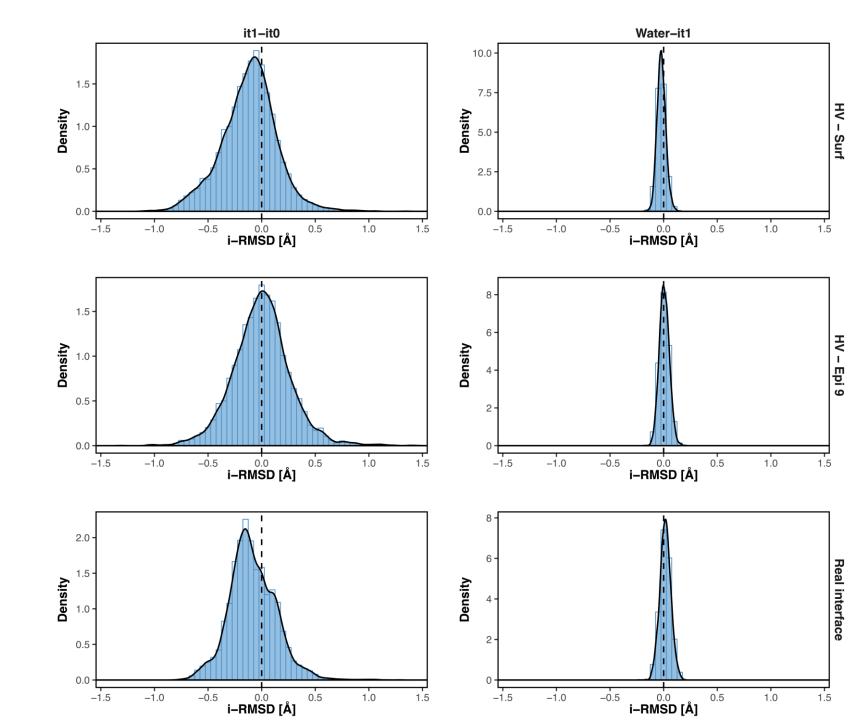

Class	F _{nat}	L-RMSD[Å]	i-RMSD[Å]
High (***)	≥ 0.5	≤ 1.0	$or \le 1.0$
Medium (**)	≥ 0.3	\leq 5.0	or ≤ 2.0
Acceptable (*)	≥ 0.1	≤ 10.0	or ≤ 4.0

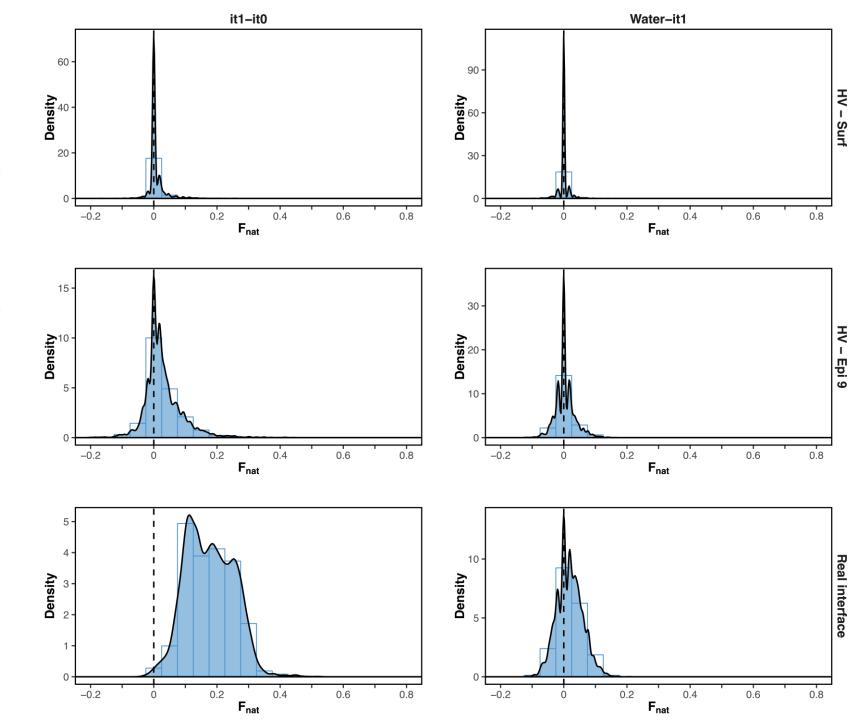
Docking success rate

(single structure-based)

Docking success rate

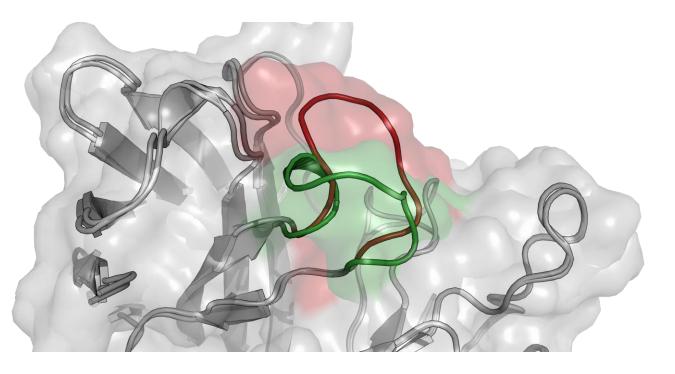
(cluster-based)





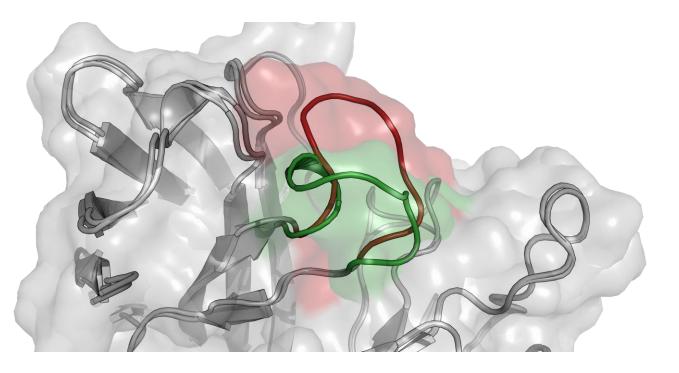
Quality: Acceptable Medium High

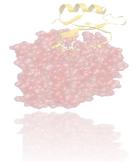
Impact of flexible refinement: i-RMSD distributions


Impact of flexible refinement: Fnat distributions

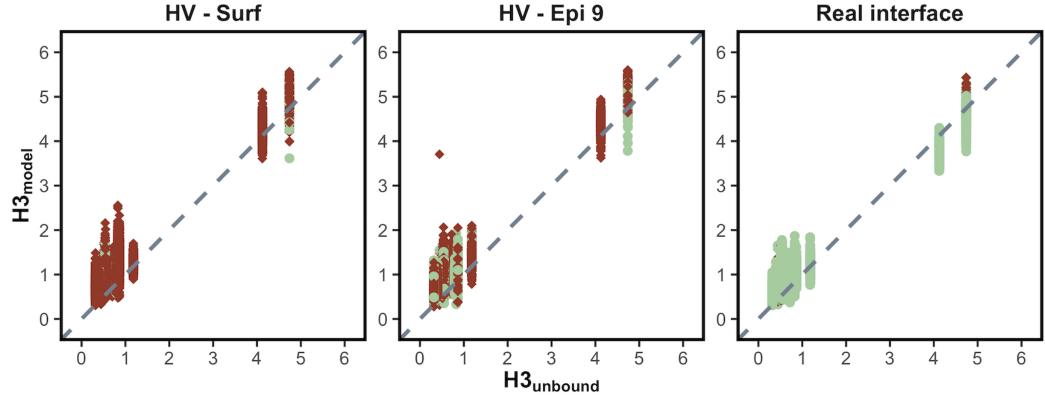
H3 modelling

H3 is crucial for the antigen recognition

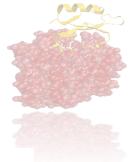

Modelling of the H3 loop of antibodies is still challenging

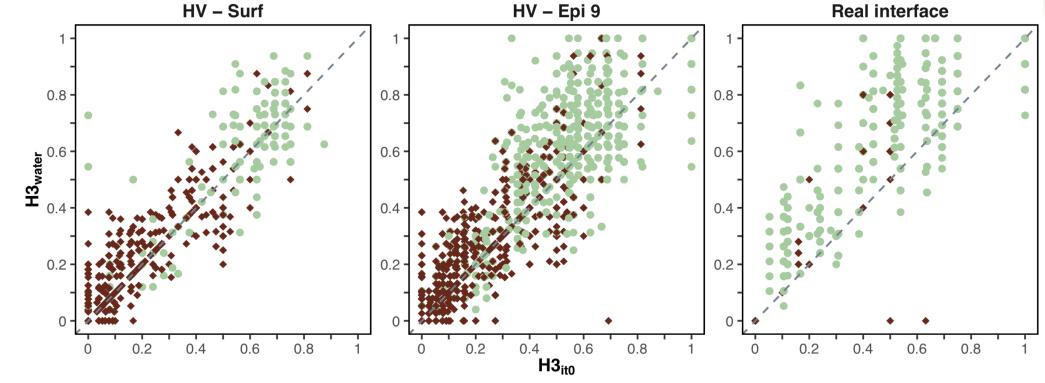

H3 modelling

H3 is crucial for the antigen recognition


Modelling of the H3 loop of antibodies is still challenging

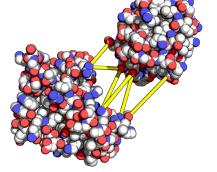
Is molecular docking able to correctly model H3?


Does flexible docking improves H3?


RMSD [Å] H3 unbound vs complex – HADDOCK models

(points below the diagonal indicate improvement)

Does flexible docking improves H3?



Correct models
 Wrong models

Fnat H3 unbound vs complex – HADDOCK models

(points above the diagonal indicate improvement)

Conclusions - antibodies

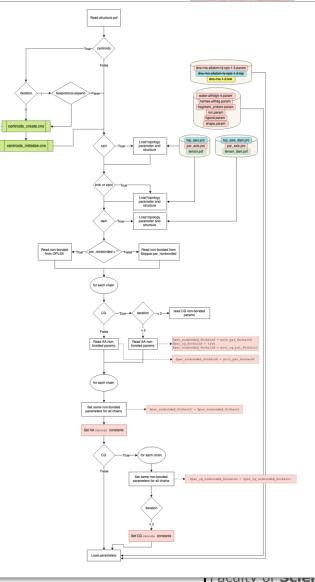
- Using information to drive the modelling process improves antibody-antigen modelling as demonstrated by the top performance of HADDOCK.
- Accurate modelling of H3 remains challenging, but contacts can be predicted more accurately

Overview

Introduction Information sources General aspects of docking Information-driven docking with HADDOCK Incorporating biophysical data into docking Modelling protein-ligand interactions Modelling from cryo-EM data Assessing the interaction space Conclusions & perspectives

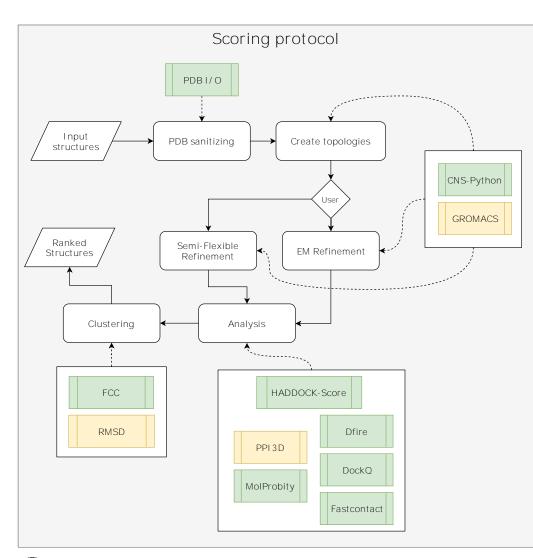
Conclusions

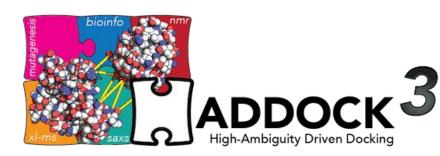
- (Information-driven) docking is useful to generate models of biomolecular complexes, even when little information is available
- While such models may not be fully accurate, they provide working hypothesis and can still be sufficient to explain and drive the molecular biology behind the system under study
- ... and with a little bit of effort they can be validated!
- Information-driven docking is complementary to classical structural methods

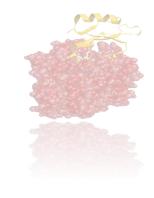

Chemistry]

Perspectives – Development

Modularization of HADDOCK


- Creating a map of all internal routines and establishing dependencies
- Thorough code documentation
- Evaluating bottlenecks
- Breaking down CNS routines
- E.g.: pre-processing script for structure check and generation of topology





Universiteit Utrecht

Modularization of HADDOCK

- Development of a CNS-Python
 wrapper
- Integration of new tools
- Testing and optimization of new features

Universiteit Utrecht

Acknowledgments: the CSB group@UU

TOP-PUNT

€€

WeNMR West-Life **EGI-Engage INDIGO-Datacloud BioExcel CoE** EOSC-Hub

Alexandre Bonvin Full Professor

Siri van Keulen

Postdoctoral Researcher

Charlotte van Noort Ph.D Candidate

Visiting Ph.D Candidate

Panagiotis Koukos Ph.D Candidate

Farzaneh Meimandi Parizi

Rodrigo Vargas

Postdoctoral Researcher

Honorato

Jorge Roel Ph.D Candidate

Sam de Vos M.Sc Student

Zuzana Jandova Postdoctoral Researcher

Francesco Ambrosetti Ph.D Candidate

HADDOCK TEAM 2019

Thank you for your attention!

HADDOCK online:

- http://haddock.science.uu.nl
- http://bonvinlab.org/software

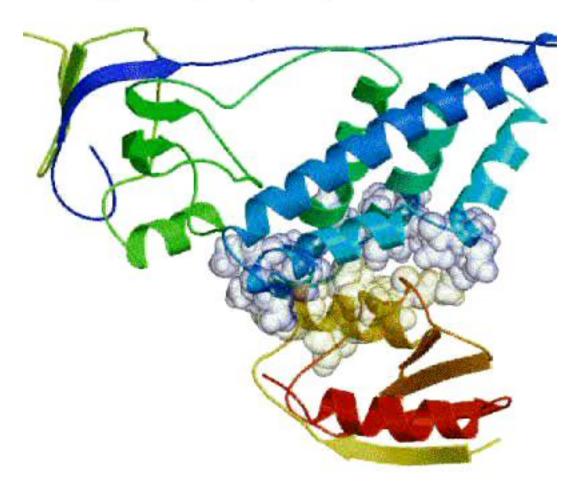
sk.bioexcelleu

http://ask.bioexcel.eu

Utrecht Bioinformatics Center

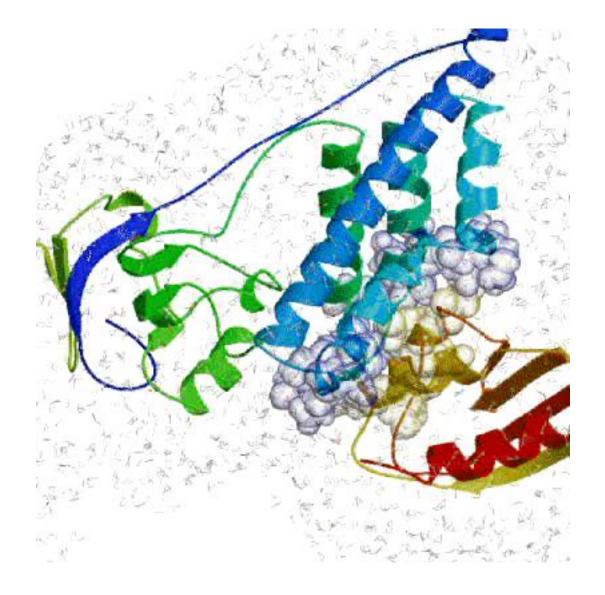
Rigid body energy minimization

step0001->energy=2426.972



Universiteit Utrecht

Semi-flexible SA refinement in torsion angle space


Rigid Body High Temperature Search

Refinement in explicit water

